1
|
Wong DPH, Wong KH, Park S, Boël G, Hunt JF, Aalberts DP. OPT: Codon optimize gene sequences for E. coli protein overexpression. J Mol Biol 2025; 437:168965. [PMID: 40133777 PMCID: PMC12145263 DOI: 10.1016/j.jmb.2025.168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/27/2025]
Abstract
The ability to overexpress proteins is valuable for biotechnology, but not all sequences are compatible with high yield. We previously analyzed the sequence features and mRNA folding stability of a large data set of 6,384 distinct gene constructs, and developed a model for protein yield. Our OPT.williams.edu server (1) predicts the probability an input sequence will produce protein at a high level when overexpressed in E. coli, and (2) returns optimized synonymous sequences designed to boost protein expression. Here we also present experimental evidence of the high yields of our OPT constructs for eight commercially produced proteins.
Collapse
Affiliation(s)
- Daniel P H Wong
- Physics Department, Williams College, Williamstown, MA 01267, USA
| | - Kam-Ho Wong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sunjae Park
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Universite Paris Cite, Institut de Biologie Physio-Chimique, F-75005 Paris, France.
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
2
|
Hsiang CC, Ng IS. Deciphering Transcription-Translation-Folding (TX-TL-FD) for Enhancing Cutinase Production in T7 System and Genetic Chaperone-Equipped Escherichia coli Strains. ACS Synth Biol 2025; 14:1843-1852. [PMID: 40329912 PMCID: PMC12090337 DOI: 10.1021/acssynbio.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
T7 RNA polymerase (T7RNAP), orthogonal to the T7 promoter, is a powerful tool in engineered Escherichia coli that enables the production of many different harsh enzymes. Still, it requires precise control, particularly when expressing toxic proteins. The optimized strategy for the interconnected processes of transcription (TX), translation (TL), and protein folding (FD) in the T7 system is still not well understood. Therefore, we developed a quantitative adjustment index (AI) to evaluate all regulatory factors within the "tri-synergistic TX-TL-FD" pathway to obtain high-level production of leaf-branch compost cutinase mutant (ICCM), an enzyme challenging to express in soluble form. Among six E. coli chassis (BD, B7G, BKJ, C43, C7G, and CKJ), and considering the effect of replication origin, ribosome binding site (RBS), and chaperones, we identified T7RNAP level and translation initiation region (TIR) as the primary determinants of expression efficiency. Coordinated regulation of TX-TL proved the most effective performance, thus enhancing ICCM expression by 90%. In contrast, FD optimization through temperature modulation yielded only 10% enhancement. Notably, molecular chaperones of GroELS and DnaK/J showed benefits only after achieving optimal TX-TL balance. This hierarchical framework of trisynergistic regulation in the T7 system provides a universal strategy to express complex proteins in engineered E. coli.
Collapse
Affiliation(s)
- Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, Li J, Milenkovic T, Huber PW, Champion MM, Emrich SJ, Clark PL. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proc Natl Acad Sci U S A 2024; 121:e2405510121. [PMID: 39190361 PMCID: PMC11388325 DOI: 10.1073/pnas.2405510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene. Here, we show that synonymous codon substitutions made far within the coding sequence of Escherichia coli plasmid-encoded chloramphenicol acetyltransferase (cat) can significantly increase expression of the divergent upstream tetracycline resistance gene, tetR. In four out of nine synonymously recoded cat sequences tested, expression of the upstream tetR gene was significantly elevated due to transcription of a long antisense RNA (asRNA) originating from a transcription start site within cat. Surprisingly, transcription of this asRNA readily bypassed the native tet transcriptional repression mechanism. Even more surprisingly, accumulation of the TetR protein correlated with the level of asRNA, rather than total tetR RNA. These effects of synonymous codon substitutions on transcription and translation of a neighboring gene suggest that synonymous codon usage in bacteria may be under selection to both preserve the amino acid sequence of the encoded gene and avoid DNA sequence elements that can significantly perturb expression of neighboring genes. Avoiding such sequences may be especially important in plasmids and prokaryotic genomes, where genes and regulatory elements are often densely packed. Similar considerations may apply to the design of genetic circuits for synthetic biology applications.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jacob D. Diehl
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Gabriel S. Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Christopher D. Bonar
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Taylor J. Lundgren
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - McKenze J. Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN46556
| | - Tijana Milenkovic
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Paul W. Huber
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN37996
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
4
|
Moss MJ, Chamness LM, Clark PL. The Effects of Codon Usage on Protein Structure and Folding. Annu Rev Biophys 2024; 53:87-108. [PMID: 38134335 PMCID: PMC11227313 DOI: 10.1146/annurev-biophys-030722-020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.
Collapse
Affiliation(s)
- McKenze J Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Laura M Chamness
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| |
Collapse
|
5
|
Estrada K, Garciarrubio A, Merino E. Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence. PLoS One 2024; 19:e0289914. [PMID: 38206950 PMCID: PMC10783764 DOI: 10.1371/journal.pone.0289914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/28/2023] [Indexed: 01/13/2024] Open
Abstract
Translation initiation in prokaryotes is mainly defined, although not exclusively, by the interaction between the anti-Shine-Dalgarno sequence (antiSD), located at the 3'-terminus of the 16S ribosomal RNA, and a complementary sequence, the ribosome binding site, or Shine-Dalgarno (SD), located upstream of the start codon in prokaryotic mRNAs. The antiSD has a conserved 5'-CCUCC-3' core, but inter-species variations have been found regarding the participation of flanking bases in binding. These variations have been described for certain bacteria and, to a lesser extent, for some archaea. To further analyze these variations, we conducted binding-energy prediction analyses on over 6,400 genomic sequences from both domains. We identified 15 groups of antiSD variants that could be associated with the organisms' phylogenetic origin. Additionally, our findings revealed that certain organisms exhibit variations in the core itself. Importantly, an unaltered core is not necessarily required for the interaction between the 3'-terminus of the rRNA and the region preceding the AUG of the mRNA. In our study, we classified organisms into four distinct categories: i) those possessing a conserved core and demonstrating binding; ii) those with a conserved core but lacking evidence of binding; iii) those exhibiting binding in the absence of a conserved core; and iv) those lacking both a conserved core and evidence of binding. Our results demonstrate the flexibility of organisms in evolving different sequences involved in translation initiation beyond the traditional Shine-Dalgarno sequence. These findings are discussed in terms of the evolution of translation initiation in prokaryotic organisms.
