1
|
Kisor K, Ruiz D, Jacobson M, Barber D. A role for pH dynamics regulating transcription factor DNA-binding selectivity. Nucleic Acids Res 2025; 53:gkaf474. [PMID: 40464693 PMCID: PMC12135187 DOI: 10.1093/nar/gkaf474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression or whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA-binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX, and MITF/Myc. Focusing on FOX family transcription factors, we use unbiased SELEX-seq to identify pH-dependent DNA-binding motif preferences and confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are greater at pH 7.0 compared with pH 7.5 and for FOXN1 to a preferred FHL motif at higher pHi in cells. For FOXC2, we also find that greater activity for an FkhP motif at lower pH is dependent on a conserved histidine (His122) in the DBD. ChIP-seq and RNA-seq with FOXC2 also reveal pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
Affiliation(s)
- Kyle P Kisor
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
2
|
Massey S, Khan MA, Rab SO, Husain SM, Khan A, Sadaf, Mallik Z, Mustafa S, Kumar R, Habib M, Deo SVS, Husain SA. Clinical significance of FOXN3 expression in Indian breast cancer patients. Sci Rep 2025; 15:13414. [PMID: 40251258 PMCID: PMC12008265 DOI: 10.1038/s41598-025-98090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Globally, breast cancer is the most common cancer to affect women. There are different molecular and pathological factors that are involved in the uncontrolled proliferation of breast cancer cells. FOXN3 that is member of Forkhead box family proteins is well recognized for having a crucial role in different biological processes and is reported to be dysregulated in various malignancies. The studies to evaluate the significance of the FOXN3 gene in progression of breast cancer are still under progress. We in the current study aim to examine the FOXN3 gene expression in Indian breast cancer patients and find its clinical relevance. FOXN3 expression analysis using RT-PCR, immunohistochemistry, and western blotting was performed in tumor and normal tissue collected from 142 sporadic breast cancer patients. To identify the genetic aberrations in FOXN3 gene automated DNA sequencing was done. FOXN3 expression study revealed the elevated expression of FOXN3 mRNA in 61.26% of the cases whereas FOXN3 protein was seen to be overexpressed in 59.15% cases. Further, it was found that the elevated expression of FOXN3 mRNA was significantly correlated with the post-menopausal (p = 0.003) status and positive lymph node status (p = 0.049) of the patients. The FOXN3 protein expression also exhibited the significant association with menopausal status (p = 0.008), lymph node status (p = 0.001) and clinical stage (p = 0.018) of the patients. However, we did not find any mutation in the DNA binding domain of the FOXN3 gene in the Indian breast cancer cases. Our findings indicates that overexpression of FOXN3 gene in Indian breast cancer cases can have a potential role in breast cancer progression especially in advanced clinical stages.
Collapse
Affiliation(s)
- Sheersh Massey
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Aasif Khan
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Syeda Maryam Husain
- Al-Falah School of Medical Science and Research Centre, Faridabad, Haryana, India
| | - Asifa Khan
- Molecular, Cell and Cancer Biology Department, UMass Chan Medical School, Worcester, MA, 01601, USA
| | - Sadaf
- Medical Biotechnology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Zoya Mallik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Saad Mustafa
- Department of Geriatric Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rahul Kumar
- Department of Biotechnology GITAM School of Science, GITAM, Visakhapatnam, India
| | - Maria Habib
- DDU KAUSHAL Kendra, Jamia Millia Islamia, New Delhi, India
| | - S V S Deo
- Department of Surgical Oncology BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
3
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Kisor KP, Ruiz DG, Jacobson MP, Barber DL. A role for pH dynamics regulating transcription factor DNA binding selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595212. [PMID: 38826444 PMCID: PMC11142074 DOI: 10.1101/2024.05.21.595212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.
Collapse
|
5
|
Kock KH, Kimes PK, Gisselbrecht SS, Inukai S, Phanor SK, Anderson JT, Ramakrishnan G, Lipper CH, Song D, Kurland JV, Rogers JM, Jeong R, Blacklow SC, Irizarry RA, Bulyk ML. DNA binding analysis of rare variants in homeodomains reveals homeodomain specificity-determining residues. Nat Commun 2024; 15:3110. [PMID: 38600112 PMCID: PMC11006913 DOI: 10.1038/s41467-024-47396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.
Collapse
Affiliation(s)
- Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
| | - Patrick K Kimes
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - James T Anderson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Gayatri Ramakrishnan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Boston Bangalore Biosciences Beginnings Program, Harvard University, Cambridge, MA, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Dongyuan Song
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA
| | - Stephen C Blacklow
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, USA.
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA.
