1
|
VandenBosch LS, Cherry TJ. Machine Learning Prediction of Non-Coding Variant Impact in Cell-Class-Specific Human Retinal Cis-Regulatory Elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.638679. [PMID: 40060626 PMCID: PMC11888276 DOI: 10.1101/2025.02.22.638679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Non-coding variants in cis-regulatory elements such as promoters and enhancers contribute to inherited retinal diseases (IRDs), however, characterizing the functional impact of most regulatory variants remains challenging. To improve identification of variants of interest, we implemented machine learning using a gapped k-mer support vector machine approach trained on single nucleus ATAC-seq data from specific cell classes of the adult and developing human retina. We developed 18 distinct ML models to predict the impact of non-coding variants on 39,437 cell-class-specific regulatory elements. These models demonstrate accuracy over 90% and a high degree of cell class specificity. Variant Impact Prediction (VIP) scores highlight specific sequences within candidate CREs, including putative transcription factor (TF) binding motifs, that are predicted to alter CRE function if mutated. Correlations to massively parallel reporter assays support the predictive value of VIP scores to model single nucleotide variants and indels in a cell-class-specific manner. These analyses demonstrate the capacity for single nucleus epigenomic data to predict the impact of non-coding sequence variants and allow for rapid prioritization of patient variants for further functional analysis.
Collapse
Affiliation(s)
- Leah S VandenBosch
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Berry SS, Morone DJ, Nuttle X, de Esch CE, Tai DJC, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing. CELL GENOMICS 2025; 5:100770. [PMID: 39947136 PMCID: PMC11872474 DOI: 10.1016/j.xgen.2025.100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/01/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi syndrome (PWS) results from loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control the expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Shanté S Berry
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Daniel J Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J C Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Liu LH, Chen J, Lai S, Zhao X, Yang M, Wu YR, Zhang Z, Jiang A. Functional RNA mining using random high-throughput screening. Nucleic Acids Res 2025; 53:gkae1173. [PMID: 39673274 PMCID: PMC11754670 DOI: 10.1093/nar/gkae1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024] Open
Abstract
Functional RNA participates in various life processes in cells. However, there is currently a lack of effective methods to screen for functional RNA. Here, we developed a technology named random high-throughput screening (rHTS). rHTS uses a random library of ∼250-nt synthesized RNA fragments, with high uniformity and abundance. These fragments are circularized into circular RNA by an auto-cyclizing ribozyme to improve their stability. Using rHTS, we successfully screened and identified three RNA fragments contributing significantly to the growth of Escherichia coli, one of which possesses coding potential. Moreover, we found that two noncoding RNAs (ncRNAs) effectively inhibited the growth of E. coli, in vivo rather than in vitro. Subsequently, we applied the rHTS to a coenzyme-dependent screening platform. In this context, two ncRNAs were identified that could effectively promote the conversion from NADPH to NADP+. Exogenous expression of these two ncRNAs was able to increase the conversion rate of glycerol dehydrogenase from glycerol to 1,3-dihydroxyacetone from 18.3% to 21.8% and 23.2%, respectively. These results suggest that rHTS is a powerful technology for functional RNA mining.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Jinde Chen
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Shijing Lai
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Xuemei Zhao
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Tongchaunghui South District, No. 40, Shangchong South, Haizhu District, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
4
|
Xue X, Gajic ZZ, Caragine CM, Legut M, Walker C, Kim JYS, Wang X, Yan RE, Wessels HH, Lu C, Bapodra N, Gürsoy G, Sanjana NE. Paired CRISPR screens to map gene regulation in cis and trans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625752. [PMID: 39651170 PMCID: PMC11623649 DOI: 10.1101/2024.11.27.625752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent massively-parallel approaches to decipher gene regulatory circuits have focused on the discovery of either cis -regulatory elements (CREs) or trans -acting factors. Here, we develop a scalable approach that pairs cis - and trans -regulatory CRISPR screens to systematically dissect how the key immune checkpoint PD-L1 is regulated. In human pancreatic ductal adenocarcinoma (PDAC) cells, we tile the PD-L1 locus using ∼25,000 CRISPR perturbations in constitutive and IFNγ-stimulated conditions. We discover 67 enhancer- or repressor-like CREs and show that distal CREs tend to contact the promoter of PD-L1 and related genes. Next, we measure how loss of all ∼2,000 transcription factors (TFs) in the human genome impacts PD-L1 expression and, using this, we link specific TFs to individual CREs and reveal novel PD-L1 regulatory circuits. For one of these regulatory circuits, we confirm the binding of predicted trans -factors (SRF and BPTF) using CUT&RUN and show that loss of either the CRE or TFs potentiates the anti-cancer activity of primary T cells engineered with a chimeric antigen receptor. Finally, we show that expression of these TFs correlates with PD-L1 expression in vivo in primary PDAC tumors and that somatic mutations in TFs can alter response and overall survival in immune checkpoint blockade-treated patients. Taken together, our approach establishes a generalizable toolkit for decoding the regulatory landscape of any gene or locus in the human genome, yielding insights into gene regulation and clinical impact.
Collapse
|
5
|
Heshmatpour N, Kazemi SM, Schmidt ND, Patnaik SR, Korus P, Wilkens BGC, Macarrón Palacios A. Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes. Front Genome Ed 2024; 6:1427322. [PMID: 39469218 PMCID: PMC11513324 DOI: 10.3389/fgeed.2024.1427322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are highly aggressive tumors. Their genetic complexity and heterogeneity have hampered the development of novel approaches for precision medicine. Our study aimed to develop a personalized therapy for DLBCL by utilizing the CRISPR/Cas system to induce knockouts (KO) of driver genes, thereby causing cancer cell death while minimizing side effects. We focused on OCI-LY3 cells, modeling DLBCL, and compared them with BJAB cells as controls. Analysis of whole exome sequencing revealed significant mutations in genes like PAX5, CD79B, and MYC in OCI-LY3 cells. CRISPR/Cas9-mediated KO of these genes resulted in reduced cancer cell viability. Subsequent single and dual gRNA targeting of PAX5 mutations inhibited proliferation specifically in OCI-LY3 cells. Moreover, dual gRNA targeting of PAX5 and MYC induced chromosomal rearrangements, reducing cell proliferation substantially. However, targeting single intronic mutations did not affect cell viability, highlighting the importance of disrupting protein function. Targeting multiple mutations simultaneously addresses intra-tumoral heterogeneity, and the transient delivery of CRISPR/Cas9 allows for permanent gene disruption. While challenges such as incomplete editing efficiency and delivery limitations exist, further optimization may enhance therapeutic efficacy. Overall, our findings demonstrate the efficacy of CRISPR/Cas9 in targeting oncogenic mutations, opening avenues for precision medicine in DLBCL treatment.