Collapse
Affiliation(s)
- Karel Estrada
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, México
- Massive Sequencing and Bioinformatics Unit, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Garciarrubio
- Department of Cell Engineering and Biocatalysis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
6
|
Bajaj P, Bhasin M, Varadarajan R. Molecular bases for strong phenotypic effects of single synonymous codon substitutions in the E. coli ccdB toxin gene. BMC Genomics 2023; 24:732. [PMID: 38049728 PMCID: PMC10694988 DOI: 10.1186/s12864-023-09817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Single synonymous codon mutations typically have only minor or no effects on gene function. Here, we estimate the effects on cell growth of ~ 200 single synonymous codon mutations in an operonic context by mutating almost all positions of ccdB, the 101-residue long cytotoxin of the ccdAB Toxin-Antitoxin (TA) operon to most degenerate codons. Phenotypes were assayed by transforming the mutant library into CcdB sensitive and resistant E. coli strains, isolating plasmid pools, and subjecting them to deep sequencing. Since autoregulation is a hallmark of TA operons, phenotypes obtained for ccdB synonymous mutants after transformation in a RelE toxin reporter strain followed by deep sequencing provided information on the amount of CcdAB complex formed. RESULTS Synonymous mutations in the N-terminal region involved in translation initiation showed the strongest non-neutral phenotypic effects. We observe an interplay of numerous factors, namely, location of the codon, codon usage, t-RNA abundance, formation of anti-Shine Dalgarno sequences, predicted transcript secondary structure, and evolutionary conservation in determining phenotypic effects of ccdB synonymous mutations. Incorporation of an N-terminal, hyperactive synonymous mutation, in the background of the single synonymous codon mutant library sufficiently increased translation initiation, such that mutational effects on either folding or termination of translation became more apparent. Introduction of putative pause sites not only affects the translational rate, but might also alter the folding kinetics of the protein in vivo. CONCLUSION In summary, the study provides novel insights into diverse mechanisms by which synonymous mutations modulate gene function. This information is useful in optimizing heterologous gene expression in E. coli and understanding the molecular bases for alteration in gene expression that arise due to synonymous mutations.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Present address: Department of Bioengineering and Therapeutic Sciences, University of CA - San Francisco, San Francisco, CA, 94158, USA
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Hegelmeyer NK, Parkin LA, Previti ML, Andrade J, Utama R, Sejour RJ, Gardin J, Muller S, Ketchum S, Yurovsky A, Futcher B, Goodwin S, Ueberheide B, Seeliger JC. Gene recoding by synonymous mutations creates promiscuous intragenic transcription initiation in mycobacteria. mBio 2023; 14:e0084123. [PMID: 37787543 PMCID: PMC10653884 DOI: 10.1128/mbio.00841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb. We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is one of the first reports that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.
Collapse
Affiliation(s)
- Nuri K. Hegelmeyer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | - Raditya Utama
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Richard J. Sejour
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Justin Gardin
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Stephanie Muller
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Steven Ketchum
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Alisa Yurovsky
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Lewin LE, Daniels KG, Hurst LD. Genes for highly abundant proteins in Escherichia coli avoid 5' codons that promote ribosomal initiation. PLoS Comput Biol 2023; 19:e1011581. [PMID: 37878567 PMCID: PMC10599525 DOI: 10.1371/journal.pcbi.1011581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
In many species highly expressed genes (HEGs) over-employ the synonymous codons that match the more abundant iso-acceptor tRNAs. Bacterial transgene codon randomization experiments report, however, that enrichment with such "translationally optimal" codons has little to no effect on the resultant protein level. By contrast, consistent with the view that ribosomal initiation is rate limiting, synonymous codon usage following the 5' ATG greatly influences protein levels, at least in part by modifying RNA stability. For the design of bacterial transgenes, for simple codon based in silico inference of protein levels and for understanding selection on synonymous mutations, it would be valuable to computationally determine initiation optimality (IO) scores for codons for any given species. One attractive approach is to characterize the 5' codon enrichment of HEGs compared with the most lowly expressed genes, just as translational optimality scores of codons have been similarly defined employing the full gene body. Here we determine the viability of this approach employing a unique opportunity: for Escherichia coli there is both the most extensive protein abundance data for native genes and a unique large-scale transgene codon randomization experiment enabling objective definition of the 5' codons that cause, rather than just correlate with, high protein abundance (that we equate with initiation optimality, broadly defined). Surprisingly, the 5' ends of native genes that specify highly abundant proteins avoid such initiation optimal codons. We find that this is probably owing to conflicting selection pressures particular to native HEGs, including selection favouring low initiation rates, this potentially enabling high efficiency of ribosomal usage and low noise. While the classical HEG enrichment approach does not work, rendering simple prediction of native protein abundance from 5' codon content futile, we report evidence that initiation optimality scores derived from the transgene experiment may hold relevance for in silico transgene design for a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Loveday E. Lewin
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Kate G. Daniels
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Laurence D. Hurst