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
7
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
8
|
Samee MAH. Noncanonical binding of transcription factors: time to revisit specificity? Mol Biol Cell 2023; 34:pe4. [PMID: 37486893 PMCID: PMC10398899 DOI: 10.1091/mbc.e22-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are one of the most studied classes of DNA-binding proteins that have a direct functional impact on gene transcription and thus, on human physiology and disease. The mechanisms that TFs use for recognizing target DNA binding sites have been studied for nearly five decades, yet they remain poorly understood. It is classically assumed that a TF recognizes a specific sequence pattern, or motif, as its binding sites. However, recent studies are consistently finding examples of noncanonical binding, that is, TFs binding at sites that do not resemble their sequence motifs. Here we review the current literature on four major types of noncanonical TF binding, namely binding based on DNA shape readout, at Guanine-quadruplex structures, at repeat sequences, and bispecific binding. These examples point to a critical need for studies to unify our current observations, many of which are at odds with the "one TF, one motif" view, into a more comprehensive definition of the DNA-binding specificity of TFs.
Collapse
|
9
|
Cooper BH, Dantas Machado AC, Gan Y, Aparicio O, Rohs R. DNA binding specificity of all four Saccharomyces cerevisiae forkhead transcription factors. Nucleic Acids Res 2023; 51:5621-5633. [PMID: 37177995 PMCID: PMC10287902 DOI: 10.1093/nar/gkad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Quantifying the nucleotide preferences of DNA binding proteins is essential to understanding how transcription factors (TFs) interact with their targets in the genome. High-throughput in vitro binding assays have been used to identify the inherent DNA binding preferences of TFs in a controlled environment isolated from confounding factors such as genome accessibility, DNA methylation, and TF binding cooperativity. Unfortunately, many of the most common approaches for measuring binding preferences are not sensitive enough for the study of moderate-to-low affinity binding sites, and are unable to detect small-scale differences between closely related homologs. The Forkhead box (FOX) family of TFs is known to play a crucial role in regulating a variety of key processes from proliferation and development to tumor suppression and aging. By using the high-sequencing depth SELEX-seq approach to study all four FOX homologs in Saccharomyces cerevisiae, we have been able to precisely quantify the contribution and importance of nucleotide positions all along an extended binding site. Essential to this process was the alignment of our SELEX-seq reads to a set of candidate core sequences determined using a recently developed tool for the alignment of enriched k-mers and a newly developed approach for the reprioritization of candidate cores.
Collapse
Affiliation(s)
- Brendon H Cooper
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ana Carolina Dantas Machado
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yan Gan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Oscar M Aparicio
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Departments of Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Alexandari AM, Horton CA, Shrikumar A, Shah N, Li E, Weilert M, Pufall MA, Zeitlinger J, Fordyce PM, Kundaje A. De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540401. [PMID: 37214836 PMCID: PMC10197627 DOI: 10.1101/2023.05.11.540401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences, in vivo genomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained on in vitro TF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific, in vivo binding profiles. Conversely, deep learning models, trained on in vivo TF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models of in vitro and in vivo TF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinities de-novo from deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diverse in vitro assays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant of in vivo binding, suggest that deep learning models of in vivo binding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughput in silico experiments to explore the influence of sequence context and variation on both intrinsic affinity and in vivo occupancy.
Collapse
Affiliation(s)
- Amr M. Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | | | - Avanti Shrikumar
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eileen Li
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Miles A. Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA
- The University of Kansas Medical Center, Kansas City, KS, USA
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- ChEM-H Institute, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94110
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| |
Collapse
|
11
|
Dolsten GA, Pritykin Y. Genomic Analysis of Foxp3 Function in Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:880-887. [PMID: 36947819 PMCID: PMC10037560 DOI: 10.4049/jimmunol.2200864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 03/24/2023]
Abstract
Regulatory T (Treg) cells are critical for tolerance to self-antigens and for preventing autoimmunity. Foxp3 has been identified as a Treg cell lineage-defining transcription factor controlling Treg cell differentiation and function. In this article, we review the current mechanistic and systemic understanding of Foxp3 function enabled by experimental and computational advances in high-throughput genomics.