Collapse
|
6
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Zhang Y, Hou G, Shen N. Non-coding DNA variants for risk in lupus. Best Pract Res Clin Rheumatol 2024; 38:101937. [PMID: 38429183 DOI: 10.1016/j.berh.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is a multifactorial autoimmune disease that arises from a dynamic interplay between genetics and environmental triggers. The advent of sophisticated genomics technology has catalyzed a shift in our understanding of disease etiology, spotlighting the pivotal role of non-coding DNA variants in SLE pathogenesis. In this review, we present a comprehensive examination of the non-coding variants associated with SLE, shedding light on their role in influencing disease risk and progression. We discuss the latest methodological advancements that have been instrumental in the identification and functional characterization of these genomic elements, with a special focus on the transformative power of CRISPR-based gene-editing technologies. Additionally, the review probes into the therapeutic opportunities that arise from modulating non-coding regions associated with SLE. Through an exploration of the complex network of non-coding DNA, this review aspires to decode the genetic puzzle of SLE and set the stage for groundbreaking gene-based therapeutic interventions and the advancement of precision medicine strategies tailored to SLE management.
Collapse
Affiliation(s)
- Yutong Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
| |
Collapse
|
8
|
Srinivas T, Siqueira E, Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol Psychiatry 2024; 29:874-890. [PMID: 38145986 PMCID: PMC11176085 DOI: 10.1038/s41380-023-02377-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are sequences of 200 nucleotides or more that are transcribed from a large portion of the mammalian genome. While hypothesized to have a variety of biological roles, many lncRNAs remain largely functionally uncharacterized due to unique challenges associated with their investigation. For example, some lncRNAs overlap with other genomic loci, are expressed in a cell-type-specific manner, and/or are differentially processed at the post-transcriptional level. The mammalian CNS contains a vast diversity of lncRNAs, and lncRNAs are highly abundant in the mammalian brain. However, interrogating lncRNA function in models of the CNS, particularly in vivo, can be complex and challenging. Here we review the breadth of methods used to investigate lncRNAs in the CNS, their merits, and the understanding they can provide with respect to neurodevelopment and pathophysiology. We discuss remaining challenges in the field and provide recommendations to assay lncRNAs based on current methods.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain.
- Germans Trias i Pujol Health Science Research Institute, 08916, Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
He L, Sun H, Wang H. 3D organization of enhancers in MuSCs. Curr Top Dev Biol 2024; 158:407-431. [PMID: 38670714 DOI: 10.1016/bs.ctdb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle stem cells (MuSCs), also known as satellite cells, are essential for muscle growth and injury induced regeneration. In healthy adult muscle, MuSCs remain in a quiescent state located in a specialized niche beneath the basal lamina. Upon injury, these dormant MuSCs can quickly activate to re-enter the cell cycle and differentiate into new myofibers, while a subset undergoes self-renewal and returns to quiescence to restore the stem cell pool. The myogenic lineage progression is intricately controlled by complex intrinsic and extrinsic cues and coupled with dynamic transcriptional programs. In transcriptional regulation, enhancers are key regulatory elements controlling spatiotemporal gene expression through physical contacting promoters of target genes. The three-dimensional (3D) chromatin architecture is known to orchestrate the establishment of proper enhancer-promoter interactions throughout development and aging. However, studies dissecting the 3D organization of enhancers in MuSCs are just emerging. Here, we provide an overview of the general properties of enhancers and newly developed methods for assessing their activity. In particular, we summarize recent discoveries regarding the 3D rewiring of enhancers during MuSC specification, lineage progression as well as aging.
Collapse
Affiliation(s)
- Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Huating Wang
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China; Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
10
|
Rohm D, Black JB, McCutcheon SR, Barrera A, Morone DJ, Nuttle X, de Esch CE, Tai DJ, Talkowski ME, Iglesias N, Gersbach CA. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583177. [PMID: 38496583 PMCID: PMC10942373 DOI: 10.1101/2024.03.03.583177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.
Collapse
Affiliation(s)
- Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Joshua B. Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R. McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Daniel J. Morone
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Xander Nuttle
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E. de Esch
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J.C. Tai
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Granata A. Functional genomics in stroke: current and future applications of iPSCs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord 2023; 23:223. [PMID: 37120540 PMCID: PMC10148993 DOI: 10.1186/s12872-023-03227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Stroke is an important disease with unmet clinical need. To uncover novel paths for treatment, it is of critical importance to develop relevant laboratory models that may help to shed light on the pathophysiological mechanisms of stroke. Induced pluripotent stem cells (iPSCs) technology has enormous potential to advance our knowledge into stroke by creating novel human models for research and therapeutic testing. iPSCs models generated from patients with specific stroke types and specific genetic predisposition in combination with other state of art technologies including genome editing, multi-omics, 3D system, libraries screening, offer the opportunity to investigate disease-related pathways and identify potential novel therapeutic targets that can then be tested in these models. Thus, iPSCs offer an unprecedented opportunity to make rapid progress in the field of stroke and vascular dementia research leading to clinical translation. This review paper summarizes some of the key areas in which patient-derived iPSCs technology has been applied to disease modelling and discusses the ongoing challenges and the future directions for the application of this technology in the field of stroke research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0BB, UK.
