1
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
2
|
Blatch GL, Edkins AL. New insights into Sti1/Hop's cochaperone function highlight the complexity of proteostatic regulation. FEBS J 2025. [PMID: 40259657 DOI: 10.1111/febs.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Sti1/Hop is a cochaperone that regulates Hsp70 and Hsp90 chaperones. Sti1/Hop function is perceived as limited to scaffolding chaperone complexes, although recent studies suggest a broader function. Rutledge et al. show that while Sti1/Hop functions within chaperone complexes under basal conditions, during high stress, it operates independently to sequester soluble misfolded protein in the cytoplasm, a function typically associated with chaperones rather than cochaperones. Furthermore, the localisation and levels of Sti1/Hop are finely tuned to ensure orderly sequestration and resolution of misfolded proteins. These data support a role for Sti1/Hop as a cochaperone specialised for stressed proteostasis networks.
Collapse
Affiliation(s)
- Gregory Lloyd Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Australia
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| |
Collapse
|
3
|
Hu B, Feng X, Xu M, Huang Y, Guo C, Yuan R, Li Y, Wei Z, Chen J, Sun Z. A pentatomomorpha-specific salivary protein activates plant immunity and is critical for insect feeding. Proc Natl Acad Sci U S A 2025; 122:e2425190122. [PMID: 39888915 PMCID: PMC11804711 DOI: 10.1073/pnas.2425190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
The stinkbug Riptortus pedestris, notorious for inducing soybean staygreen-like syndrome, employs a range of salivary proteins to manipulate the host plant for its benefit. Here, we show that RpSP1, a salivary protein specific to Pentatomomorpha, triggers plant defense responses in multiple plant species. RpSP1 interacts with and stabilizes a HSP40 family protein GmSPIP1 and is dependent on GmSPIP1 to induce cell death. We show that a critical 22-amino acid peptide within RpSP1 acts as an intracellular insect-derived elicitor. Furthermore, RpSP1 enhances insect-feeding efficiency. The dual functionality of RpSP1 is highlighted by the significant reduction of soybean staygreen-like syndrome following its overexpression in soybean plants or knockdown in insects. Our findings elucidate the complex molecular interactions between plants and herbivores, positioning RpSP1 as a crucial target for developing advanced pest management strategies with broad implications for agricultural biology.
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Xiuli Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Manru Xu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yue Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chunyun Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Ruikun Yuan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yiyuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
4
|
Hoskins JR, Wickramaratne AC, Jewell CP, Jenkins LM, Wickner S. Hsp90, DnaK, and ClpB collaborate in protein reactivation. Proc Natl Acad Sci U S A 2025; 122:e2422640122. [PMID: 39879241 PMCID: PMC11804706 DOI: 10.1073/pnas.2422640122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. Escherichia coli and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions. These collaborations are dependent on direct interactions between ClpB/Hsp104 and Hsp70. We explored the possibility that E. coli homologs of Hsp70, Hsp90, and ClpB, referred to as DnaK, Hsp90Ec, and ClpB, respectively, in combination with two DnaK cochaperones, DnaJ and GrpE, could promote protein disaggregation and reactivation under conditions where bichaperone systems are ineffective. Our results show that Hsp90Ec is able to overcome the inhibition of protein disaggregation and reactivation observed when the concentration of DnaK is approaching physiological concentrations. We found that ATP hydrolysis and substrate binding by all three chaperones are essential for the collaborative function. The work further shows that ClpB acts early in protein reactivation with DnaK and its cochaperones; E. coli Hsp90 acts at a later stage after ClpB. The results highlight the collaboration among chaperones to regulate and maintain proteostasis.
Collapse
Affiliation(s)
- Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | | | - Connor P. Jewell
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Shoup D, Priola SA. Chaperone-mediated disaggregation of infectious prions releases particles that seed new prion formation in a strain-specific manner. J Biol Chem 2025; 301:108062. [PMID: 39662829 PMCID: PMC11758957 DOI: 10.1016/j.jbc.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian prion protein can form infectious, nonnative, and protease resistant aggregates (PrPD), which cause lethal prion diseases like human Creutzfeldt-Jakob disease. PrPD seeds the formation of new infectious prions by interacting with and triggering the refolding of the normally soluble mammalian prion protein, PrPC, into more PrPD. Refolding of misfolded proteins in the cell is carried out by molecular chaperones such as Grp78. We have recently shown that Grp78 sensitizes PrPD to proteases, indicating structural alterations and leading to its degradation. However, the process of chaperone-mediated PrPD disaggregation, the chaperones involved, and the effect of disaggregation on PrPD seeding activity are unclear. We have now monitored the structural modification, disaggregation, and seeding activity of PrPD from two mouse adapted prion strains, 22L and 87V, in the presence of Grp78 and two forms of the Hsp110 disaggregase chaperone family, Hsp105 and Apg-2. We found that both forms of Hsp110 induced similar amounts of disaggregation and structural change in the protease resistant cores of PrPD from both strains. However, 22L PrPD was more susceptible to destabilization and disaggregation by the chaperones than 87V. Surprisingly, despite disaggregation of both strains, only the 22L PrPD aggregates released by the chaperones had seeding activity, with both forms of Hsp110 enhancing the Grp78 mediated release of these aggregates. Our data show that disassembly of PrPD by Grp78 and Hsp110 chaperones can release seeding particles of PrPD in a strain-specific manner, potentially facilitating prion replication and spread.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
6
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
7
|
Kirigin E, Okpara MO, Matandirotya L, Ruck JL, Weaver F, Jackson Z, Chakraborty A, Veale CGL, Whitehouse A, Edkins AL. Hsp70-Hsp90 organising protein (HOP/STIP1) is required for KSHV lytic replication. J Gen Virol 2024; 105. [PMID: 39607759 DOI: 10.1099/jgv.0.002053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA virus that causes Kaposi's sarcoma, a cancer of endothelial origin. KSHV uses the activity of host molecular chaperones like Hsp70 and Hsp90 for the folding of host and viral proteins required for productive infection. Hsp70 and Hsp90 chaperones form proteostasis networks with several regulatory proteins known as co-chaperones. Of these, Hsp90-Hsp70-organizing protein (HOP) is an early-stage co-chaperone that regulates the transfer of folding substrate proteins between the Hsp70 and Hsp90 chaperone systems. While the roles for Hsp90 and Hsp70 in KSHV biology have been described, HOP has not previously been studied in this context despite its prominent interaction with both chaperones. Here, we demonstrate a novel function for HOP as a new host factor required for effective lytic replication of KSHV in primary effusion cell lines.