Collapse
Affiliation(s)
- Gabriel A Dolsten
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Quantitative and Computational Biology Graduate Program, Princeton University, Princeton, NJ, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| |
Collapse
|
12
|
Acetylation of Checkpoint suppressor 1 enhances its stability and promotes the progression of triple-negative breast cancer. Cell Death Dis 2022; 8:474. [PMID: 36450706 PMCID: PMC9712368 DOI: 10.1038/s41420-022-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Checkpoint suppressor 1 (CHES1), a transcriptional regulator, had been dysregulated in many types of malignancies including breast cancer, and its expression level is strongly associated with progression and prognosis of patients. However, the underlying regulatory mechanisms of CHES1 expression in the breast cancer and the effects of post-translational modifications (PTMs) on its functional performance remain to be fully investigated. Herein, we found that CHES1 had a high abundance in triple-negative breast cancer (TNBC) and its expression was tightly associated with malignant phenotype and poor outcomes of patients. Furthermore, we confirmed that CHES1 was an acetylated protein and its dynamic modification was mediated by p300 and HDAC1, and CHES1 acetylation enhanced its stability via decreasing its ubiquitination and degradation, which resulted in the high abundance of CHES1 in TNBC. RNA-seq and functional study revealed that CHES1 facilitated the activation of oncogenic genes and pathways leading to proliferation and metastasis of TNBC. Taken together, this research established a novel regulatory role of acetylation on the stability and activity of CHES1. The results demonstrate the significance of CHES1 acetylation and underlying mechanisms in the progression of TNBC, offering new potential candidate for molecular-targeted therapy in breast cancer.
Collapse
|
13
|
Pluta R, Aragón E, Prescott NA, Ruiz L, Mees RA, Baginski B, Flood JR, Martin-Malpartida P, Massagué J, David Y, Macias MJ. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat Commun 2022; 13:7279. [PMID: 36435807 PMCID: PMC9701222 DOI: 10.1038/s41467-022-34925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Forkhead box H1 (FoxH1) is an essential maternal pioneer factor during embryonic development that binds to specific GG/GT-containing DNA target sequences. Here we have determined high-resolution structures of three FoxH1 proteins (from human, frog and fish species) and four DNAs to clarify the way in which FoxH1 binds to these sites. We found that the protein-DNA interactions extend to both the minor and major DNA grooves and are thus almost twice as extensive as those of other FOX family members. Moreover, we identified two specific amino acid changes in FoxH1 that allowed the recognition of GG/GT motifs. Consistent with the pioneer factor activity of FoxH1, we found that its affinity for nucleosomal DNA is even higher than for linear DNA fragments. The structures reported herein illustrate how FoxH1 binding to distinct DNA sites provides specificity and avoids cross-regulation by other FOX proteins that also operate during the maternal-zygotic transition and select canonical forkhead sites.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Nicholas A Prescott
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Rebeca A Mees
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Julia R Flood
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
14
|
Choi Y, Luo Y, Lee S, Jin H, Yoon HJ, Hahn Y, Bae J, Lee HH. FOXL2 and FOXA1 cooperatively assemble on the TP53 promoter in alternative dimer configurations. Nucleic Acids Res 2022; 50:8929-8946. [PMID: 35920317 PMCID: PMC9410875 DOI: 10.1093/nar/gkac673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Although both the p53 and forkhead box (FOX) family proteins are key transcription factors associated with cancer progression, their direct relationship is unknown. Here, we found that FOX family proteins bind to the non-canonical homotypic cluster of the p53 promoter region (TP53). Analysis of crystal structures of FOX proteins (FOXL2 and FOXA1) bound to the p53 homotypic cluster indicated that they interact with a 2:1 stoichiometry accommodated by FOX-induced DNA allostery. In particular, FOX proteins exhibited distinct dimerization patterns in recognition of the same p53-DNA; dimer formation of FOXA1 involved protein-protein interaction, but FOXL2 did not. Biochemical and biological functional analyses confirmed the cooperative binding of FOX proteins to the TP53 promoter for the transcriptional activation of TP53. In addition, up-regulation of TP53 was necessary for FOX proteins to exhibit anti-proliferative activity in cancer cells. These analyses reveal the presence of a discrete characteristic within FOX family proteins in which FOX proteins regulate the transcription activity of the p53 tumor suppressor via cooperative binding to the TP53 promoter in alternative dimer configurations.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Leng F, Zhang W, Ramirez RN, Leon J, Zhong Y, Hou L, Yuki K, van der Veeken J, Rudensky AY, Benoist C, Hur S. The transcription factor FoxP3 can fold into two dimerization states with divergent implications for regulatory T cell function and immune homeostasis. Immunity 2022; 55:1354-1369.e8. [PMID: 35926508 PMCID: PMC9907729 DOI: 10.1016/j.immuni.2022.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1. RBR was also important for proper folding of the forkhead domain, as truncation of RBR induced domain-swap dimerization of forkhead, which was previously considered the physiological form of FoxP3. Rather, swap-dimerization impaired FoxP3 function, as demonstrated with the disease-causing mutation R337Q, whereas a swap-suppressive mutation largely rescued R337Q-mediated functional impairment. Altogether, our findings suggest that FoxP3 can fold into two distinct dimerization states: head-to-head dimerization representing functional specialization of an ancient DBD and swap dimerization associated with impaired functions.