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Song Y, Wang Y, Yan S, Nakamura K, Kikukawa T, Ayabe T, Aizawa T. Efficient recombinant production of mouse-derived cryptdin family peptides by a novel facilitation strategy for inclusion body formation. Microb Cell Fact 2023; 22:9. [PMID: 36635697 PMCID: PMC9838031 DOI: 10.1186/s12934-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A number of antimicrobial peptides (AMPs) hold promise as new drugs owing to their potent bactericidal activity and because they are often refractory to the development of drug resistance. Cryptdins (Crps) are a family of antimicrobial peptides found in the small intestine of mice, comprising six isoforms containing three sets of disulfide bonds. Although Crp4 is actively being investigated, there have been few studies to date on the other Crp isoforms. A prerequisite for detailed characterization of the other Crp isoforms is establishment of efficient sample preparation methods. RESULTS To avoid degradation during recombinant expression of Crps in E. coli, co-expression of Crps with the aggregation-prone protein human α-lactalbumin (HLA) was used to promote the formation of stable inclusion bodies. Using this method, the production of Crp4 and Crp6 by the BL21 strain was effective, but the expression of other Crp isoforms was not as efficient. The results of a cell-free system study suggested that Crps were degraded, even though a substantial amounts of Crps were synthesized. Therefore, using the Origami™ B strain, we were able to significantly increase the expression efficiency of Crps by promoting the formation of erroneous intermolecular disulfide bonds between HLA and Crps, thereby promoting protein aggregation and inclusion body formation, which prevented degradation. The various Crp isoforms were successfully refolded in vitro and purified using reversed-phase HPLC. In addition, the yield was further improved by deformylation of formyl-Crps. We measured the antibacterial activity of Crps against both Gram-positive and Gram-negative bacteria. Each Crp isoform exhibited a completely different trend in antimicrobial activity, although conformational analysis by circular dichroism did not reveal any significant steric differences. CONCLUSION In this study, we established a novel and efficient method for the production of the cryptdin family of cysteine-containing antimicrobial peptides. Additionally, we found that there were notable differences in the antibacterial activities of the various Crp family members. The expression system established in this study is expected to provide new insights regarding the mechanisms underlying the different antibacterial activities of the Crp family of peptides.
Collapse
Affiliation(s)
- Yuchi Song
- grid.39158.360000 0001 2173 7691Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Yi Wang
- grid.39158.360000 0001 2173 7691Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Shaonan Yan
- grid.39158.360000 0001 2173 7691Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Kiminori Nakamura
- grid.39158.360000 0001 2173 7691Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Takashi Kikukawa
- grid.39158.360000 0001 2173 7691Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Tokiyoshi Ayabe
- grid.39158.360000 0001 2173 7691Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| | - Tomoyasu Aizawa
- grid.39158.360000 0001 2173 7691Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido Japan
| |
Collapse
|
10
|
Moreira-Ramos S, Arias L, Flores R, Katz A, Levicán G, Orellana O. Synonymous mutations in the phosphoglycerate kinase 1 gene induce an altered response to protein misfolding in Schizosaccharomyces pombe. Front Microbiol 2023; 13:1074741. [PMID: 36713198 PMCID: PMC9875302 DOI: 10.3389/fmicb.2022.1074741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Proteostasis refers to the processes that regulate the biogenesis, folding, trafficking, and degradation of proteins. Any alteration in these processes can lead to cell malfunction. Protein synthesis, a key proteostatic process, is highly-regulated at multiple levels to ensure adequate adaptation to environmental and physiological challenges such as different stressors, proteotoxic conditions and aging, among other factors. Because alterations in protein translation can lead to protein misfolding, examining how protein translation is regulated may also help to elucidate in part how proteostasis is controlled. Codon usage bias has been implicated in the fine-tuning of translation rate, as more-frequent codons might be read faster than their less-frequent counterparts. Thus, alterations in codon usage due to synonymous mutations may alter translation kinetics and thereby affect the folding of the nascent polypeptide, without altering its primary structure. To date, it has been difficult to predict the effect of synonymous mutations on protein folding and cellular fitness due to a scarcity of relevant data. Thus, the purpose of this work was to assess the effect of synonymous mutations in discrete regions of the gene that encodes the highly-expressed enzyme 3-phosphoglycerate kinase 1 (pgk1) in the fission yeast Schizosaccharomyces pombe. Results By means of systematic replacement of synonymous codons along pgk1, we found slightly-altered protein folding and activity in a region-specific manner. However, alterations in protein aggregation, heat stress as well as changes in proteasome activity occurred independently of the mutated region. Concomitantly, reduced mRNA levels of the chaperones Hsp9 and Hsp16 were observed. Conclusion Taken together, these data suggest that codon usage bias of the gene encoding this highly-expressed protein is an important regulator of protein function and proteostasis.
Collapse
Affiliation(s)
- Sandra Moreira-Ramos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Loreto Arias
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Flores
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,*Correspondence: Omar Orellana,
| |
Collapse
|
11
|
Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production. Appl Microbiol Biotechnol 2022; 107:153-162. [DOI: 10.1007/s00253-022-12310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
|
12
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
13
|
Recurrent emergence of Klebsiella pneumoniae carbapenem resistance mediated by an inhibitory ompK36 mRNA secondary structure. Proc Natl Acad Sci U S A 2022; 119:e2203593119. [PMID: 36095213 PMCID: PMC9499542 DOI: 10.1073/pnas.2203593119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.