Collapse
Affiliation(s)
- Elisa Kirigin
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Michael Obinna Okpara
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Lorraine Matandirotya
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamie-Lee Ruck
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | - Frederick Weaver
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Zoe Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Abir Chakraborty
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
| | | | - Adrian Whitehouse
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6139, South Africa
- Centre for Chemico- and Biomedicinal Research (CCBR), Rhodes University, Makhanda, 6139, South Africa
| |
Collapse
|
8
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
9
|
Toribio R, Navarro A, Castellano MM. HOP stabilizes the HSFA1a and plays a main role in the onset of thermomorphogenesis. PLANT, CELL & ENVIRONMENT 2024; 47:4449-4463. [PMID: 39007522 DOI: 10.1111/pce.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Living organisms have the capacity to respond to environmental stimuli, including warm conditions. Upon sensing mild temperature, plants launch a transcriptional response that promotes morphological changes, globally known as thermomorphogenesis. This response is orchestrated by different hormonal networks and by the activity of different transcription factors, including the heat shock factor A1 (HSFA1) family. Members of this family interact with heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90); however, the effect of this binding on the regulation of HSFA1 activity or of the role of cochaperones, such as the HSP70-HSP90 organizing protein (HOP) on HSFA1 regulation, remains unknown. Here, we show that AtHOPs are involved in the folding and stabilization of the HSFA1a and are required for the onset of the transcriptional response associated to thermomorphogenesis. Our results demonstrate that the three members of the AtHOP family bind in vivo to the HSFA1a and that the expression of multiple HSFA1a-responsive-responsive genes is altered in the hop1 hop2 hop3 mutant under warm temperature. Interestingly, HSFA1a is accumulated at lower levels in the hop1 hop2 hop3 mutant, while control levels are recovered in the presence of the proteasome inhibitor MG132 or the synthetic chaperone tauroursodeoxycholic acid (TUDCA). This uncovers the HSFA1a as a client of HOP complexes in plants and reveals the participation of HOPs in HSFA1a stability.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
10
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Tiroli-Cepeda AO, Linhares LA, Aragão AZB, de Jesus JR, Wasilewska-Sampaio AP, De Felice FG, Ferreira ST, Borges JC, Cyr DM, Ramos CHI. Type I Hsp40s/DnaJs aggregates exhibit features reminiscent of amyloidogenic structures. FEBS J 2024; 291:3904-3923. [PMID: 38975859 PMCID: PMC11468011 DOI: 10.1111/febs.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
A rise in temperature triggers a structural change in the human Type I 40 kDa heat shock protein (Hsp40/DnaJ), known as DNAJA1. This change leads to a less compact structure, characterized by an increased presence of solvent-exposed hydrophobic patches and β-sheet-rich regions. This transformation is validated by circular dichroism, thioflavin T binding, and Bis-ANS assays. The formation of this β-sheet-rich conformation, which is amplified in the absence of zinc, leads to protein aggregation. This aggregation is induced not only by high temperatures but also by low ionic strength and high protein concentration. The aggregated conformation exhibits characteristics of an amyloidogenic structure, including a distinctive X-ray diffraction pattern, seeding competence (which stimulates the formation of amyloid-like aggregates), cytotoxicity, resistance to SDS, and fibril formation. Interestingly, the yeast Type I Ydj1 also tends to adopt a similar β-sheet-rich structure under comparable conditions, whereas Type II Hsp40s, whether human or from yeast, do not. Moreover, Ydj1 aggregates were found to be cytotoxic. Studies using DNAJA1- and Ydj1-deleted mutants suggest that the zinc-finger region plays a crucial role in amyloid formation. Our discovery of amyloid aggregation in a C-terminal deletion mutant of DNAJA1, which resembles a spliced homolog expressed in the testis, implies that Type I Hsp40 co-chaperones may generate amyloidogenic species in vivo.
Collapse
Affiliation(s)
- Ana O Tiroli-Cepeda
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Leonardo A Linhares
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Annelize Z B Aragão
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Jemmyson R de Jesus
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | | | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| |
Collapse
|
12
|
Castellano MM, Muñoz A, Okeke IC, Novo-Uzal E, Toribio R, Mangano S. The role of the co-chaperone HOP in plant homeostasis during development and stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4274-4286. [PMID: 38330220 PMCID: PMC11263486 DOI: 10.1093/jxb/erae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Proteins need to acquire their native structure in order to become fully functional. In specific cases, the active conformation is obtained spontaneously; nevertheless, many proteins need the assistance of chaperones and co-chaperones to be properly folded. These proteins help to maintain protein homeostasis under control conditions and under different stresses. HOP (HSP70-HSP90 organizing protein) is a highly conserved family of co-chaperones that assist HSP70 and HSP90 in the folding of specific proteins. In the last few years, findings in mammals and yeast have revealed novel functions of HOP and re-defined the role of HOP in protein folding. Here, we provide an overview of the most important aspects of HOP regulation and function in other eukaryotes and analyse whether these aspects are conserved in plants. In addition, we highlight the HOP clients described in plants and the role of HOP in plant development and stress response.