Collapse
Affiliation(s)
- Fangwei Leng
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenxiang Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yi Zhong
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Vereczkei A, Barta C, Magi A, Farkas J, Eisinger A, Király O, Belik A, Griffiths MD, Szekely A, Sasvári-Székely M, Urbán R, Potenza MN, Badgaiyan RD, Blum K, Demetrovics Z, Kotyuk E. FOXN3 and GDNF Polymorphisms as Common Genetic Factors of Substance Use and Addictive Behaviors. J Pers Med 2022; 12:jpm12050690. [PMID: 35629112 PMCID: PMC9144496 DOI: 10.3390/jpm12050690] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Epidemiological and phenomenological studies suggest shared underpinnings between multiple addictive behaviors. The present genetic association study was conducted as part of the Psychological and Genetic Factors of Addictions study (n = 3003) and aimed to investigate genetic overlaps between different substance use, addictive, and other compulsive behaviors. Association analyses targeted 32 single-nucleotide polymorphisms, potentially addictive substances (alcohol, tobacco, cannabis, and other drugs), and potentially addictive or compulsive behaviors (internet use, gaming, social networking site use, gambling, exercise, hair-pulling, and eating). Analyses revealed 29 nominally significant associations, from which, nine survived an FDRbl correction. Four associations were observed between FOXN3 rs759364 and potentially addictive behaviors: rs759364 showed an association with the frequency of alcohol consumption and mean scores of scales assessing internet addiction, gaming disorder, and exercise addiction. Significant associations were found between GDNF rs1549250, rs2973033, CNR1 rs806380, DRD2/ANKK1 rs1800497 variants, and the “lifetime other drugs” variable. These suggested that genetic factors may contribute similarly to specific substance use and addictive behaviors. Specifically, FOXN3 rs759364 and GDNF rs1549250 and rs2973033 may constitute genetic risk factors for multiple addictive behaviors. Due to limitations (e.g., convenience sampling, lack of structured scales for substance use), further studies are needed. Functional correlates and mechanisms underlying these relationships should also be investigated.
Collapse
Affiliation(s)
- Andrea Vereczkei
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
- Correspondence: (C.B.); (Z.D.)
| | - Anna Magi
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
| | - Judit Farkas
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Nyírő Gyula National Institute of Psychiatry and Addictions, 1135 Budapest, Hungary
| | - Andrea Eisinger
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
| | - Orsolya Király
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Andrea Belik
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Mark D. Griffiths
- International Gaming Research Unit, Psychology Department, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | - Anna Szekely
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Mária Sasvári-Székely
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary; (A.V.); (A.B.); (M.S.-S.)
| | - Róbert Urbán
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| | - Marc N. Potenza
- Departments of Psychiatry, Child Study and Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA;
- Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Ichan School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA;
| | - Zsolt Demetrovics
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA;
- Correspondence: (C.B.); (Z.D.)
| | - Eszter Kotyuk
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary; (A.M.); (J.F.); (A.E.); (O.K.); (A.S.); (R.U.); (E.K.)
| |
Collapse
|
17
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
18
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
19
|
Tsukanov AV, Mironova VV, Levitsky VG. Motif models proposing independent and interdependent impacts of nucleotides are related to high and low affinity transcription factor binding sites in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:938545. [PMID: 35968123 PMCID: PMC9373801 DOI: 10.3389/fpls.2022.938545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/05/2022] [Indexed: 05/15/2023]
Abstract
Position weight matrix (PWM) is the traditional motif model representing the transcription factor (TF) binding sites. It proposes that the positions contribute independently to TFs binding affinity, although this hypothesis does not fit the data perfectly. This explains why PWM hits are missing in a substantial fraction of ChIP-seq peaks. To study various modes of the direct binding of plant TFs, we compiled the benchmark collection of 111 ChIP-seq datasets for Arabidopsis thaliana, and applied the traditional PWM, and two alternative motif models BaMM and SiteGA, proposing the dependencies of the positions. The variation in the stringency of the recognition thresholds for the models proposed that the hits of PWM, BaMM, and SiteGA models are associated with the sites of high/medium, any, and low affinity, respectively. At the medium recognition threshold, about 60% of ChIP-seq peaks contain PWM hits consisting of conserved core consensuses, while BaMM and SiteGA provide hits for an additional 15% of peaks in which a weaker core consensus is compensated through intra-motif dependencies. The presence/absence of these dependencies in the motifs of alternative/traditional models was confirmed by the dependency logo DepLogo visualizing the position-wise partitioning of the alignments of predicted sites. We exemplify the detailed analysis of ChIP-seq profiles for plant TFs CCA1, MYC2, and SEP3. Gene ontology (GO) enrichment analysis revealed that among the three motif models, the SiteGA had the highest portions of genes with the significantly enriched GO terms among all predicted genes. We showed that both alternative motif models provide for traditional PWM greater extensions in predicted sites for TFs MYC2/SEP3 with condition/tissue specific functions, compared to those for TF CCA1 with housekeeping functions. Overall, the combined application of standard and alternative motif models is beneficial to detect various modes of the direct TF-DNA interactions in the maximal portion of ChIP-seq loci.