Collapse
|
14
|
Duan Y, Zhang X, Zhai W, Zhang J, Zhang X, Xu G, Li H, Deng Z, Shi J, Xu Z. Deciphering the Rules of Ribosome Binding Site Differentiation in Context Dependence. ACS Synth Biol 2022; 11:2726-2740. [PMID: 35877551 DOI: 10.1021/acssynbio.2c00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosome binding site (RBS) is a crucial element regulating translation. However, the activity of RBS is poorly predictable, because it is strongly affected by the local possible secondary structure, that is, context dependence. By the Flowseq technique, over 20 000 RBS variants were sorted and sequenced, and the translation of multiple genes under the same RBS was quantitatively characterized to evaluate the context dependence of each RBS variant in E. coli. Two regions, (-7 to -2) and (-17 to -12), of RBS were predicted with a higher possibility to pair with each other to slow down the translation initiation. Associations between phenotypes and the intrinsic factors suspected to affect translation efficiency and context dependence of the RBS, including nucleotide bias at each position, free energy, and conservation, were disentangled. The results showed that translation efficiency was influenced more significantly by conservation of the SD region (-16 to -8), while an AC-rich spacer region (-7 to -1) was associated with low context dependence. We confirmed these characteristics using a series of synthesized RBSs. The average correlation between multiple reporters was significantly higher for RBSs with an AC-rich spacer (0.714) compared with a GU-rich spacer (0.286). Overall, we proposed general design criteria to improve programmability and minimize context dependence of RBS. The characteristics unraveled here can be adapted to other bacteria for fine-tuning target-gene expression.
Collapse
Affiliation(s)
- Yanting Duan
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaojuan Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Weiji Zhai
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinpeng Zhang
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guoqiang Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
16
|
Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. eLife 2022; 11:e70017. [PMID: 35015630 PMCID: PMC8752094 DOI: 10.7554/elife.70017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.
Collapse
Affiliation(s)
- Kaitlyn Tsai
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Vanja Stojković
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Jordan Kleinman
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Ali Palla
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Stephen N Floor
- Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
17
|
Jia B, Wang T, Lehmann J. Peptidyl transferase center decompaction and structural constraints during early protein elongation on the ribosome. Sci Rep 2021; 11:24061. [PMID: 34911999 PMCID: PMC8674327 DOI: 10.1038/s41598-021-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Peptide bond formation on the ribosome requires that aminoacyl-tRNAs and peptidyl-tRNAs are properly positioned on the A site and the P site of the peptidyl transferase center (PTC) so that nucleophilic attack can occur. Here we analyse some constraints associated with the induced-fit mechanism of the PTC, that promotes this positioning through a compaction around the aminoacyl ester orchestrated by U2506. The physical basis of PTC decompaction, that allows the elongated peptidyl-tRNA to free itself from that state and move to the P site of the PTC, is still unclear. From thermodynamics considerations and an analysis of published ribosome structures, the present work highlights the rational of this mechanism, in which the free-energy released by the new peptide bond is used to kick U2506 away from the reaction center. Furthermore, we show the evidence that decompaction is impaired when the nascent peptide is not yet anchored inside the exit tunnel, which may contribute to explain why the first rounds of elongation are inefficient, an issue that has attracted much interest for about two decades. Results in this field are examined in the light of the present analysis and a physico-chemical correlation in the genetic code, which suggest that elementary constraints associated with the size of the side-chain of the amino acids penalize early elongation events.
Collapse
Affiliation(s)
- Bin Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jean Lehmann
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University of Paris-Saclay, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Bhandari BK, Lim CS, Remus DM, Chen A, van Dolleweerd C, Gardner PP. Analysis of 11,430 recombinant protein production experiments reveals that protein yield is tunable by synonymous codon changes of translation initiation sites. PLoS Comput Biol 2021; 17:e1009461. [PMID: 34610008 PMCID: PMC8519471 DOI: 10.1371/journal.pcbi.1009461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/15/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Recombinant protein production is a key process in generating proteins of interest in the pharmaceutical industry and biomedical research. However, about 50% of recombinant proteins fail to be expressed in a variety of host cells. Here we show that the accessibility of translation initiation sites modelled using the mRNA base-unpairing across the Boltzmann's ensemble significantly outperforms alternative features. This approach accurately predicts the successes or failures of expression experiments, which utilised Escherichia coli cells to express 11,430 recombinant proteins from over 189 diverse species. On this basis, we develop TIsigner that uses simulated annealing to modify up to the first nine codons of mRNAs with synonymous substitutions. We show that accessibility captures the key propensity beyond the target region (initiation sites in this case), as a modest number of synonymous changes is sufficient to tune the recombinant protein expression levels. We build a stochastic simulation model and show that higher accessibility leads to higher protein production and slower cell growth, supporting the idea of protein cost, where cell growth is constrained by protein circuits during overexpression.
Collapse
Affiliation(s)
- Bikash K. Bhandari
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniela M. Remus
- Callaghan Innovation Protein Science and Engineering, University of Canterbury, Christchurch, New Zealand
| | - Augustine Chen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Craig van Dolleweerd
- Biomolecular Interaction Center, University of Canterbury, Christchurch, New Zealand
| | - Paul P. Gardner
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Biomolecular Interaction Center, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
19
|
Abstract
Bacterial protein synthesis rates have evolved to maintain preferred stoichiometries at striking precision, from the components of protein complexes to constituents of entire pathways. Setting relative protein production rates to be well within a factor of two requires concerted tuning of transcription, RNA turnover, and translation, allowing many potential regulatory strategies to achieve the preferred output. The last decade has seen a greatly expanded capacity for precise interrogation of each step of the central dogma genome-wide. Here, we summarize how these technologies have shaped the current understanding of diverse bacterial regulatory architectures underpinning stoichiometric protein synthesis. We focus on the emerging expanded view of bacterial operons, which encode diverse primary and secondary mRNA structures for tuning protein stoichiometry. Emphasis is placed on how quantitative tuning is achieved. We discuss the challenges and open questions in the application of quantitative, genome-wide methodologies to the problem of precise protein production. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James C Taggart
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; ,
| | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; , .,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Current affiliation: Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA;
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; ,
| |
Collapse
|
20
|
Razban RM, Dasmeh P, Serohijos AWR, Shakhnovich EI. Avoidance of protein unfolding constrains protein stability in long-term evolution. Biophys J 2021; 120:2413-2424. [PMID: 33932438 PMCID: PMC8390877 DOI: 10.1016/j.bpj.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Every amino acid residue can influence a protein's overall stability, making stability highly susceptible to change throughout evolution. We consider the distribution of protein stabilities evolutionarily permittable under two previously reported protein fitness functions: flux dynamics and misfolding avoidance. We develop an evolutionary dynamics theory and find that it agrees better with an extensive protein stability data set for dihydrofolate reductase orthologs under the misfolding avoidance fitness function rather than the flux dynamics fitness function. Further investigation with ribonuclease H data demonstrates that not any misfolded state is avoided; rather, it is only the unfolded state. At the end, we discuss how our work pertains to the universal protein abundance-evolutionary rate correlation seen across organisms' proteomes. We derive a closed-form expression relating protein abundance to evolutionary rate that captures Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens experimental trends without fitted parameters.