| |
Collapse
|
12
|
Mo J, Fan G, Tsukahara T, Sakari M. The Role of the Exonic lncRNA PRKDC-210 in Transcription Regulation. Int J Mol Sci 2022; 23:ijms232213783. [PMID: 36430260 PMCID: PMC9692655 DOI: 10.3390/ijms232213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
In recent years, long noncoding RNAs (lncRNAs) have received increasing attention and have been reported to be associated with various genetic abnormalities. However, the functions of many lncRNAs, including those of long exonic noncoding RNAs (lencRNAs), have not yet been elucidated. Here, we used a novel tethering luciferase assay to analyze the transcriptional regulatory functions of five lencRNAs that are upregulated in cancer. We found that the lencRNA PRKDC-210 interacts with MED12, a component of the CDK8 complex, to regulate the transcription of several genes. The transcriptional activation ability of PRKDC-210 was abolished in siRNA-treated CDK8-depleted cells. We also confirmed the enrichment of PRKDC-210 on RNA polymerase II. RNA-seq analysis of cells in which PRKDC-210 or PRKDC mRNA was knocked down using antisense oligonucleotides revealed that PRKDC-210 can affect the expression levels of genes related to fatty acid metabolism. Finally, we used a ChIRP assay to examine PRKDC-210-enriched sites in the genome. Overall, our findings demonstrate that the lencRNA PRKDC-210 promotes transcription through the CDK8 complex pathway at the transcription initiation site. We propose that PRKDC-210 can affect the transcription of adjacent genes after its transcription and splicing.
Collapse
|
13
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Functional annotation of breast cancer risk loci: current progress and future directions. Br J Cancer 2022; 126:981-993. [PMID: 34741135 PMCID: PMC8980003 DOI: 10.1038/s41416-021-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer.
Collapse
|
16
|
The non-coding genome in genetic brain disorders: new targets for therapy? Essays Biochem 2021; 65:671-683. [PMID: 34414418 PMCID: PMC8564736 DOI: 10.1042/ebc20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
The non-coding genome, consisting of more than 98% of all genetic information in humans and once judged as ‘Junk DNA’, is increasingly moving into the spotlight in the field of human genetics. Non-coding regulatory elements (NCREs) are crucial to ensure correct spatio-temporal gene expression. Technological advancements have allowed to identify NCREs on a large scale, and mechanistic studies have helped to understand the biological mechanisms underlying their function. It is increasingly becoming clear that genetic alterations of NCREs can cause genetic disorders, including brain diseases. In this review, we concisely discuss mechanisms of gene regulation and how to investigate them, and give examples of non-coding alterations of NCREs that give rise to human brain disorders. The cross-talk between basic and clinical studies enhances the understanding of normal and pathological function of NCREs, allowing better interpretation of already existing and novel data. Improved functional annotation of NCREs will not only benefit diagnostics for patients, but might also lead to novel areas of investigations for targeted therapies, applicable to a wide panel of genetic disorders. The intrinsic complexity and precision of the gene regulation process can be turned to the advantage of highly specific treatments. We further discuss this exciting new field of ‘enhancer therapy’ based on recent examples.
Collapse
|
17
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Chen J, Ali MW, Yan L, Dighe SG, Dai JY, Vaughan TL, Casey G, Buas MF. Prioritization and functional analysis of GWAS risk loci for Barrett's esophagus and esophageal adenocarcinoma. Hum Mol Genet 2021; 31:410-422. [PMID: 34505128 DOI: 10.1093/hmg/ddab259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified ~ 20 genetic susceptibility loci for esophageal adenocarcinoma (EAC), and its precursor, Barrett's esophagus (BE). Despite such advances, functional/causal variants and gene targets at these loci remain undefined, hindering clinical translation. A key challenge is that most causal variants map to non-coding regulatory regions such as enhancers, and typically, numerous potential candidate variants at GWAS loci require testing. We developed a systematic informatics pipeline for prioritizing candidate functional variants via integrative functional potential scores consolidated from multi-omics annotations, and used this pipeline to identify two high-scoring variants for experimental interrogation: chr9q22.32/rs11789015 and chr19p13.11/rs10423674. Minimal candidate enhancer regions spanning these variants were evaluated using luciferase reporter assays in two EAC cell lines. One of the two variants tested (rs10423674) exhibited allele-specific enhancer activity. CRISPR-mediated deletion of the putative enhancer region in EAC cell lines correlated with reduced expression of two genes-CREB-regulated transcription coactivator 1 (CRTC1) and Cartilage oligomeric matrix protein (COMP); expression of five other genes remained unchanged (CRLF1, KLHL26, TMEM59L, UBA52, RFXANK). Expression quantitative trait locus (eQTL) mapping indicated that rs10423674 genotype correlated with CRTC1 and COMP expression in normal esophagus. This study represents the first experimental effort to bridge GWAS associations to biology in BE/EAC, and supports the utility of functional potential scores to guide variant prioritization. Our findings reveal a functional variant and candidate risk enhancer at chr19p13.11, and implicate CRTC1 and COMP as putative gene targets, suggesting that altered expression of these genes may underlie the BE/EAC risk association.
Collapse
Affiliation(s)
- Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263 USA
| | - Mourad Wagdy Ali
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22903 USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263 USA
| | - Shruti G Dighe
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263 USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA.,Department of Epidemiology, University of Washington, School of Public Health, Seattle, Washington, 98195 USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22903 USA
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263 USA
| |
Collapse
|
19
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
20
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
21
|
Integration of SNP Disease Association, eQTL, and Enrichment Analyses to Identify Risk SNPs and Susceptibility Genes in Chronic Obstructive Pulmonary Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3854196. [PMID: 33457407 PMCID: PMC7785362 DOI: 10.1155/2020/3854196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease caused by the disturbance of genetic and environmental factors. Single-nucleotide polymorphisms (SNPs) play a vital role in the genetic dissection of complex diseases. In-depth analysis of SNP-related information could recognize disease-associated biomarkers and further uncover the genetic mechanism of complex diseases. Risk-related variants might act on the disease by affecting gene expression and gene function. Through integrating SNP disease association study and expression quantitative trait loci (eQTL) analysis, as well as functional enrichment of containing known causal genes, four risk SNPs and four corresponding susceptibility genes were identified utilizing next-generation sequencing (NGS) data of COPD. Of the four risk SNPs, one could be found in the SNPedia database that stored disease-related SNPs and has been linked to a disease in the literature. Four genes showed significant differences from the perspective of normal/disease or variant/nonvariant samples, as well as the high performance of sample classification. It is speculated that the four susceptibility genes could be used as biomarkers of COPD. Furthermore, three of our susceptibility genes have been confirmed in the literature to be associated with COPD. Among them, two genes had an impact on the significance of expression correlation of known causal genes they interact with, respectively. Overall, this research may present novel insights into the diagnosis and pathogenesis of COPD and susceptibility gene identification of other complex diseases.