Collapse
Affiliation(s)
- M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Muñoz
- Departamento de Sistemas y Recursos Naturales, ETSI de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Isabel C Okeke
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Esther Novo-Uzal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223-Pozuelo de Alarcón, Madrid, Spain
- INTECH, CONICET-UNSAM Avda. Intendente Marino KM 8.2, (7130), Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
13
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
14
|
Wang S, Zhang L, Zhang L, Yong K, Chen T, Cao L, Lu M. SlMDH3 Interacts with Autophagy Receptor Protein SlATI1 and Positively Regulates Tomato Heat Tolerance. Int J Mol Sci 2024; 25:7000. [PMID: 39000108 PMCID: PMC11241746 DOI: 10.3390/ijms25137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Autophagy, a highly conserved protein degradation system, plays an important role in protecting cells from adverse environmental conditions. ATG8-INTERACTING PROTEIN1 (ATI1) acts as an autophagy receptor, but its functional mechanisms in plants' heat stress tolerance remain unclear. In this study, using LC-MS/MS, we identified malate dehydrogenase (SlMDH3) as a SlATI1-interacting protein. Further studies showed that heat stress induced the expression of SlMDH3 and SlMDH3 co-localized with SlATI1 under both 22 °C and 42 °C heat treatment conditions. Moreover, silencing of SlMDH3 increased the sensitivity of tomato to heat stress, as evidenced by exacerbated degradation of chlorophyll; accumulation of MDA, H2O2, and dead cells; increased relative conductivity; and inhibition of stress-related gene expression. Conversely, overexpression of SlMDH3 improved tomato's heat tolerance, leading to opposite effects on physiological indicators and gene expression compared to SlMDH3 silencing. Taken together, our study suggests that SlMDH3 interacts with SlATI1 and positively regulates tomato heat tolerance.
Collapse
Affiliation(s)
- Sitian Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Li Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Tao Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Lijun Cao
- Department of Biology, Duke University, Durham, NC 27708, USA;
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| |
Collapse
|
15
|
Shoup D, Priola SA. Grp78 destabilization of infectious prions is strain-specific and modified by multiple factors including accessory chaperones and pH. J Biol Chem 2024; 300:107346. [PMID: 38718859 PMCID: PMC11176782 DOI: 10.1016/j.jbc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024] Open
Abstract
Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
16
|
Mayer MP, Blair L, Blatch GL, Borges TJ, Chadli A, Chiosis G, de Thonel A, Dinkova-Kostova A, Ecroyd H, Edkins AL, Eguchi T, Fleshner M, Foley KP, Fragkostefanakis S, Gestwicki J, Goloubinoff P, Heritz JA, Heske CM, Hibshman JD, Joutsen J, Li W, Lynes M, Mendillo ML, Mivechi N, Mokoena F, Okusha Y, Prahlad V, Repasky E, Sannino S, Scalia F, Shalgi R, Sistonen L, Sontag E, van Oosten-Hawle P, Vihervaara A, Wickramaratne A, Wang SXY, Zininga T. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024; 29:143-157. [PMID: 38311120 PMCID: PMC10939078 DOI: 10.1016/j.cstres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Laura Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Thiago J Borges
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gabriela Chiosis
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aurélie de Thonel
- CNRS, UMR 7216, 75250 Paris Cedex 13, Paris, France; Univeristy of Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Albena Dinkova-Kostova
- Division of Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jason Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| | - Michael Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nahid Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Fortunate Mokoena
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anushka Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn Xiang Yang Wang
- Developmental Therapeutics Program, VCU Comprehensive Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
17
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Melikov A, Novák P. Heat Shock Protein Network: the Mode of Action, the Role in Protein Folding and Human Pathologies. Folia Biol (Praha) 2024; 70:152-165. [PMID: 39644110 DOI: 10.14712/fb2024070030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Protein folding is an extremely complicated process, which has been extensively tackled during the last decades. In vivo, a certain molecular machinery is responsible for assisting the correct folding of proteins and maintaining protein homeostasis: the members of this machinery are the heat shock proteins (HSPs), which belong among molecular chaperones. Mutations in HSPs are associated with several inherited diseases, and members of this group were also proved to be involved in neurodegenerative pathologies (e.g., Alzheimer and Parkinson diseases), cancer, viral infections, and antibiotic resistance of bacteria. Therefore, it is critical to understand the principles of HSP functioning and their exact role in human physiology and pathology. This review attempts to briefly describe the main chaperone families and the interplay between individual chaperones, as well as their general and specific functions in the context of cell physiology and human diseases.
Collapse
Affiliation(s)
- Aleksandr Melikov
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Novák
- BIOCEV, Faculty of Science, Charles University, Prague, Czech Republic.