Collapse
Affiliation(s)
- Rostam M Razban
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Pouria Dasmeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Departement de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Bhattacharyya S, Bershtein S, Adkar BV, Woodard J, Shakhnovich EI. Metabolic response to point mutations reveals principles of modulation of in vivo enzyme activity and phenotype. Mol Syst Biol 2021; 17:e10200. [PMID: 34180142 PMCID: PMC8236904 DOI: 10.15252/msb.202110200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between sequence variation and phenotype is poorly understood. Here, we use metabolomic analysis to elucidate the molecular mechanism underlying the filamentous phenotype of E. coli strains that carry destabilizing mutations in dihydrofolate reductase (DHFR). We find that partial loss of DHFR activity causes reversible filamentation despite SOS response indicative of DNA damage, in contrast to thymineless death (TLD) achieved by complete inhibition of DHFR activity by high concentrations of antibiotic trimethoprim. This phenotype is triggered by a disproportionate drop in intracellular dTTP, which could not be explained by drop in dTMP based on the Michaelis-Menten-like in vitro activity curve of thymidylate kinase (Tmk), a downstream enzyme that phosphorylates dTMP to dTDP. Instead, we show that a highly cooperative (Hill coefficient 2.5) in vivo activity of Tmk is the cause of suboptimal dTTP levels. dTMP supplementation rescues filamentation and restores in vivo Tmk kinetics to Michaelis-Menten. Overall, this study highlights the important role of cellular environment in sculpting enzymatic kinetics with system-level implications for bacterial phenotype.
Collapse
Affiliation(s)
| | - Shimon Bershtein
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Bharat V Adkar
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMAUSA
| | - Jaie Woodard
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMAUSA
| | | |
Collapse
|
22
|
McCormick DM, Lalanne JB, Lan TCT, Rouskin S, Li GW. Sigma factor dependent translational activation in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2021; 27:rna.078747.121. [PMID: 33927010 PMCID: PMC8208050 DOI: 10.1261/rna.078747.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Sigma factors are an important class of bacterial transcription factors that lend specificity to RNA polymerases by binding to distinct promoter elements for genes in their regulons. Here we show that activation of the general stress sigma factor, σB, in Bacillus subtilis paradoxically leads to dramatic induction of translation for a subset of its regulon genes. These genes are translationally repressed when transcribed by the housekeeping sigma factor, σA, owing to extended RNA secondary structures as determined in vivo using DMS-MaPseq. Transcription from σB-dependent promoters ablates the secondary structures and activates translation, leading to dual induction. Translation efficiencies between σB- and σA-dependent RNA isoforms can vary by up to 100-fold, which in multiple cases exceeds the magnitude of transcriptional induction. These results highlight the role of long-range RNA folding in modulating translation and demonstrate that a transcription factor can regulate protein synthesis beyond its effects on transcript levels.
Collapse
|
23
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
24
|
Xu K, Tong Y, Li Y, Tao J, Li J, Zhou J, Liu S. Rational Design of the N-Terminal Coding Sequence for Regulating Enzyme Expression in Bacillus subtilis. ACS Synth Biol 2021; 10:265-276. [PMID: 33464830 DOI: 10.1021/acssynbio.0c00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synonymous mutation of the N-terminal coding sequence (NCS) has been used to regulate gene expression. We here developed a statistical model to predict the effect of the NCSs on protein expression in Bacillus subtilis WB600. First, a synonymous mutation was performed within the first 10 residues of a superfolder green fluorescent protein to generate a library of 172 NCS synonymous mutants with different expression levels. A prediction model was then developed, which adopted G/C frequency at the third position of each codon and minimum free energy of mRNA as the independent variables, using multiple regression analysis between the 11 sequence parameters of the NCS and their fluorescence intensities. By designing the NCS of the 10 signal peptides de novo according to the model, the extracellular yield of B. subtilis pullulanase fused to each signal peptide was up-regulated by up to 515% or down-regulated by at most 79%. This work provided a candidate tool for fine-tuning gene expression or enzyme production in B. subtilis.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Gawroński P, Enroth C, Kindgren P, Marquardt S, Karpiński S, Leister D, Jensen PE, Vinther J, Scharff LB. Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region. Cells 2021; 10:322. [PMID: 33557293 PMCID: PMC7914831 DOI: 10.3390/cells10020322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023] Open
Abstract
mRNA secondary structure influences translation. Proteins that modulate the mRNA secondary structure around the translation initiation region may regulate translation in plastids. To test this hypothesis, we exposed Arabidopsis thaliana to high light, which induces translation of psbA mRNA encoding the D1 subunit of photosystem II. We assayed translation by ribosome profiling and applied two complementary methods to analyze in vivo RNA secondary structure: DMS-MaPseq and SHAPE-seq. We detected increased accessibility of the translation initiation region of psbA after high light treatment, likely contributing to the observed increase in translation by facilitating translation initiation. Furthermore, we identified the footprint of a putative regulatory protein in the 5' UTR of psbA at a position where occlusion of the nucleotide sequence would cause the structure of the translation initiation region to open up, thereby facilitating ribosome access. Moreover, we show that other plastid genes with weak Shine-Dalgarno sequences (SD) are likely to exhibit psbA-like regulation, while those with strong SDs do not. This supports the idea that changes in mRNA secondary structure might represent a general mechanism for translational regulation of psbA and other plastid genes.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Christel Enroth
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Peter Kindgren
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (P.G.); (S.K.)