Collapse
Affiliation(s)
- Anton V. Tsukanov
- Department of Systems Biology, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Victoria V. Mironova
- Department of Systems Biology, Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Victor G. Levitsky
- Department of Systems Biology, Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, Novosibirsk, Russia
- *Correspondence: Victor G. Levitsky
| |
Collapse
|
20
|
Zhang H, Dai S, Liang X, Li J, Chen Y. Mechanistic Insights into the Preference for Tandem Binding Sites in DNA Recognition by FOXM1. J Mol Biol 2021; 434:167426. [PMID: 34973238 DOI: 10.1016/j.jmb.2021.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
FOXM1 is an essential proliferation-associated transcription factor that controls the activation of a number of cell cycle regulatory genes. Unlike other forkhead box (FOX) transcription factors, FOXM1 has been shown to prefer binding tandem regulatory DNA sites. However, the underlying reason for such preference is not clear. Here, we showed that the tandem DNA motif, named DIV2, is widely distributed in the promoter region of FOXM1 target genes. The binding of FOXM1 on the DIV2 site differs dramatically from other sites, which is in a highly cooperative fashion, with a much enhanced thermal stability and can be clearly detected by EMSA. The crystal structure of FOXM1 in complex with the DIV2 DNA reveals that the cooperative binding is likely to be driven by intermolecular protein-protein interactions (PPIs). Further half-site spacer insertion assays showed that FOXM1 can bind another site, DIV0, in a similar manner to the DIV2 site. Given the high occurrence of the DIV2 and DIV0 sites in FOXM1 target genes, our results suggest that FOXM1 prefers tandem DNA sites to enable cooperative DNA recognition, and such binding characteristics may further confer its specificity during transcriptional regulation.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Dai S, Qu L, Li J, Chen Y. Toward a mechanistic understanding of DNA binding by forkhead transcription factors and its perturbation by pathogenic mutations. Nucleic Acids Res 2021; 49:10235-10249. [PMID: 34551426 PMCID: PMC8501956 DOI: 10.1093/nar/gkab807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Forkhead box (FOX) proteins are an evolutionarily conserved family of transcription factors that play numerous regulatory roles in eukaryotes during developmental and adult life. Dysfunction of FOX proteins has been implicated in a variety of human diseases, including cancer, neurodevelopment disorders and genetic diseases. The FOX family members share a highly conserved DNA-binding domain (DBD), which is essential for DNA recognition, binding and function. Since the first FOX structure was resolved in 1993, >30 FOX structures have been reported to date. It is clear now that the structure and DNA recognition mechanisms vary among FOX members; however, a systematic review on this aspect is lacking. In this manuscript, we present an overview of the mechanisms by which FOX transcription factors bind DNA, including protein structures, DNA binding properties and disease-causing mutations. This review should enable a better understanding of FOX family transcription factors for basic researchers and clinicians.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Linzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
22
|
Tsukanov AV, Levitsky VG, Merkulova TI. Application of alternative de novo motif recognition models for analysis of structural heterogeneity of transcription factor binding sites: a case study of FOXA2 binding sites. Vavilovskii Zhurnal Genet Selektsii 2021; 25:7. [PMID: 34547062 PMCID: PMC8408018 DOI: 10.18699/vj21.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
The most popular model for the search of ChIP-seq data for transcription factor binding sites (TFBS)
is the positional weight matrix (PWM). However, this model does not take into account dependencies between
nucleotide occurrences in different site positions. Currently, two recently proposed models, BaMM and InMoDe,
can do as much. However, application of these models was usually limited only to comparing their recognition
accuracies with that of PWMs, while none of the analyses of the co-prediction and relative positioning of hits of different models in peaks has yet been performed. To close this gap, we propose the pipeline called MultiDeNA. This
pipeline includes stages of model training, assessing their recognition accuracy, scanning ChIP-seq peaks and their
classification based on scan results. We applied our pipeline to 22 ChIP-seq datasets of TF FOXA2 and considered
PWM, dinucleotide PWM (diPWM), BaMM and InMoDe models. The combination of these four models allowed a
significant increase in the fraction of recognized peaks compared to that for the sole PWM model: the increase was
26.3 %. The BaMM model provided the main contribution to the recognition of sites. Although the major fraction of
predicted peaks contained TFBS of different models with coincided positions, the medians of the fraction of peaks
containing the predictions of sole models were 1.08, 0.49, 4.15 and 1.73 % for PWM, diPWM, BaMM and InMoDe,
respectively. Thus, FOXA2 BSs were not fully described by only a sole model, which indicates theirs heterogeneity.