Collapse
|
22
|
Townsley KG, Brennand KJ, Huckins LM. Massively parallel techniques for cataloguing the regulome of the human brain. Nat Neurosci 2020; 23:1509-1521. [PMID: 33199899 PMCID: PMC8018778 DOI: 10.1038/s41593-020-00740-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Complex brain disorders are highly heritable and arise from a complex polygenic risk architecture. Many disease-associated loci are found in non-coding regions that house regulatory elements. These elements influence the transcription of target genes-many of which demonstrate cell-type-specific expression patterns-and thereby affect phenotypically relevant molecular pathways. Thus, cell-type-specificity must be considered when prioritizing candidate risk loci, variants and target genes. This Review discusses the use of high-throughput assays in human induced pluripotent stem cell-based neurodevelopmental models to probe genetic risk in a cell-type- and patient-specific manner. The application of massively parallel reporter assays in human induced pluripotent stem cells can characterize the human regulome and test the transcriptional responses of putative regulatory elements. Parallel CRISPR-based screens can further functionally dissect this genetic regulatory architecture. The integration of these emerging technologies could decode genetic risk into medically actionable information, thereby improving genetic diagnosis and identifying novel points of therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
23
|
Black JB, McCutcheon SR, Dube S, Barrera A, Klann TS, Rice GA, Adkar SS, Soderling SH, Reddy TE, Gersbach CA. Master Regulators and Cofactors of Human Neuronal Cell Fate Specification Identified by CRISPR Gene Activation Screens. Cell Rep 2020; 33:108460. [PMID: 33264623 PMCID: PMC7730023 DOI: 10.1016/j.celrep.2020.108460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/02/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators. We utilize deactivated Cas9 (dCas9)-based gene activation to target 1,496 putative transcription factors (TFs) in the human genome. Using a reporter of neuronal commitment, we profile the neurogenic activity of these factors in human pluripotent stem cells (PSCs), leading to a curated set of pro-neuronal factors. Activation of pairs of TFs reveals neuronal cofactors, including E2F7, RUNX3, and LHX8, that improve conversion efficiency, subtype specificity, and maturation of neuronal cell types. Finally, using multiplexed gene regulation with orthogonal CRISPR systems, we demonstrate improved neuronal differentiation with concurrent activation and repression of target genes, underscoring the power of CRISPR-based gene regulation for programming complex cellular phenotypes.
Collapse
Affiliation(s)
- Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Shataakshi Dube
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Tyler S Klann
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Grayson A Rice
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Shaunak S Adkar
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy E Reddy
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA; Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Finger-Bou M, Orsi E, van der Oost J, Staals RHJ. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnol J 2020; 15:e1900404. [PMID: 32558098 DOI: 10.1002/biot.201900404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Indexed: 12/18/2022]
Abstract
The exploration of microbial metabolism is expected to support the development of a sustainable economy and tackle several problems related to the burdens of human consumption. Microorganisms have the potential to catalyze processes that are currently unavailable, unsustainable and/or inefficient. Their metabolism can be optimized and further expanded using tools like the clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) systems. These tools have revolutionized the field of biotechnology, as they greatly streamline the genetic engineering of organisms from all domains of life. CRISPR-Cas and other nucleases mediate double-strand DNA breaks, which must be repaired to prevent cell death. In prokaryotes, these breaks can be repaired through either homologous recombination, when a DNA repair template is available, or through template-independent end joining, of which two major pathways are known. These end joining pathways depend on different sets of proteins and mediate DNA repair with different outcomes. Understanding these DNA repair pathways can be advantageous to steer the results of genome engineering experiments. In this review, we discuss different strategies for the genetic engineering of prokaryotes through either non-homologous end joining (NHEJ) or alternative end joining (AEJ), both of which are independent of exogenous DNA repair templates.
Collapse
Affiliation(s)
- Max Finger-Bou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
25
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1379] [Impact Index Per Article: 275.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
State-of-the-Art Technology of Model Organisms for Current Human Medicine. Diagnostics (Basel) 2020; 10:diagnostics10060392. [PMID: 32532032 PMCID: PMC7345323 DOI: 10.3390/diagnostics10060392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1980s, molecular biology has been used to investigate medical field mechanisms that still require the use of crude biological materials in order to achieve their necessary goals. Transcription factor-induced pluripotent stem cells are used in regenerative medicine to screen drugs and to support lost tissues. However, these cells insufficiently reconstruct whole organs and require various intact cells, such as damaged livers and diabetic pancreases. For efficient gene transfer in medical use, virally mediated gene transfers are used, although immunogenic issues are investigated. To obtain efficient detective and diagnostic power in intractable diseases, biological tools such as roundworms and zebrafish have been found to be useful for high-throughput screening (HST) and diagnosis. Taken together, this biological approach will help to fill the gaps between medical needs and novel innovations in the field of medicine.