- BIOCEV, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Esquivel AR, Hill SE, Blair LJ. DnaJs are enriched in tau regulators. Int J Biol Macromol 2023; 253:127486. [PMID: 37852393 PMCID: PMC10842427 DOI: 10.1016/j.ijbiomac.2023.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation. This study employed a semi-high throughput assay to identify molecular chaperones influencing tau seeding using Tau RD P301S FRET Biosensor cells, which express a portion of tau containing the frontotemporal dementia-related P301S tau mutation fused to a FRET biosensor. Approximately fifty chaperones from five major families were screened using live cell imaging to monitor FRET-positive tau seeding. Among the tested chaperones, five exhibited significant effects on tau in the primary screen. Notably, three of these were from the DnaJ family. In subsequent studies, overexpression of DnaJA2, DnaJB1, and DnaJB6b resulted in significant reductions in tau levels. Knockdown experiments by shRNA revealed an inverse correlation between DnaJB1 and DnaJB6b with tau levels. DnaJB6b overexpression, specifically, reduced total tau levels in a cellular model with a pre-existing pool of tau, partially through enhanced proteasomal degradation. Further, DnaJB6b interacted with tau complexes. These findings highlight the potent chaperone activity within the DnaJ family, particularly DnaJB6b, towards tau.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Shannon E Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
20
|
Münch C, Kirstein J. Protein quality control: from molecular mechanisms to therapeutic intervention-EMBO workshop, May 21-26 2023, Srebreno, Croatia. Cell Stress Chaperones 2023; 28:631-640. [PMID: 37731161 PMCID: PMC10746685 DOI: 10.1007/s12192-023-01383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Protein quality control pathways ensure a functional proteome and rely on a complex proteostasis network (PN) that is composed of molecular chaperones and proteases. Failures in the PN can lead to a broad spectrum of diseases, including neurodegenerative disorders like Alzheimer's, Parkinson's, and a range of motor neuron diseases. The EMBO workshop "Protein quality control: from molecular mechanisms to therapeutic intervention" covered all aspects of protein quality control from underlying molecular mechanisms of chaperones and proteases to stress signaling pathways and medical implications. This report summarizes the workshop and highlights selected presentations.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janine Kirstein
- Friedrich-Schiller-Universität Jena, Jena, Germany.
- Leibniz-Institute on Aging/Fritz-Lipmann Institute, Jena, Germany.
| |
Collapse
|
21
|
Sekine Y, Wang X, Kikkawa K, Honda S, Strittmatter SM. Amino-terminal proteolytic fragment of the axon growth inhibitor Nogo-A (Rtn4A) is upregulated by injury and promotes axon regeneration. J Biol Chem 2023; 299:105232. [PMID: 37690690 PMCID: PMC10622843 DOI: 10.1016/j.jbc.2023.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
After adult mammalian central nervous system injury, axon regeneration is extremely limited or absent, resulting in persistent neurological deficits. Axon regeneration failure is due in part to the presence of inhibitory proteins, including NogoA (Rtn4A), from which two inhibitory domains have been defined. When these inhibitory domains are deleted, but an amino-terminal domain is still expressed in a gene trap line, mice show axon regeneration and enhanced recovery from injury. In contrast, when there is no amino-terminal Nogo-A fragment in the setting of inhibitory domain deletion, then axon regeneration and recovery are indistinguishable from WT. These data indicated that an amino-terminal Nogo-A fragment derived from the gene trap might promote axon regeneration, but this had not been tested directly and production of this fragment without gene targeting was unclear. Here, we describe posttranslation production of an amino-terminal fragment of Nogo-A from the intact gene product. This fragment is created by proteolysis near amino acid G214-N215 and levels are enhanced by axotomy. Furthermore, this fragment promotes axon regeneration in vitro and acts cell autonomously in neurons, in contrast to the inhibitory extracellular action of other Nogo-A domains.Proteins interacting with the amino-terminal Nogo-A fragment by immunoprecipitation include HSPA8 (HSC70, HSP7C). Suppression of HSPA8 expression by shRNA decreases axon regeneration from cerebral cortical neurons and overexpression increases axon regeneration. Moreover, the amino-terminal Nogo-A fragment increases HSPA8 chaperone activity. These data provide an explanation for varied results in different gene-targeted Nogo-A mice, as well as revealing an axon regeneration promoting domain of Nogo-A.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Neuroscience and Neurology, Cellular Neuroscience, Neurodegeneration & Repair Program, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Xingxing Wang
- Department of Neuroscience and Neurology, Cellular Neuroscience, Neurodegeneration & Repair Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kazuna Kikkawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Sachie Honda
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Stephen M Strittmatter
- Department of Neuroscience and Neurology, Cellular Neuroscience, Neurodegeneration & Repair Program, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
22
|
Liang J, Cameron G, Faucher SP. Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 2023; 89:e0066623. [PMID: 37668382 PMCID: PMC10537758 DOI: 10.1128/aem.00666-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
23
|
Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. How soluble misfolded proteins bypass chaperones at the molecular level. Nat Commun 2023; 14:3689. [PMID: 37344452 DOI: 10.1038/s41467-023-38962-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyun Rao
- Molecular, Cellular and Integrative Biosciences Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
- Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
24
|
Mangla N, Singh R, Agarwal N. HtpG Is a Metal-Dependent Chaperone Which Assists the DnaK/DnaJ/GrpE Chaperone System of Mycobacterium tuberculosis via Direct Association with DnaJ2. Microbiol Spectr 2023; 11:e0031223. [PMID: 37022172 PMCID: PMC10269695 DOI: 10.1128/spectrum.00312-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Protein folding is a crucial process in maintaining protein homeostasis, also known as proteostasis, in the cell. The requirement for the assistance of molecular chaperones in the appropriate folding of several proteins has already called into question the previously held view of spontaneous protein folding. These chaperones are highly ubiquitous cellular proteins, which not only help in mediating the proper folding of other nascent polypeptides but are also involved in refolding of the misfolded or the aggregated proteins. Hsp90 family proteins such as high-temperature protein G (HtpG) are abundant and ubiquitously expressed in both eukaryotic and prokaryotic cells. Although HtpG is known as an ATP-dependent chaperone protein in most organisms, function of this protein remains obscured in mycobacterial pathogens. Here, we aim to investigate significance of HtpG as a chaperone in the physiology of Mycobacterium tuberculosis. We report that M. tuberculosis HtpG (mHtpG) is a metal-dependent ATPase which exhibits chaperonin activity towards denatured proteins in coordination with the DnaK/DnaJ/GrpE chaperone system via direct association with DnaJ2. Increased expression of DnaJ1, DnaJ2, ClpX, and ClpC1 in a ΔhtpG mutant strain further suggests cooperativity of mHtpG with various chaperones and proteostasis machinery in M. tuberculosis. IMPORTANCE M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen. Mycobacterial chaperones are responsible for folding of nascent protein as well as reactivation of protein aggregates. M. tuberculosis shows differential adaptive response subject to the availability of mHtpG. While its presence facilitates improved protein refolding via stimulation of the KJE chaperone activity, in the absence of mHtpG, M. tuberculosis enhances expression of DnaJ1/J2 cochaperones as well as Clp protease machinery for maintenance of proteostasis. Overall, this study provides a framework for future investigation to better decipher the mycobacterial proteostasis network in the light of stress adaptability and/or survival.