We assume that the BaMM model is the most successful in describing the structure of the FOXA2 BS in ChIP-seq
datasets under study.
Collapse
Affiliation(s)
- A V Tsukanov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V G Levitsky
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
23
|
Chumpitaz-Diaz L, Samee MAH, Pollard KS. Systematic identification of non-canonical transcription factor motifs. BMC Mol Cell Biol 2021; 22:44. [PMID: 34465294 PMCID: PMC8408965 DOI: 10.1186/s12860-021-00382-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Sequence-specific transcription factors (TFs) recognize motifs of related nucleotide sequences at their DNA binding sites. Upon binding at these sites, TFs regulate critical molecular processes such as gene expression. It is widely assumed that a TF recognizes a single “canonical” motif, although recent studies have identified additional “non-canonical” motifs for some TFs. A comprehensive approach to identify non-canonical DNA binding motifs and the functional importance of those motifs’ matches in the human genome is necessary for fully understanding the mechanisms of TF-regulated molecular processes in human cells. To address this need, we developed a statistical pipeline for in vitro HT-SELEX data that identifies and characterizes the distributions of non-canonical TF motifs in a stringent manner. Analyzing ~170 human TFs’ HT-SELEX data, we found non-canonical motifs for 19 TFs (11%). These non-canonical motifs occur independently of the TFs’ canonical motifs. Non-canonical motif occurrences in the human genome show similar evolutionary conservation to canonical motif occurrences, explain TF binding in locations without canonical motifs, and occur within gene promoters and epigenetically marked regulatory sequences in human cell lines and tissues. Our approach and collection of non-canonical motifs expand current understanding of functionally relevant DNA binding sites for human TFs.
Collapse
Affiliation(s)
| | - Md Abul Hassan Samee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston,, TX, USA.
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA. .,Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, CA, USA. .,Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
24
|
Li J, Dai S, Chen X, Liang X, Qu L, Jiang L, Guo M, Zhou Z, Wei H, Zhang H, Chen Z, Chen L, Chen Y. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res 2021; 49:3573-3583. [PMID: 33577686 PMCID: PMC8034652 DOI: 10.1093/nar/gkab086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Forkhead transcription factors bind a canonical consensus DNA motif, RYAAAYA (R = A/G, Y = C/T), as a monomer. However, the molecular mechanisms by which forkhead transcription factors bind DNA as a dimer are not well understood. In this study, we show that FOXO1 recognizes a palindromic DNA element DIV2, and mediates transcriptional regulation. The crystal structure of FOXO1/DIV2 reveals that the FOXO1 DNA binding domain (DBD) binds the DIV2 site as a homodimer. The wing1 region of FOXO1 mediates the dimerization, which enhances FOXO1 DNA binding affinity and complex stability. Further biochemical assays show that FOXO3, FOXM1 and FOXI1 also bind the DIV2 site as homodimer, while FOXC2 can only bind this site as a monomer. Our structural, biochemical and bioinformatics analyses not only provide a novel mechanism by which FOXO1 binds DNA as a homodimer, but also shed light on the target selection of forkhead transcription factors.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xujun Liang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhan Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
25
|
Dai S, Li J, Zhang H, Chen X, Guo M, Chen Z, Chen Y. Structural Basis for DNA Recognition by FOXG1 and the Characterization of Disease-causing FOXG1 Mutations. J Mol Biol 2020; 432:6146-6156. [PMID: 33058871 DOI: 10.1016/j.jmb.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Forkhead box G1 (FOXG1) is a transcription factor mainly expressed in the brain that plays a critical role in the development and regionalization of the forebrain. Aberrant expression of FOXG1 has implications in FOXG1 syndrome, a serious neurodevelopmental disorder. Here, we report the crystal structure of the FOXG1 DNA-binding domain (DBD) in complex with the forkhead consensus DNA site DBE2 at the resolution of 1.6 Å. FOXG1-DBD adopts a typical winged helix fold. Compared to those of other FOX-DBD/DBE2 structures, the N terminus, H3 helix and wing2 region of FOXG1-DBD exhibit differences in DNA recognition. The FOXG1-DBD wing2 region adopts a unique architecture composed of two β-strands that differs from all other known FOX-DBD wing2 folds. Mutation assays revealed that the disease-causing mutations within the FOXG1-DBD affect DNA binding, protein thermal stability, or both. Our report provides initial insight into how FOXG1 binds DNA and sheds light on how disease-causing mutations in FOXG1-DBD affect its DNA-binding ability.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
26
|