Collapse
|
27
|
Sparks TM, Harabula I, Pombo A. Evolving methodologies and concepts in 4D nucleome research. Curr Opin Cell Biol 2020; 64:105-111. [PMID: 32473574 PMCID: PMC7371551 DOI: 10.1016/j.ceb.2020.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
The genome requires tight regulation in space and time to maintain viable cell functions. Advances in our understanding of the 3D genome show a complex hierarchical network of structures, involving compartments, membraneless bodies, topologically associating domains, lamina associated domains, protein- or RNA-mediated loops, enhancer-promoter contacts, and accessible chromatin regions, with chromatin state regulation through epigenetic and transcriptional mechanisms. Further technology developments are poised to increase genomic resolution, dissect single-cell behaviors, including in vivo dynamics of genome folding, and provide mechanistic perspectives that identify further 3D genome players by integrating multiomics information. We highlight recent key developments in 4D nucleome methodologies and give a perspective on their future directions.
Collapse
Affiliation(s)
- Thomas M Sparks
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Izabela Harabula
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Hannoversche Strasse 28, 10115 Berlin, Germany; Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Lucero L, Fonouni-Farde C, Crespi M, Ariel F. Long noncoding RNAs shape transcription in plants. Transcription 2020; 11:160-171. [PMID: 32406332 DOI: 10.1080/21541264.2020.1764312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris Batiment 630 , Gif Sur Yvette, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, Centro Científico Tecnológico CONICET Santa Fe , Santa Fe, Argentina
| |
Collapse
|
29
|
Li Q, Sapkota M, van der Knaap E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. HORTICULTURE RESEARCH 2020; 7:36. [PMID: 32194972 PMCID: PMC7072075 DOI: 10.1038/s41438-020-0258-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 05/14/2023]
Abstract
Directed breeding of horticultural crops is essential for increasing yield, nutritional content, and consumer-valued characteristics such as shape and color of the produce. However, limited genetic diversity restricts the amount of crop improvement that can be achieved through conventional breeding approaches. Natural genetic changes in cis-regulatory regions of genes play important roles in shaping phenotypic diversity by altering their expression. Utilization of CRISPR/Cas editing in crop species can accelerate crop improvement through the introduction of genetic variation in a targeted manner. The advent of CRISPR/Cas-mediated cis-regulatory region engineering (cis-engineering) provides a more refined method for modulating gene expression and creating phenotypic diversity to benefit crop improvement. Here, we focus on the current applications of CRISPR/Cas-mediated cis-engineering in horticultural crops. We describe strategies and limitations for its use in crop improvement, including de novo cis-regulatory element (CRE) discovery, precise genome editing, and transgene-free genome editing. In addition, we discuss the challenges and prospects regarding current technologies and achievements. CRISPR/Cas-mediated cis-engineering is a critical tool for generating horticultural crops that are better able to adapt to climate change and providing food for an increasing world population.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
- Department of Horticulture, University of Georgia, Athens, GA USA
| |
Collapse
|
30
|
Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protoc 2019; 4:bpz017. [PMID: 32161809 PMCID: PMC6994087 DOI: 10.1093/biomethods/bpz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) makeup a considerable part of the non-coding human genome and had been well-established as crucial players in an array of biological processes. In spite of their abundance and versatile roles, their functional characteristics remain largely undiscovered mainly due to the lack of suitable genetic manipulation tools. The emerging CRISPR/Cas9 technology has been widely adapted in several studies that aim to screen and identify novel lncRNAs as well as interrogate the functional properties of specific lncRNAs. However, the complexity of lncRNAs genes and the regulatory mechanisms that govern their transcription, as well as their unique functionality pose several limitations the utilization of classic CRISPR methods in lncRNAs functional studies. Here, we overview the unique characteristics of lncRNAs transcription and function and the suitability of the CRISPR toolbox for applications in functional characterization of lncRNAs. We discuss some of the novel variations to the classic CRISPR/Cas9 system that have been tailored and applied previously to study several aspects of lncRNAs functionality. Finally, we share perspectives on the potential applications of various CRISPR systems, including RNA-targeting, in the direct editing and manipulation of lncRNAs.
Collapse
Affiliation(s)
- Dahlia A Awwad
- Center of X-Ray Determination of Structure of Matter (CXDS), Helmi Institute of Biomedical Research, Zewail City of Science and Technology, Giza, Cairo, Egypt
| |
Collapse
|
31
|
Disruption of an enhancer associated with addictive behaviour within the cannabinoid receptor-1 gene suggests a possible role in alcohol intake, cannabinoid response and anxiety-related behaviour. Psychoneuroendocrinology 2019; 109:104407. [PMID: 31445429 PMCID: PMC6857436 DOI: 10.1016/j.psyneuen.2019.104407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
The cannabinoid-1 receptor (CB1) plays a critical role in a number of biological processes including nutrient intake, addiction and anxiety-related behaviour. Numerous studies have shown that expression of the gene encoding CB1 (CNR1) is highly dynamic with changes in the tissue specific expression of CNR1 associated with brain homeostasis and disease progression. However, little is known of the mechanisms regulating this dynamic expression. To gain a better understanding of the genomic mechanisms modulating the expression of CNR1 in health and disease we characterised the role of a highly conserved regulatory sequence (ECR1) in CNR1 intron 2 that contained a polymorphism in linkage disequilibrium with disease associated SNPs. We used CRISPR/CAS9 technology to disrupt ECR1 within the mouse genome. Disruption of ECR1 significantly reduced CNR1 expression in the hippocampus but not in the hypothalamus. These mice also displayed an altered sex-specific anxiety-related behavioural profile (open field test), reduced ethanol intake and a reduced hypothermic response following CB1 agonism. However, no significant changes in feeding patterns were detected. These data suggest that, whilst not all of the expression of CNR1 is modulated by ECR1, this highly conserved enhancer is required for appropriate physiological responses to a number of stimuli. The combination of comparative genomics and CRISPR/CAS9 disruption used in our study to determine the functional effects of genetic and epigenetic changes on the activity of tissue-specific regulatory elements at the CNR1 locus represent an important first step in gaining a mechanistic understanding of cannabinoid regulatory pharmacogenetics.