Collapse
Affiliation(s)
- Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
25
|
Kotler JLM, Street TO. Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Annu Rev Biophys 2023; 52:509-524. [PMID: 37159299 DOI: 10.1146/annurev-biophys-111622-091309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
Collapse
Affiliation(s)
- Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
26
|
Mangano S, Muñoz A, Fernández-Calvino L, Castellano MM. HOP co-chaperones contribute to GA signaling by promoting the accumulation of the F-box protein SNE in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100517. [PMID: 36597357 PMCID: PMC10203442 DOI: 10.1016/j.xplc.2023.100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Gibberellins (GAs) play important roles in multiple developmental processes and in plant response to the environment. Within the GA pathway, a central regulatory step relies on GA-dependent degradation of the DELLA transcriptional regulators. Nevertheless, the relevance of the stability of other key proteins in this pathway, such as SLY1 and SNE (the F-box proteins involved in DELLA degradation), remains unknown. Here, we take advantage of mutants in the HSP70-HSP90 organizing protein (HOP) co-chaperones and reveal that these proteins contribute to the accumulation of SNE in Arabidopsis. Indeed, HOP proteins, along with HSP90 and HSP70, interact in vivo with SNE, and SNE accumulation is significantly reduced in the hop mutants. Concomitantly, greater accumulation of the DELLA protein RGA is observed in these plants. In agreement with these molecular phenotypes, hop mutants show a hypersensitive response to the GA inhibitor paclobutrazol and display a partial response to the ectopic addition of GA when GA-regulated processes are assayed. These mutants also display different phenotypes associated with alterations in the GA pathway, such as reduced germination rate, delayed bolting, and reduced hypocotyl elongation in response to warm temperatures. Remarkably, ectopic overexpression of SNE reverts the delay in germination and the thermally dependent hypocotyl elongation defect of the hop1 hop2 hop3 mutant, revealing that SNE accumulation is the key aspect of the hop mutant phenotypes. Together, these data reveal a pivotal role for HOP in SNE accumulation and GA signaling.
Collapse
Affiliation(s)
- Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lourdes Fernández-Calvino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
27
|
Ko Y, Chun J, Yang H, Kim D. Hypoviral-regulated HSP90 co-chaperone p23 (CpCop23) determines the colony morphology, virulence, and viral response of chestnut blight fungus Cryphonectria parasitica. MOLECULAR PLANT PATHOLOGY 2023; 24:413-424. [PMID: 36762926 PMCID: PMC10098053 DOI: 10.1111/mpp.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 05/03/2023]
Abstract
We previously identified a protein spot that showed down-regulation in the presence of Cryphonectria hypovirus 1 (CHV1) and tannic acid supplementation as a Hsp90 co-chaperone p23 gene (CpCop23). The CpCop23-null mutant strain showed retarded growth with less aerial mycelia and intense pigmentation. Conidia of the CpCop23-null mutant were significantly decreased and their viability was dramatically diminished. The CpCop23-null mutant showed hypersensitivity to Hsp90 inhibitors. However, no differences in responsiveness were observed after exposure to other stressors such as temperature, reactive oxygen species, and high osmosis, the exception being cell wall-disturbing agents. A severe reduction in virulence was observed in the CpCop23-null mutant. Interestingly, viral transfer to the CpCop23-null mutant from CHV1-infected strain via anastomosis was more inefficient than a comparable transfer with the wild type as a result of decreased hyphal branching of the CpCop23-null mutant around the peripheral region, which resulted in less fusion of the hyphae. The CHV1-infected CpCop23-null mutant exhibited recovered mycelial growth with less pigmentation and sporulation. The CHV1-transfected CpCop23-null mutant demonstrated almost no virulence, that is, even less than that of the CHV1-infected wild type (UEP1), a further indication that reduced virulence of the mutant is not attributable exclusively to the retarded growth but rather is a function of the CpCop23 gene. Thus, this study indicates that CpCop23 plays a role in ensuring appropriate mycelial growth and development, spore viability, responses to antifungal drugs, and fungal virulence. Moreover, the CpCop23 gene acts as a host factor that affects CHV1-infected fungal growth and maintains viral symptom development.