Zhao C, Mo L, Li C, Han S, Zhao W, Liu L. FOXN3 suppresses the growth and invasion of papillary thyroid cancer through the inactivation of Wnt/β-catenin pathway. Mol Cell Endocrinol 2020; 515:110925. [PMID: 32619584 DOI: 10.1016/j.mce.2020.110925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Forkhead box N3 (FOXN3) is a subtype of FOX family that has been demonstrated to be implicated in several cancers. However, the role of FOXN3 in papillary thyroid carcinoma (PTC) and its mechanisms have not yet been investigated. Our results showed that FOXN3 was markedly down regulated in PTC tissues and cell lines. Overexpression of FOXN3 suppressed the proliferation, colony formation, migration, and invasion in PTC cells. Overexpression of FOXN3 also prevented EMT process in PTC cells, as shown by the increased E-cadherin expression level and decreased expression levels of N-cadherin and vimentin. In addition, overexpression of FOXN3 inhibited tumor growth of PTC in vivo. Furthermore, overexpression of FOXN3 caused significant decreases in expression levels of β-catenin, c-Myc, and cyclin D1. Additionally, activation of Wnt/β-catenin pathway reversed the effects of FOXN3 on PTC cells. In conclusion, these findings indicated that FOXN3 exerted a tumor suppressive activity in PTC, which was mediated by Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Chang'an Zhao
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Pathology, School of Basic Medical Sciences Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liping Mo
- Department of Pathology, School of Basic Medical Sciences Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chao Li
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuiping Han
- Department of Pathology, School of Basic Medical Sciences Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenbo Zhao
- Department of Pathology, School of Basic Medical Sciences Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lifeng Liu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
27
|
Newman JA, Aitkenhead H, Gavard AE, Rota IA, Handel AE, Hollander GA, Gileadi O. The crystal structure of human forkhead box N1 in complex with DNA reveals the structural basis for forkhead box family specificity. J Biol Chem 2020; 295:2948-2958. [PMID: 31914405 PMCID: PMC7062188 DOI: 10.1074/jbc.ra119.010365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Forkhead box N1 (FOXN1) is a member of the forkhead box family of transcription factors and plays an important role in thymic epithelial cell differentiation and development. FOXN1 mutations in humans and mice give rise to the "nude" phenotype, which is marked by athymia. FOXN1 belongs to a subset of the FOX family that recognizes an alternative forkhead-like (FHL) consensus sequence (GACGC) that is different from the more widely recognized forkhead (FKH) sequence RYAAAYA (where R is purine, and Y is pyrimidine). Here, we present the FOXN1 structure in complex with DNA containing an FHL motif at 1.6 Å resolution, in which the DNA sequence is recognized by a mixture of direct and water-mediated contacts provided by residues in an α-helix inserted in the DNA major groove (the recognition helix). Comparisons with the structure of other FOX family members revealed that the FKH and FHL DNA sequences are bound in two distinct modes, with partially different registers for the protein DNA contacts. We identified a single alternative rotamer within the recognition helix itself as an important determinant of DNA specificity and found protein sequence features in the recognition helix that could be used to predict the specificity of other FOX family members. Finally, we demonstrate that the C-terminal region of FOXN1 is required for high-affinity DNA binding and that FOXN1 has a significantly reduced affinity for DNA that contains 5'-methylcytosine, which may have implications for the role of FOXN1 in thymic involution.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Angeline E Gavard
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ioanna A Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Adam E Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Georg A Hollander
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, 4056 Basel, Switzerland
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
28
|
Ibarra IL, Hollmann NM, Klaus B, Augsten S, Velten B, Hennig J, Zaugg JB. Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions. Nat Commun 2020; 11:124. [PMID: 31913281 PMCID: PMC6949242 DOI: 10.1038/s41467-019-13888-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022] Open
Abstract
Recent high-throughput transcription factor (TF) binding assays revealed that TF cooperativity is a widespread phenomenon. However, a global mechanistic and functional understanding of TF cooperativity is still lacking. To address this, here we introduce a statistical learning framework that provides structural insight into TF cooperativity and its functional consequences based on next generation sequencing data. We identify DNA shape as driver for cooperativity, with a particularly strong effect for Forkhead-Ets pairs. Follow-up experiments reveal a local shape preference at the Ets-DNA-Forkhead interface and decreased cooperativity upon loss of the interaction. Additionally, we discover many functional associations for cooperatively bound TFs. Examination of the link between FOXO1:ETV6 and lymphomas reveals that their joint expression levels improve patient clinical outcome stratification. Altogether, our results demonstrate that inter-family cooperative TF binding is driven by position-specific DNA readout mechanisms, which provides an additional regulatory layer for downstream biological functions. Although transcription factor (TF) cooperativity is widespread, a global mechanistic understanding of the role of TF cooperativity is still lacking. Here the authors introduce a statistical learning framework that provides structural insight into TF cooperativity and its functional consequences based on next generation sequencing data and provide mechanistic insights into TF cooperativity and its impact on protein-phenotype interactions.