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany;
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - Jeppe Vinther
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 København N, Denmark; (C.E.); (J.V.)
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (P.K.); (S.M.)
| |
Collapse
|
26
|
A single nucleotide mutation drastically increases the expression of tumor-homing NGR-TNFα in the E. coli M15-pQE30 system by improving gene transcription. Appl Microbiol Biotechnol 2021; 105:1447-1460. [PMID: 33528691 PMCID: PMC7852052 DOI: 10.1007/s00253-021-11136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
Due to their potent immune stimulation, tumor necrosis factor alpha (TNFα) variants with tumor-homing activity are attractive as novel antitumor drugs. The promising antitumor effect of NGR-TNFα in clinical trials triggered extensive interest in developing novel tumor-homing TNFα variants in recent years. Owing to its promising antitumor effect, NGR-TNFα is usually used as a control for newly developed tumor-homing TNFα variants. In our previous works, we produced a pericyte-targeting Z-TNFα at high levels using the Escherichia coli (E. coli) M15-pQE30 system. To further compare Z-TNFα and NGR-TNFα, we attempted to express NGR-TNFα using the same system. Surprisingly, native NGR-TNFα was expressed at a low (~ 0.2 mg/L) level in E. coli M15 containing the pQE30 plasmid. However, a single nucleotide mutation of C to G, resulting in a substitution of leucine (L) with valine (V) at the start of TNFα, increased the expression of NGR-TNFα by ~ 100 times through improving transcription. In addition, the amino acid substitution showed a little impact on the receptor binding, in vitro cytotoxicity, and in vivo antitumor effect of NGR-TNFα. As fusing NGR to the N-terminus of TNFα with a valine substitution did not reduce the protein yield, the TNFα gene with a C > G mutation might be used to prepare novel tumor-homing TNFα when the native TNFα-based variant is expressed at an extremely low level in E. coli. Notably, in addition to the mutated valine, the impact of N-terminal additional amino acids provided by pQE30 vector on the function of TNFα variant must be carefully evaluated. KEY POINTS : • A single nucleotide mutation increased the expression of NGR-TNFα by two orders. • Nucleotide mutation-induced amino acid substitution did not reduce NGR-TNFα activity.
Collapse
|
27
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
28
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
29
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
30
|
Despons L, Martin F. How Many Messenger RNAs Can Be Translated by the START Mechanism? Int J Mol Sci 2020; 21:ijms21218373. [PMID: 33171614 PMCID: PMC7664666 DOI: 10.3390/ijms21218373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
Translation initiation is a key step in the protein synthesis stage of the gene expression pathway of all living cells. In this important process, ribosomes have to accurately find the AUG start codon in order to ensure the integrity of the proteome. “Structure Assisted RNA Translation”, or “START”, has been proposed to use stable secondary structures located in the coding sequence to augment start site selection by steric hindrance of the progression of pre-initiation complex on messenger RNA. This implies that such structures have to be located downstream and at on optimal distance from the AUG start codon (i.e., downstream nucleotide +16). In order to assess the importance of the START mechanism in the overall mRNA translation process, we developed a bioinformatic tool to screen coding sequences for such stable structures in a 50 nucleotide-long window spanning the nucleotides from +16 to +65. We screened eight bacterial genomes and six eukaryotic genomes. We found stable structures in 0.6–2.5% of eukaryotic coding sequences. Among these, approximately half of them were structures predicted to form G-quadruplex structures. In humans, we selected 747 structures. In bacteria, the coding sequences from Gram-positive bacteria contained 2.6–4.2% stable structures, whereas the structures were less abundant in Gram-negative bacteria (0.2–2.7%). In contrast to eukaryotes, putative G-quadruplex structures are very rare in the coding sequence of bacteria. Altogether, our study reveals that the START mechanism seems to be an ancient strategy to facilitate the start codon recognition that is used in different kingdoms of life.
Collapse
|
31
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
32
|
Secondary structure of the mRNA encoding listeriolysin O is essential to establish the replicative niche of L. monocytogenes. Proc Natl Acad Sci U S A 2020; 117:23774-23781. [PMID: 32878997 DOI: 10.1073/pnas.2004129117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intracellular pathogens are responsible for an enormous amount of worldwide morbidity and mortality, and each has evolved specialized strategies to establish and maintain their replicative niche. Listeria monocytogenes is a facultative intracellular pathogen that secretes a pore-forming cytolysin called listeriolysin O (LLO), which disrupts the phagosomal membrane and, thereby, allows the bacteria access to their replicative niche in the cytosol. Nonsynonymous and synonymous mutations in a PEST-like domain near the LLO N terminus cause enhanced LLO translation during intracellular growth, leading to host cell death and loss of virulence. Here, we explore the mechanism of translational control and show that there is extensive codon restriction within the PEST-encoding region of the LLO messenger RNA (mRNA) (hly). This region has considerable complementarity with the 5' UTR and is predicted to form an extensive secondary structure that overlaps the ribosome binding site. Analysis of both 5' UTR and synonymous mutations in the PEST-like domain that are predicted to disrupt the secondary structure resulted in up to a 10,000-fold drop in virulence during mouse infection, while compensatory double mutants restored virulence to WT levels. We showed by dynamic protein radiolabeling that LLO synthesis was growth phase-dependent. These data provide a mechanism to explain how the bacteria regulate translation of LLO to promote translation during starvation in a phagosome while repressing it during growth in the cytosol. These studies also provide a molecular explanation for codon bias at the 5' end of this essential determinant of pathogenesis.