Collapse
Affiliation(s)
- Yo‐Han Ko
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and GeneticsJeonbuk National UniversityJeonjuSouth Korea
| | - Jeesun Chun
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and GeneticsJeonbuk National UniversityJeonjuSouth Korea
| | - Han‐Eul Yang
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and GeneticsJeonbuk National UniversityJeonjuSouth Korea
| | - Dae‐Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and GeneticsJeonbuk National UniversityJeonjuSouth Korea
| |
Collapse
|
28
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
29
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
30
|
Upadhyay T, Karekar VV, Potteth US, Saraogi I. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer. Proteins 2023; 91:108-120. [PMID: 35988048 DOI: 10.1002/prot.26414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India
| |
Collapse
|
31
|
Marzano NR, Paudel BP, van Oijen AM, Ecroyd H. Real-time single-molecule observation of chaperone-assisted protein folding. SCIENCE ADVANCES 2022; 8:eadd0922. [PMID: 36516244 PMCID: PMC9750156 DOI: 10.1126/sciadv.add0922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The ability of heat shock protein 70 (Hsp70) molecular chaperones to remodel the conformation of their clients is central to their biological function; however, questions remain regarding the precise molecular mechanisms by which Hsp70 machinery interacts with the client and how this contributes toward efficient protein folding. Here, we used total internal reflection fluorescence (TIRF) microscopy and single-molecule fluorescence resonance energy transfer (smFRET) to temporally observe the conformational changes that occur to individual firefly luciferase proteins as they are folded by the bacterial Hsp70 system. We observed multiple cycles of chaperone binding and release to an individual client during refolding and determined that high rates of chaperone cycling improves refolding yield. Furthermore, we demonstrate that DnaJ remodels misfolded proteins via a conformational selection mechanism, whereas DnaK resolves misfolded states via mechanical unfolding. This study illustrates that the temporal observation of chaperone-assisted folding enables the elucidation of key mechanistic details inaccessible using other approaches.
Collapse
Affiliation(s)
- Nicholas R. Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Bishnu P. Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
32
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
33
|
Direct observation of Hsp90-induced compaction in a protein chain. Cell Rep 2022; 41:111734. [PMID: 36450251 DOI: 10.1016/j.celrep.2022.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
The chaperone heat shock protein 90 (Hsp90) is well known to undergo important conformational changes, which depend on nucleotide and substrate interactions. Conversely, how the conformations of its unstable and disordered substrates are affected by Hsp90 is difficult to address experimentally yet is central to its function. Here, using optical tweezers, we find that Hsp90 promotes local contractions in unfolded chains that drive their global compaction down to dimensions of folded states. This compaction has a gradual nature while showing small steps, is stimulated by ATP, and performs mechanical work against counteracting forces that expand the chain dimensions. The Hsp90 interactions suppress the formation of larger-scale folded, misfolded, and aggregated structures. The observations support a model in which Hsp90 alters client conformations directly by promoting local intra-chain interactions while suppressing distant ones. We conjecture that chain compaction may be central to how Hsp90 protects unstable clients and cooperates with Hsp70.
Collapse
|
34
|
Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201779119. [PMID: 36070342 PMCID: PMC9478669 DOI: 10.1073/pnas.2201779119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.
Collapse
|
35
|
Hou P, Dai W, Jin Y, Zhao F, Liu J, Liu H. Maternal exposure to di-2-ethylhexyl phthalate (DEHP) depresses lactation capacity in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155813. [PMID: 35550907 DOI: 10.1016/j.scitotenv.2022.155813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Increasing evidence shows that di-2-ethylhexyl phthalate (DEHP), mostly commonly used phthalate for the production of flexible polyvinyl chloride (PVC), has the potential to induce serious health risks in humans. However, the understanding of DEHP-induced lactation performance remains largely unknown. We sought to investigate the adverse effects of DEHP on lactation and examine the underlying mechanism linking DEHP exposure with the lactation alterations. We successfully adapted a maternal DEHP exposure model in female pregnant/lactating mice. Then we determined effects of DEHP exposure on food intake, body weight and milk production as well as the alterations in endocrine factors in lactating mice. The integrated metabonomic and transcriptomic analyses of the mammary gland were performed to measure the changed metabolites and genes related to DEHP exposure-induced lactation alterations. We observed the reduced food intake with elevated blood leptin and the decreased milk yield as well as the reduced levels of serum prolactin, growth hormone, insulin-like growth factor 1 and insulin after exposed to DEHP. Furthermore, 208 metabolites and 3452 genes were separately identified as differentially expressed features associated with DEHP exposure. Integrated metabonomic and transcriptomic analyses demonstrated that DEHP caused lactation depression mainly through impairing energy generation, inducing stress responses along with the hypoactivation of inflammation, reducing the production of antioxidants, disrupting hormone homeostasis and repressing the synthesis of milk constituents (the lower glucose availability for lactose synthesis; the disruption of milk fat globule membrane for lipid droplet formation; the ribosomal dysfunction and disruption of post-modifications for milk protein synthesis). We demonstrated that DEHP disrupted several lactation-related hormone homeostasis and multiple processes like energy insufficiency, inflammation activation, oxidative stress aggravation and disturbance of milk production in the mammary gland of female lactating mice. Our results provide valuable information for the health risk of plastic additive (DEHP) on female lactation dysfunction.
Collapse
Affiliation(s)
- Pengfei Hou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanshan Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
37
|
Ziaka K, van der Spuy J. The Role of Hsp90 in Retinal Proteostasis and Disease. Biomolecules 2022; 12:biom12070978. [PMID: 35883534 PMCID: PMC9313453 DOI: 10.3390/biom12070978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Photoreceptors are sensitive neuronal cells with great metabolic demands, as they are responsible for carrying out visual phototransduction, a complex and multistep process that requires the exquisite coordination of a large number of signalling protein components. Therefore, the viability of photoreceptors relies on mechanisms that ensure a well-balanced and functional proteome that maintains the protein homeostasis, or proteostasis, of the cell. This review explores how the different isoforms of Hsp90, including the cytosolic Hsp90α/β, the mitochondrial TRAP1, and the ER-specific GRP94, are involved in the different proteostatic mechanisms of photoreceptors, and elaborates on Hsp90 function when retinal homeostasis is disturbed. In addition, several studies have shown that chemical manipulation of Hsp90 has significant consequences, both in healthy and degenerating retinae, and this can be partially attributed to the fact that Hsp90 interacts with important photoreceptor-associated client proteins. Here, the interaction of Hsp90 with the retina-specific client proteins PDE6 and GRK1 will be further discussed, providing additional insights for the role of Hsp90 in retinal disease.