Collapse
Affiliation(s)
- Ignacio L Ibarra
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Nele M Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Bernd Klaus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sandra Augsten
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
29
|
Karanth S, Chaurasia B, Bowman FM, Tippetts TS, Holland WL, Summers SA, Schlegel A. FOXN3 controls liver glucose metabolism by regulating gluconeogenic substrate selection. Physiol Rep 2019; 7:e14238. [PMID: 31552709 PMCID: PMC6759504 DOI: 10.14814/phy2.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 01/08/2023] Open
Abstract
The FOXN3 gene locus is associated with fasting blood glucose levels in non-diabetic human population genetic studies. The blood glucose-modifying variation within this gene regulates the abundance of both FOXN3 protein and transcript in primary human hepatocytes, with the hyperglycemia risk allele causing increases in both FOXN3 protein and transcript. Using transgenic and knock-out zebrafish models, we showed previously that FOXN3 is a transcriptional repressor that regulates fasting blood glucose by altering liver gene expression of MYC, a master transcriptional regulator of glucose utilization, and by modulating pancreatic α cell mass and function through an unknown mechanism. Since homozygous Foxn3 null mice die perinatally, and heterozygous carries of the null allele are smaller than wild-type siblings, we examine the metabolic effects of decreasing mouse liver Foxn3 expression in adult life, performing dynamic endocrine tests not feasible in adult zebrafish. Fasting glucose, glucagon, and insulin; and dynamic responses to glucose, insulin, pyruvate, glutamine, and glucagon were measured. Gluconeogenic and amino acid catabolic gene expression was examined in livers, as well. Knocking down liver Foxn3 expression via transduction with adeno-associated virus serotype 8 particles encoding a short hairpin RNA targeting Fonx3 decreases fasting glucose and increases Myc expression, without altering fasting glucagon or fasting insulin. Liver Foxn3 knock-down confers increases glucose tolerance, has no effect on insulin tolerance or response to glucagon challenge, blunts pyruvate and glutamine tolerance, and modulates expression of amino acid transporters and catabolic enzymes. We conclude that liver Foxn3 regulates substrate selection for gluconeogenesis.
Collapse
Affiliation(s)
- Santhosh Karanth
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
| | - Bhagirath Chaurasia
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
| | - Faith M. Bowman
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Trevor S. Tippetts
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
| | - William L. Holland
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
- Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Scott A. Summers
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
- Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Amnon Schlegel
- University of Utah Molecular Medicine ProgramSalt Lake CityUtah
- University of Utah Diabetes and Metabolism Research CenterSalt Lake CityUtah
- Department of Nutrition and Integrative PhysiologyCollege of HealthUniversity of UtahSalt Lake CityUtah
- Department of BiochemistryUniversity of Utah School of MedicineSalt Lake CityUtah
- Division of Endocrinology, Metabolism and DiabetesDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtah
| |
Collapse
|
30
|
Kong X, Zhai J, Yan C, Song Y, Wang J, Bai X, Brown JAL, Fang Y. Recent Advances in Understanding FOXN3 in Breast Cancer, and Other Malignancies. Front Oncol 2019; 9:234. [PMID: 31214487 PMCID: PMC6555274 DOI: 10.3389/fonc.2019.00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
FOXN3 (forkhead box N3; CHES1: check point suppressor 1) belongs to the forkhead box (FOX) protein family. FOXN3 displays transcriptional inhibitory activity, and is involved in cell cycle regulation and tumorigenesis. FOXN3 is a tumor suppresser and alterations in FOXN3 are found in of a variety of cancers including melanoma, osteosarcoma, and hepatocellular carcinoma. While the roles of FOXN3 role in some cancers have been explored, its role in breast cancer remains unclear. Here we describe current state of knowledge of FOXN3 functions, and focus on its roles (known and potential) in breast cancer.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Bai
- Department of Pancreatic-Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James A L Brown
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.,Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|