Collapse
|
33
|
Chen JZ, Fowler DM, Tokuriki N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 2020; 9:e56707. [PMID: 32510322 PMCID: PMC7308095 DOI: 10.7554/elife.56707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Metallo-β-lactamases (MBLs) degrade a broad spectrum of β-lactam antibiotics, and are a major disseminating source for multidrug resistant bacteria. Despite many biochemical studies in diverse MBLs, molecular understanding of the roles of residues in the enzyme's stability and function, and especially substrate specificity, is lacking. Here, we employ deep mutational scanning (DMS) to generate comprehensive single amino acid variant data on a major clinical MBL, VIM-2, by measuring the effect of thousands of VIM-2 mutants on the degradation of three representative classes of β-lactams (ampicillin, cefotaxime, and meropenem) and at two different temperatures (25°C and 37°C). We revealed residues responsible for expression and translocation, and mutations that increase resistance and/or alter substrate specificity. The distribution of specificity-altering mutations unveiled distinct molecular recognition of the three substrates. Moreover, these function-altering mutations are frequently observed among naturally occurring variants, suggesting that the enzymes have continuously evolved to become more potent resistance genes.
Collapse
Affiliation(s)
- John Z Chen
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| |
Collapse
|
34
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
35
|
Peeri M, Tuller T. High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life. Genome Biol 2020; 21:63. [PMID: 32151272 PMCID: PMC7063772 DOI: 10.1186/s13059-020-01971-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND mRNA can form local secondary structure within the protein-coding sequence, and the strength of this structure is thought to influence gene expression regulation. Previous studies suggest that secondary structure strength may be maintained under selection, but the details of this phenomenon are not well understood. RESULTS We perform a comprehensive study of the selection on local mRNA folding strengths considering variation between species across the tree of life. We show for the first time that local folding strength selection tends to follow a conserved characteristic profile in most phyla, with selection for weak folding at the two ends of the coding region and for strong folding elsewhere in the coding sequence, with an additional peak of selection for strong folding located downstream of the start codon. The strength of this pattern varies between species and organism groups, and we highlight contradicting cases. To better understand the underlying evolutionary process, we show that selection strengths in the different regions are strongly correlated, and report four factors which have a clear predictive effect on local mRNA folding selection within the coding sequence in different species. CONCLUSIONS The correlations observed between selection for local secondary structure strength in the different regions and with the four genomic and environmental factors suggest that they are shaped by the same evolutionary process throughout the coding sequence, and might be maintained under direct selection related to optimization of gene expression and specifically translation regulation.
Collapse
Affiliation(s)
- Michael Peeri
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
36
|
Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci U S A 2020; 117:3528-3534. [PMID: 32015130 DOI: 10.1073/pnas.1907126117] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the cell, proteins are synthesized from N to C terminus and begin to fold during translation. Cotranslational folding mechanisms are therefore linked to elongation rate, which varies as a function of synonymous codon usage. However, synonymous codon substitutions can affect many distinct cellular processes, which has complicated attempts to deconvolve the extent to which synonymous codon usage can promote or frustrate proper protein folding in vivo. Although previous studies have shown that some synonymous changes can lead to different final structures, other substitutions will likely be more subtle, perturbing predominantly the protein folding pathway without radically altering the final structure. Here we show that synonymous codon substitutions encoding a single essential enzyme lead to dramatically slower cell growth. These mutations do not prevent active enzyme formation; instead, they predominantly alter the protein folding mechanism, leading to enhanced degradation in vivo. These results support a model in which synonymous codon substitutions can impair cell fitness by significantly perturbing cotranslational protein folding mechanisms, despite the chaperoning provided by the cellular protein homeostasis network.
Collapse
|
37
|
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc Natl Acad Sci U S A 2020; 117:1485-1495. [PMID: 31911473 DOI: 10.1073/pnas.1913207117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.
Collapse
|
38
|
Chiaruttini C, Guillier M. On the role of mRNA secondary structure in bacterial translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1579. [PMID: 31760691 DOI: 10.1002/wrna.1579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022]
Abstract
Messenger RNA (mRNA) is no longer considered as a mere informational molecule whose sole function is to convey the genetic information specified by DNA to the ribosome. Beyond this primary function, mRNA also contains additional instructions that influence the way and the extent to which this message is translated by the ribosome into protein(s). Indeed, owing to its intrinsic propensity to quickly and dynamically fold and form higher order structures, mRNA exhibits a second layer of structural information specified by the sequence itself. Besides influencing transcription and mRNA stability, this additional information also affects translation, and more precisely the frequency of translation initiation, the choice of open reading frame by recoding, the elongation speed, and the folding of the nascent protein. Many studies in bacteria have shown that mRNA secondary structure participates to the rapid adaptation of these versatile organisms to changing environmental conditions by efficiently tuning translation in response to diverse signals, such as the presence of ligands, regulatory proteins, or small RNAs. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
|
39
|
Masachis S, Tourasse NJ, Lays C, Faucher M, Chabas S, Iost I, Darfeuille F. A genetic selection reveals functional metastable structures embedded in a toxin-encoding mRNA. eLife 2019; 8:47549. [PMID: 31411564 PMCID: PMC6733600 DOI: 10.7554/elife.47549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation plays important roles to fine-tune gene expression in bacteria. In particular, regulation of type I toxin-antitoxin (TA) systems is achieved through sophisticated mechanisms involving toxin mRNA folding. Here, we set up a genetic approach to decipher the molecular underpinnings behind the regulation of a type I TA in Helicobacter pylori. We used the lethality induced by chromosomal inactivation of the antitoxin to select mutations that suppress toxicity. We found that single point mutations are sufficient to allow cell survival. Mutations located either in the 5’ untranslated region or within the open reading frame of the toxin hamper its translation by stabilizing stem-loop structures that sequester the Shine-Dalgarno sequence. We propose that these short hairpins correspond to metastable structures that are transiently formed during transcription to avoid premature toxin expression. This work uncovers the co-transcriptional inhibition of translation as an additional layer of TA regulation in bacteria.