Collapse
|
38
|
Guihur A, Rebeaud ME, Goloubinoff P. How do plants feel the heat and survive? Trends Biochem Sci 2022; 47:824-838. [PMID: 35660289 DOI: 10.1016/j.tibs.2022.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
39
|
Vermeer B, Schmid S. Can DyeCycling break the photobleaching limit in single-molecule FRET? NANO RESEARCH 2022; 15:9818-9830. [PMID: 35582137 PMCID: PMC9101981 DOI: 10.1007/s12274-022-4420-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/03/2023]
Abstract
Biomolecular systems, such as proteins, crucially rely on dynamic processes at the nanoscale. Detecting biomolecular nanodynamics is therefore key to obtaining a mechanistic understanding of the energies and molecular driving forces that control biomolecular systems. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique to observe in real-time how a single biomolecule proceeds through its functional cycle involving a sequence of distinct structural states. Currently, this technique is fundamentally limited by irreversible photobleaching, causing the untimely end of the experiment and thus, a narrow temporal bandwidth of ≤ 3 orders of magnitude. Here, we introduce "DyeCycling", a measurement scheme with which we aim to break the photobleaching limit in smFRET. We introduce the concept of spontaneous dye replacement by simulations, and as an experimental proof-of-concept, we demonstrate the intermittent observation of a single biomolecule for one hour with a time resolution of milliseconds. Theoretically, DyeCycling can provide > 100-fold more information per single molecule than conventional smFRET. We discuss the experimental implementation of DyeCycling, its current and fundamental limitations, and specific biological use cases. Given its general simplicity and versatility, DyeCycling has the potential to revolutionize the field of time-resolved smFRET, where it may serve to unravel a wealth of biomolecular dynamics by bridging from milliseconds to the hour range. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s12274-022-4420-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Benjamin Vermeer
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
40
|
Roy M, Bhakta K, Ghosh A. Minimal Yet Powerful: The Role of Archaeal Small Heat Shock Proteins in Maintaining Protein Homeostasis. Front Mol Biosci 2022; 9:832160. [PMID: 35647036 PMCID: PMC9133787 DOI: 10.3389/fmolb.2022.832160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Small heat shock proteins (sHsp) are a ubiquitous group of ATP-independent chaperones found in all three domains of life. Although sHsps in bacteria and eukaryotes have been studied extensively, little information was available on their archaeal homologs until recently. Interestingly, archaeal heat shock machinery is strikingly simplified, offering a minimal repertoire of heat shock proteins to mitigate heat stress. sHsps play a crucial role in preventing protein aggregation and holding unfolded protein substrates in a folding-competent form. Besides protein aggregation protection, archaeal sHsps have been shown recently to stabilize membranes and contribute to transferring captured substrate proteins to chaperonin for refolding. Furthermore, recent studies on archaeal sHsps have shown that environment-induced oligomeric plasticity plays a crucial role in maintaining their functional form. Despite being prokaryotes, the archaeal heat shock protein repository shares several features with its highly sophisticated eukaryotic counterpart. The minimal nature of the archaeal heat shock protein repository offers ample scope to explore the function and regulation of heat shock protein(s) to shed light on their evolution. Moreover, similar structural dynamics of archaeal and human sHsps have made the former an excellent system to study different chaperonopathies since archaeal sHsps are more stable under in vitro experiments.
Collapse
|
41
|
Costa Catta-Preta CM, Cézar de Azevedo-Martins A, de Souza W, Motta MCM. Effect of the endoplasmic reticulum stressor tunicamycin in Angomonas deanei heat-shock protein expression and on the association with the endosymbiotic bacterium. Exp Cell Res 2022; 417:113162. [PMID: 35460679 DOI: 10.1016/j.yexcr.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) presents unique properties to establishing bacterium symbiosis in eukaryotic cells since it synthesizes and glycosylates essential molecules like proteins and lipids. Tunicamycin (TM) is an antibiotic that inhibits the first step in the N-linked glycosylation in eukaryotes and has been used as an ER stress inducer to activate the Unfolded Protein Response (UPR). Mutualistic symbiosis in trypanosomatids is characterized by structural adaptations and intense metabolic exchanges, thus we investigated the effects of TM in the association between Angomonas deanei and its symbiotic bacterium, through ultrastructural and proteomic approaches. Cells treated with the inhibitor showed a decrease in proliferation, enlargement of the ER and Golgi cisternae and an increased distance between the symbiont and the ER. TM proved to be an important tool to better understand ER stress in trypanosomatids, since changes in protein composition were observed in the host protozoan, especially the expression of the Hsp90 chaperone. Furthermore, data obtained indicates the importance of the ER for the adaptation and maintenance of symbiotic associations between prokaryotes and eukaryotes, considering that this organelle has recognized importance in the biogenesis and division of cell structures.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Allan Cézar de Azevedo-Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21491-590, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem, RJ, Brazil.