Collapse
|
32
|
Duan J, Sanders AR, Gejman PV. From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190014. [PMID: 31555746 PMCID: PMC6760308 DOI: 10.20900/jpbs.20190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Pablo V. Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Tan G, Polychronopoulos D, Lenhard B. CNEr: A toolkit for exploring extreme noncoding conservation. PLoS Comput Biol 2019; 15:e1006940. [PMID: 31449516 PMCID: PMC6730951 DOI: 10.1371/journal.pcbi.1006940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/06/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Conserved Noncoding Elements (CNEs) are elements exhibiting extreme noncoding conservation in Metazoan genomes. They cluster around developmental genes and act as long-range enhancers, yet nothing that we know about their function explains the observed conservation levels. Clusters of CNEs coincide with topologically associating domains (TADs), indicating ancient origins and stability of TAD locations. This has suggested further hypotheses about the still elusive origin of CNEs, and has provided a comparative genomics-based method of estimating the position of TADs around developmentally regulated genes in genomes where chromatin conformation capture data is missing. To enable researchers in gene regulation and chromatin biology to start deciphering this phenomenon, we developed CNEr, a R/Bioconductor toolkit for large-scale identification of CNEs and for studying their genomic properties. We apply CNEr to two novel genome comparisons—fruit fly vs tsetse fly, and two sea urchin genomes—and report novel insights gained from their analysis. We also show how to reveal interesting characteristics of CNEs by coupling CNEr with existing Bioconductor packages. CNEr is available at Bioconductor (https://bioconductor.org/packages/CNEr/) and maintained at github (https://github.com/ge11232002/CNEr).
Collapse
Affiliation(s)
- Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
34
|
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 2019; 46:W242-W245. [PMID: 29762716 PMCID: PMC6030908 DOI: 10.1093/nar/gky354] [Citation(s) in RCA: 1223] [Impact Index Per Article: 203.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPOR.org is a web tool for genome editing experiments with the CRISPR-Cas9 system. It finds guide RNAs in an input sequence and ranks them according to different scores that evaluate potential off-targets in the genome of interest and predict on-target activity. The list of genomes is continuously expanded, with more 150 genomes added in the last two years. CRISPOR tries to provide a comprehensive solution from selection, cloning and expression of guide RNA as well as providing primers needed for testing guide activity and potential off-targets. Recent developments include batch design for genome-wide CRISPR and saturation screens, creating custom oligonucleotides for guide cloning and the design of next generation sequencing primers to test for off-target mutations. CRISPOR is available from http://crispor.org, including the full source code of the website and a stand-alone, command-line version.
Collapse
Affiliation(s)
- Jean-Paul Concordet
- Muséum national d'Histoire naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris F-75231, France
| | - Maximilian Haeussler
- Genomics Institute, University of California at Santa Cruz, 1156 High Street, MS CBSE, Santa Cruz, CA 95060, USA
| |
Collapse
|
35
|
Shariati SA, Dominguez A, Xie S, Wernig M, Qi LS, Skotheim JM. Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9. Mol Cell 2019; 74:622-633.e4. [PMID: 31051141 PMCID: PMC6599634 DOI: 10.1016/j.molcel.2019.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
The control of gene expression by transcription factor binding sites frequently determines phenotype. However, it is difficult to determine the function of single transcription factor binding sites within larger transcription networks. Here, we use deactivated Cas9 (dCas9) to disrupt binding to specific sites, a method we term CRISPRd. Since CRISPR guide RNAs are longer than transcription factor binding sites, flanking sequence can be used to target specific sites. Targeting dCas9 to an Oct4 site in the Nanog promoter displaced Oct4 from this site, reduced Nanog expression, and slowed division. In contrast, disrupting the Oct4 binding site adjacent to Pax6 upregulated Pax6 transcription and disrupting Nanog binding its own promoter upregulated its transcription. Thus, we can easily distinguish between activating and repressing binding sites and examine autoregulation. Finally, multiple guide RNA expression allows simultaneous inhibition of multiple binding sites, and conditionally destabilized dCas9 allows rapid reversibility.
Collapse
Affiliation(s)
- S Ali Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Antonia Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Shicong Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stem Cell Institute, Stanford, CA 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Kyono Y, Kitzman JO, Parker SCJ. Genomic annotation of disease-associated variants reveals shared functional contexts. Diabetologia 2019; 62:735-743. [PMID: 30756131 PMCID: PMC6451673 DOI: 10.1007/s00125-019-4823-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023]
Abstract
Variation in non-coding DNA, encompassing gene regulatory regions such as enhancers and promoters, contributes to risk for complex disorders, including type 2 diabetes. While genome-wide association studies have successfully identified hundreds of type 2 diabetes loci throughout the genome, the vast majority of these reside in non-coding DNA, which complicates the process of determining their functional significance and level of priority for further study. Here we review the methods used to experimentally annotate these non-coding variants, to nominate causal variants and to link them to diabetes pathophysiology. In recent years, chromatin profiling, massively parallel sequencing, high-throughput reporter assays and CRISPR gene editing technologies have rapidly become indispensable tools. Rather than treating individual variants in isolation, we discuss the importance of accounting for context, both genetic (such as flanking DNA sequence) and environmental (such as cellular state or environmental exposure). Incorporating these features shows promise in terms of revealing biologically convergent molecular signatures across distant and seemingly unrelated loci. Studying regulatory elements in the proper context will be crucial for interpreting the functional significance of disease-associated variants and applying the resulting knowledge to improve patient care.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, 2049 Palmer Commons Building, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jacob O Kitzman
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, 2049 Palmer Commons Building, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, 2049 Palmer Commons Building, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Turner TN, Eichler EE. The Role of De Novo Noncoding Regulatory Mutations in Neurodevelopmental Disorders. Trends Neurosci 2019; 42:115-127. [PMID: 30563709 PMCID: PMC6382467 DOI: 10.1016/j.tins.2018.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
Advances in sequencing technology have significantly expanded our understanding of the genetics of autism and neurodevelopmental disorders (NDDs). Continued technological improvements and cost reductions have now shifted the focus to investigations into the functional noncoding portions of the genome. There is a patient trend toward an excess of de novo and potentially disruptive mutations among conserved noncoding sequences implicated in the regulation of genes. The signals become stronger when restricted to genes already implicated in NDDs, but de novo mutation in such elements is estimated to account for <5% of patients. Larger sample sizes, improved variant detection, functional testing, and better approaches to classify noncoding variation will be required to identify specific pathogenic variants underlying disease.