Collapse
Affiliation(s)
- Sara Masachis
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Nicolas J Tourasse
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Claire Lays
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Marion Faucher
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Sandrine Chabas
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Isabelle Iost
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| |
Collapse
|
40
|
The sRNA DicF integrates oxygen sensing to enhance enterohemorrhagic Escherichia coli virulence via distinctive RNA control mechanisms. Proc Natl Acad Sci U S A 2019; 116:14210-14215. [PMID: 31235565 DOI: 10.1073/pnas.1902725116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To establish infection, enteric pathogens integrate environmental cues to navigate the gastrointestinal tract (GIT) and precisely control expression of virulence determinants. During passage through the GIT, pathogens encounter relatively high levels of oxygen in the small intestine before transit to the oxygen-limited environment of the colon. However, how bacterial pathogens sense oxygen availability and coordinate expression of virulence traits is not resolved. Here, we demonstrate that enterohemorrhagic Escherichia coli O157:H7 (EHEC) regulates virulence via the oxygen-responsive small RNA DicF. Under oxygen-limited conditions, DicF enhances global expression of the EHEC type three secretion system, which is a key virulence factor required for host colonization, through the transcriptional activator PchA. Mechanistically, the pchA coding sequence (CDS) base pairs with the 5' untranslated region of the mRNA to sequester the ribosome binding site (RBS) and inhibit translation. DicF disrupts pchA cis-interactions by binding to the pchA CDS, thereby unmasking the pchA RBS and promoting PchA expression. These findings uncover a feed-forward regulatory pathway that involves distinctive mechanisms of RNA-based regulation and that provides spatiotemporal control of EHEC virulence.
Collapse
|
41
|
Cañadas IC, Groothuis D, Zygouropoulou M, Rodrigues R, Minton NP. RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium. ACS Synth Biol 2019; 8:1379-1390. [PMID: 31181894 DOI: 10.1021/acssynbio.9b00075] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Members of the genus Clostridium represent a diverse assemblage of species exhibiting both medical and industrial importance. Deriving both a greater understanding of their biology, while at the same time enhancing their exploitable properties, requires effective genome editing tools. Here, we demonstrate the first implementation in the genus of theophylline-dependent, synthetic riboswitches exhibiting a full set of dynamic ranges, also suitable for applications where tight control of gene expression is required. Their utility was highlighted by generating a novel riboswitch-based editing tool-RiboCas-that overcomes the main obstacles associated with CRISPR/Cas9 systems, including low transformation efficiencies and excessive Cas9 toxicity. The universal nature of the tool was established by obtaining chromosomal modifications in C. pasteurianum, C. difficile, and C. sporogenes, as well as by carrying out the first reported example of CRISPR-targeted gene disruption in C. botulinum. The high efficiency (100% mutant generation) and ease of application of RiboCas make it suitable for use in a diverse range of microorganisms.
Collapse
Affiliation(s)
- Inés C. Cañadas
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Daphne Groothuis
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Maria Zygouropoulou
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Raquel Rodrigues
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
42
|
Rodrigues JV, Ogbunugafor CB, Hartl DL, Shakhnovich EI. Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity. Protein Sci 2019; 28:1359-1367. [PMID: 31095809 DOI: 10.1002/pro.3646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large-scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function-such as growth in the presence or absence of an antibiotic-are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α-helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.
Collapse
Affiliation(s)
- João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
43
|
Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci Rep 2019; 9:5808. [PMID: 30967604 PMCID: PMC6456624 DOI: 10.1038/s41598-019-42311-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
Restriction–modification (R-M) systems are highly widespread among bacteria and archaea, and they appear to play a pivotal role in modulating horizontal gene transfer, as well as in protecting the host organism against viruses and other invasive DNA particles. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). If the cell is to survive, the counteracting activities as toxin and antitoxin, must be finely balanced in vivo. The molecular basis of this regulatory process remains unclear and current searches for regulatory elements in R-M modules are focused mainly at the transcription step. In this report, we show new aspects of REase control that are linked to translation. We used the EcoVIII R-M system as a model. Both, the REase and MTase genes for this R-M system contain an unusually high number of rare arginine codons (AGA and AGG) when compared to the rest of the E. coli K-12 genome. Clusters of these codons near the N-terminus of the REase greatly affect the translational efficiency. Changing these to higher frequency codons for E. coli (CGC) improves the REase synthesis, making the R-M system more potent to defend its host against bacteriophages. However, this improved efficiency in synthesis reduces host fitness due to increased autorestriction. We hypothesize that expression of the endonuclease gene can be modulated depending on the host genetic context and we propose a novel post-transcriptional mode of R–M system regulation that alleviates the potential lethal action of the restriction enzyme.
Collapse
|
44
|
Pedersen S, Terkelsen TB, Eriksen M, Hauge MK, Lund CC, Sneppen K, Mitarai N. Fast Translation within the First 45 Codons Decreases mRNA Stability and Increases Premature Transcription Termination in E. coli. J Mol Biol 2019; 431:1088-1097. [DOI: 10.1016/j.jmb.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
45
|
Doerr A, de Reus E, van Nies P, van der Haar M, Wei K, Kattan J, Wahl A, Danelon C. Modelling cell-free RNA and protein synthesis with minimal systems. Phys Biol 2019; 16:025001. [DOI: 10.1088/1478-3975/aaf33d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|