| |
Collapse
|
42
|
Iyengar BR, Wagner A. GroEL/S overexpression helps to purge deleterious mutations and reduce genetic diversity during adaptive protein evolution. Mol Biol Evol 2022; 39:6540901. [PMID: 35234895 PMCID: PMC9188349 DOI: 10.1093/molbev/msac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL + GroES) affects the evolution of green fluorescent protein (GFP). To this end we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate E. coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
Collapse
|
43
|
Lang BJ, Prince TL, Okusha Y, Bunch H, Calderwood SK. Heat shock proteins in cell signaling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119187. [PMID: 34906617 DOI: 10.1016/j.bbamcr.2021.119187] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/17/2023]
Abstract
Heat Shock Proteins (HSPs) and their co-chaperones have well-established roles in regulating proteostasis within the cell, the nature of which continues to emerge with further study. To date, HSPs have been shown to be integral to protein folding and re-folding, protein transport, avoidance of protein aggregation, and modulation of protein degradation. Many cell signaling events are mediated by the chemical modification of proteins post-translationally that can alter protein conformation and activity, although it is not yet known whether the changes in protein conformation induced by post-translational modifications (PTMs) are also dependent upon HSPs and their co-chaperones for subsequent protein re-folding. We discuss what is known regarding roles for HSPs and other molecular chaperones in cell signaling events with a focus on oncogenic signaling. We also propose a hypothesis by which Hsp70 and Hsp90 may co-operate to facilitate cell signaling events that may link PTMs with the cellular protein folding machinery.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ranok Therapeutics, Waltham, MA 02451, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
45
|
Dahiya V, Rutz DA, Moessmer P, Mühlhofer M, Lawatscheck J, Rief M, Buchner J. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones. Mol Cell 2022; 82:1543-1556.e6. [PMID: 35176233 DOI: 10.1016/j.molcel.2022.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Daniel Andreas Rutz
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Patrick Moessmer
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Jannis Lawatscheck
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department Physik, Technische Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department Chemie, Technische Universität München, München, Germany.
| |
Collapse
|
46
|
How do protein aggregates escape quality control in neurodegeneration? Trends Neurosci 2022; 45:257-271. [DOI: 10.1016/j.tins.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
|
47
|
Huang B, Sun M, Hoxie R, Kotler JLM, Friedman LJ, Gelles J, Street TO. The endoplasmic reticulum chaperone BiP is a closure-accelerating cochaperone of Grp94. Proc Natl Acad Sci U S A 2022; 119:e2118793119. [PMID: 35078937 PMCID: PMC8812556 DOI: 10.1073/pnas.2118793119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Hsp70 and Hsp90 chaperones provide protein quality control to the cytoplasm, endoplasmic reticulum (ER), and mitochondria. Hsp90 activity is often enhanced by cochaperones that drive conformational changes needed for ATP-dependent closure and capture of client proteins. Hsp90 activity is also enhanced when working with Hsp70, but, in this case, the underlying mechanistic explanation is poorly understood. Here we examine the ER-specific Hsp70/Hsp90 paralogs (BiP/Grp94) and discover that BiP itself acts as a cochaperone that accelerates Grp94 closure. The BiP nucleotide binding domain, which interacts with the Grp94 middle domain, is responsible for Grp94 closure acceleration. A client protein initiates a coordinated progression of steps for the BiP/Grp94 system, in which client binding to BiP causes a conformational change that enables BiP to bind to Grp94 and accelerate its ATP-dependent closure. Single-molecule fluorescence resonance energy transfer measurements show that BiP accelerates Grp94 closure by stabilizing a high-energy conformational intermediate that otherwise acts as an energetic barrier to closure. These findings provide an explanation for enhanced activity of BiP and Grp94 when working as a pair, and demonstrate the importance of a high-energy conformational state in controlling the timing of the Grp94 conformational cycle. Given the high conservation of the Hsp70/Hsp90 system, other Hsp70s may also serve dual roles as both chaperones and closure-accelerating cochaperones to their Hsp90 counterparts.
Collapse
Affiliation(s)
- Bin Huang
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Ming Sun
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Reyal Hoxie
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| |
Collapse
|
48
|
Wang RYR, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature 2022; 601:460-464. [PMID: 34937942 PMCID: PMC9179170 DOI: 10.1038/s41586-021-04252-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.
Collapse
Affiliation(s)
- Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Kirschke
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alexander G. Myasnikov
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Present address: Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Correspondence and requests for materials should be addressed to David A. Agard.
| |
Collapse
|
49
|
Biebl MM, Delhommel F, Faust O, Zak KM, Agam G, Guo X, Mühlhofer M, Dahiya V, Hillebrand D, Popowicz GM, Kampmann M, Lamb DC, Rosenzweig R, Sattler M, Buchner J. NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems. Mol Cell 2022; 82:555-569.e7. [DOI: 10.1016/j.molcel.2021.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
|
50
|
Lopez A, Dahiya V, Delhommel F, Freiburger L, Stehle R, Asami S, Rutz D, Blair L, Buchner J, Sattler M. Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. SCIENCE ADVANCES 2021; 7:eabl7295. [PMID: 34919431 PMCID: PMC8682993 DOI: 10.1126/sciadv.abl7295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 05/31/2023]
Abstract
Hsp90 is a molecular chaperone that interacts with a specific set of client proteins and assists their folding. The underlying molecular mechanisms, involving dynamic transitions between open and closed conformations, are still enigmatic. Combining nuclear magnetic resonance, small-angle x-ray scattering, and biochemical experiments, we have identified a key intermediate state of Hsp90 induced by adenosine triphosphate (ATP) binding, in which rotation of the Hsp90 N-terminal domain (NTD) yields a domain arrangement poised for closing. This ATP-stabilized NTD rotation is allosterically communicated across the full Hsp90 dimer, affecting distant client sites. By analyzing the interactions of four distinct clients, i.e., steroid hormone receptors (glucocorticoid receptor and mineralocorticoid receptor), p53, and Tau, we show that client-specific interactions with Hsp90 select and enhance the NTD-rotated state and promote closing of the full-length Hsp90 dimer. The p23 co-chaperone shifts the population of Hsp90 toward the closed state, thereby enhancing client interaction and processing.
Collapse
Affiliation(s)
- Abraham Lopez
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Vinay Dahiya
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Lee Freiburger
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ralf Stehle
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sam Asami
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Daniel Rutz
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Laura Blair
- USF Health Byrd Institute, Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Johannes Buchner
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|