Collapse
Affiliation(s)
- Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Panepucci RA, de Souza Lima IM. Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Res Ther 2019; 10:24. [PMID: 30635073 PMCID: PMC6330485 DOI: 10.1186/s13287-018-1124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Thoroughly understanding the molecular mechanisms responsible for the biological properties of pluripotent stem cells, as well as for the processes involved in reprograming, differentiation, and transition between Naïve and Primed pluripotent states, is of great interest in basic and applied research. Although pluripotent cells have been extensively characterized in terms of their transcriptome and miRNome, a comprehensive understanding of how these gene products specifically impact their biology, depends on gain- or loss-of-function experimental approaches capable to systematically interrogate their function. We review all studies carried up to date that used arrayed screening approaches to explore the function of these genetic elements on those biological contexts, using focused or genome-wide genetic libraries. We further discuss the limitations and advantages of approaches based on assays with population-level primary readouts, derived from single-parameter plate readers, or cell-level primary readouts, obtained using multiparametric flow cytometry or quantitative fluorescence microscopy (i.e., high-content screening). Finally, we discuss technical limitation and future perspectives, highlighting how the integration of screening data may lead to major advances in the field of stem cell research and therapy.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| | - Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| |
Collapse
|
39
|
Ford K, McDonald D, Mali P. Functional Genomics via CRISPR-Cas. J Mol Biol 2019; 431:48-65. [PMID: 29959923 PMCID: PMC6309720 DOI: 10.1016/j.jmb.2018.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/02/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas proteins have recently emerged as versatile tools to investigate and engineer the genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic function in high-throughput. Facile single-guide RNA library synthesis allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas perturbations with downstream single-cell analyses (flow cytometry, expression profiling, etc.), forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. In the following review, we highlight recent advances in CRISPR-Cas genomic screening while outlining protocols and pitfalls associated with screen implementation. Finally, we describe current challenges limiting the utility of CRISPR-Cas screening as well as future research needed to resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical applications. Looking ahead, patient centric functional screening in primary cells will likely play a greater role in disease management and therapeutic development.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
40
|
Osgood JA, Knight JC. Translating GWAS in rheumatic disease: approaches to establishing mechanism and function for genetic associations with ankylosing spondylitis. Brief Funct Genomics 2018; 17:308-318. [PMID: 29741584 PMCID: PMC6158798 DOI: 10.1093/bfgp/ely015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ankylosing spondylitis (AS) is a highly heritable chronic inflammatory arthritis characterized by osteoproliferation, fusion of affected joints and systemic manifestations. Many disease associations for AS have been reported through genome-wide association studies; however, identifying modulated genes and functional mechanism remains challenging. This review summarizes current genetic associations involving AS and describes strategic approaches for functional follow-up of disease-associated variants. Fine mapping using methods leveraging Bayesian approaches are outlined. Evidence highlighting the importance of context specificity for regulatory variants is reviewed, noting current evidence in AS for the relevant cell and tissue type to conduct such analyses. Technological advances for understanding the regulatory landscape within which functional variants may act are discussed using exemplars. Approaches include defining regulatory elements based on chromatin accessibility, effects of variants on genes at a distance through evidence of physical interactions (chromatin conformation capture), expression quantitative trait loci mapping and single-cell methodologies. Opportunities for mechanistic studies to investigate the function of specific variants, regulatory elements and genes enabled by genome editing using clustered regularly interspaced short palindromic repeats/Cas9 are also described. Further progress in our understanding of the genetics of AS through functional genomic and epigenomic approaches offers new opportunities to understand mechanism and develop innovative treatments.
Collapse
Affiliation(s)
- Julie A Osgood
- Functional genomics of ankylosing spondylitis, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Camp JG, Wollny D, Treutlein B. Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods 2018; 15:661-667. [PMID: 30171231 DOI: 10.1038/s41592-018-0113-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
To understand human development and disease, as well as to regenerate damaged tissues, scientists are working to engineer certain cell types in vitro and to create 3D microenvironments in which cells behave physiologically. Single-cell genomics (SCG) technologies are being applied to primary human organs and to engineered cells and tissues to generate atlases of cell diversity in these systems at unparalleled resolution. Moving beyond atlases, SCG methods are powerful tools for gaining insight into the engineering and disease process. Here we discuss how scientists can use single-cell sequencing to optimize human cell and tissue engineering by measuring precision, detecting inefficiencies, and assessing accuracy. We also provide a perspective on how emerging SCG methods can be used to reverse-engineer human cells and tissues and unravel disease mechanisms.
Collapse
Affiliation(s)
- J Gray Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Damian Wollny
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. .,Department of Biosciences, Technical University Munich, Freising, Germany.
| |
Collapse
|
42
|
Sanjana NE. A genome-wide net to catch and understand cancer. Sci Transl Med 2018; 10:eaat8288. [PMID: 30089637 PMCID: PMC6180290 DOI: 10.1126/scitranslmed.aat8288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 11/02/2022]
Abstract
Genome-scale forward genetic screens elucidate the genetic basis of therapeutic resistance, tumor evolution, and metastasis in diverse human cancers.
Collapse
Affiliation(s)
- Neville E. Sanjana
- New York Genome Center, New York, NY 10013
- Department of Biology, New York University, New York, NY 10003
| |
Collapse
|
43
|
Shukla A, Huangfu D. Decoding the noncoding genome via large-scale CRISPR screens. Curr Opin Genet Dev 2018; 52:70-76. [PMID: 29913329 DOI: 10.1016/j.gde.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Large portions of the human genome harbor functional noncoding elements, which can regulate a variety of biological processes and have important implications for disease risk and therapeutic outcomes. However, assigning specific functions to noncoding sequences remains a major challenge. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) systems have emerged as a powerful approach for targeted genome and epigenome perturbation. CRISPR systems are now harnessed for high-throughput screening of the noncoding genome to uncover functional regulatory elements and to define their precise functions with superior speed. Here, we summarize the various tools developed for such screens in mammalian systems and discuss screening methods and technical considerations. We further highlight screens that are already transforming our understanding of gene regulation and disease mechanisms, consider the impact of such discoveries on the development of new therapeutics, and provide our viewpoint on the challenges for future development of the field.
Collapse
Affiliation(s)
- Abhijit Shukla
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA.
| |
Collapse
|
44
|
Canver MC, Haeussler M, Bauer DE, Orkin SH, Sanjana NE, Shalem O, Yuan GC, Zhang F, Concordet JP, Pinello L. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nat Protoc 2018; 13:946-986. [PMID: 29651054 PMCID: PMC6182299 DOI: 10.1038/nprot.2018.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions.
Collapse
Affiliation(s)
- Matthew C Canver
- Molecular Pathology Unit and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maximilian Haeussler
- Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Neville E Sanjana
- New York Genome Center and Department of Biology, New York University, New York, New York, USA
| | - Ophir Shalem
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Feng Zhang
- The Broad Institute, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Luca Pinello
- Molecular Pathology Unit and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Medina-Rivera A, Santiago-Algarra D, Puthier D, Spicuglia S. Widespread Enhancer Activity from Core Promoters. Trends Biochem Sci 2018; 43:452-468. [PMID: 29673772 DOI: 10.1016/j.tibs.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
Abstract
Gene expression in higher eukaryotes is precisely regulated in time and space through the interplay between promoters and gene-distal regulatory regions, known as enhancers. The original definition of enhancers implies the ability to activate gene expression remotely, while promoters entail the capability to locally induce gene expression. Despite the conventional distinction between them, promoters and enhancers share many genomic and epigenomic features. One intriguing finding in the gene regulation field comes from the observation that many core promoter regions display enhancer activity. Recent high-throughput reporter assays along with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-related approaches have indicated that this phenomenon is common and might have a strong impact on our global understanding of genome organisation and gene expression regulation.
Collapse
Affiliation(s)
- Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - David Santiago-Algarra
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France
| | - Denis Puthier
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
46
|
Abstract
The CRISPR-CRISPR-associated (Cas) nuclease system offers the ability to perform unprecedented functional genetic experiments and the promise of therapy for a variety of genetic disorders. The understanding of factors contributing to CRISPR targeting efficacy and specificity continues to evolve. As CRISPR systems rely on Watson-Crick base pairing to ultimately mediate genomic cleavage, it logically follows that genetic variation would affect CRISPR targeting by increasing or decreasing sequence homology at on-target and off-target sites or by altering protospacer adjacent motifs. Numerous efforts have been made to document the extent of human genetic variation, which can serve as resources to understand and mitigate the effect of genetic variation on CRISPR targeting. Here, we review efforts to elucidate the effect of human genetic variation on CRISPR targeting at on-target and off-target sites with considerations for laboratory experiments and clinical translation of CRISPR-based therapies.
Collapse
Affiliation(s)
- Matthew C. Canver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
48
|
Chow RD, Chen S. Cancer CRISPR Screens In Vivo. Trends Cancer 2018; 4:349-358. [PMID: 29709259 DOI: 10.1016/j.trecan.2018.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) screening is a powerful toolset for investigating diverse biological processes. Most CRISPR screens to date have been performed with in vitro cultures or cellular transplant models. To interrogate cancer in animal models that more closely recapitulate the human disease, autochthonous direct in vivo CRISPR screens have recently been developed that can identify causative drivers in the native tissue microenvironment. By empowering multiplexed mutagenesis in fully immunocompetent animals, direct in vivo CRISPR screens enable the rapid generation of patient-specific avatars that can guide precision medicine. This Opinion article discusses the current status of in vivo CRISPR screens in cancer and offers perspectives on future applications.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale University School of Medicine, West Haven, CT, USA; Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Systems Biology Institute, Yale University School of Medicine, West Haven, CT, USA; Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA; Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, CT, USA; Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA; Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Klann TS, Black JB, Gersbach CA. CRISPR-based methods for high-throughput annotation of regulatory DNA. Curr Opin Biotechnol 2018; 52:32-41. [PMID: 29500989 DOI: 10.1016/j.copbio.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023]
Abstract
Developments in CRISPR/Cas9-based technologies provide a new paradigm in functional screening of the genome. Conventional screening methods have focused on high-throughput perturbations of the protein-coding genome with technologies such as RNAi. However, equivalent methods for perturbing the non-coding genome have not existed until recently. CRISPR-based screening of genomic DNA has enabled the study of both genes and non-coding gene regulatory elements. Here we review recent progress in assigning function to the non-coding genome using CRISPR-based genomic and epigenomic screens, and discuss the prospects of these technologies to transforming our understanding of genome structure and regulation.
Collapse
Affiliation(s)
- Tyler S Klann
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States
| | - Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, United States; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
50
|
España AP, Santiago-Algarra D, Pradel L, Spicuglia S. [High-throughput approaches to study cis-regulating elements]. Biol Aujourdhui 2017; 211:271-280. [PMID: 29956654 DOI: 10.1051/jbio/2018015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Gene expression in higher eukaryotes is regulated through the involvement of transcription start site (TSS)-proximal (promoters) and -distal (enhancers) regulatory elements. Enhancer elements play an essential role during development and cell differentiation, while genetic alterations in these elements are a major cause of human disease. Here, we discuss recent advances in high-throughput approaches to identify and characterize enhancer elements, from the well-established massively parallel reporter assays to the recent clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based technologies. We discuss how these approaches contribute toward a better understanding of enhancer function in normal and pathological conditions.
Collapse
Affiliation(s)
- Alexandre P España
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - David Santiago-Algarra
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Lydie Pradel
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Salvatore Spicuglia
- Aix-Marseille Université, INSERM, TAGC, UMR 1090, 13288 Marseille, France - Équipe Labellisée Ligue Contre le Cancer, Laboratoire TAGC, INSERM U1090, Aix-Marseille Université, Parc Scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|