1
|
Wen S, Zheng R, Cai C, Jiang W. Chemical-based epigenetic reprogramming to advance pluripotency and totipotency. Nat Chem Biol 2025; 21:635-647. [PMID: 40251434 DOI: 10.1038/s41589-025-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Reprogramming technology, breaking the inherent limitations of cellular identity and turning somatic cells into pluripotent cells with more developmental potential, holds great promise for cell therapy and regenerative medicine. Compared with traditional methods based on overexpressing transcription factors, chemical reprogramming with small molecules exhibits substantial advantages in safety and convenience, thus being the leading edge. Over the past decade, a notable focus has been reshaping cellular pluripotency and totipotency using pure small-molecule systems. Here, we provide a concise Review comparing the chemical approaches that have emerged to date and discussing the epigenetic regulatory mechanisms involved in chemical reprogramming. This Review highlights the remarkable potential of small-molecule potions to reformulate cell fate through epigenetic reprogramming and newly discovered actions. We aim to offer insights into chemically controlled cell manipulation and key challenges and future application prospects of chemical reprogramming.
Collapse
Affiliation(s)
- Shanshan Wen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
2
|
Zhang X, Li Z, Chen J, Yang W, He X, Wu P, Chen F, Zhou Z, Ren C, Shan Y, Wen X, Lyubetsky VA, Rusin LY, Chen X, Yang JR. Stereotyped Subclones Revealed by High-Density Single-Cell Lineage Tracing Support Robust Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406208. [PMID: 40307991 DOI: 10.1002/advs.202406208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/12/2025] [Indexed: 05/02/2025]
Abstract
Robust development is essential for multicellular organisms. While various mechanisms contributing to developmental robustness are identified at the subcellular level, those at the intercellular and tissue level remain underexplored. This question is approached using a well-established in vitro directed differentiation model recapitulating the in vivo development of lung progenitor cells from human embryonic stem cells. An integrated analysis of high-density cell lineage trees (CLTs) and single-cell transcriptomes of differentiating colonies enabled the resolution of known cell types and developmental hierarchies. This dataset showed little support for the contribution of transcriptional memory to developmental robustness. Nevertheless, stable terminal cell type compositions are observed among many subclones, which enhances developmental robustness because the colony can retain a relatively stable composition even if some subclones are abolished by cell death. Furthermore, it is found that many subclones are formed by sub-CLTs resembling each other in terms of both terminal cell type compositions and topological structures. The presence of stereotyped sub-CLTs constitutes a novel basis for developmental robustness. Moreover, these results suggest a unique perspective on individual cells' function in the context of stereotyped sub-CLTs, which can bridge the knowledge of the atlas of cell types and how they are organized into functional tissues.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zizhang Li
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyu Chen
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjing Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingxing He
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chenze Ren
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyan Shan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiewen Wen
- University Research Facility in 3D Printing, & State Key Laboratory of Ultra-precision Machining Technology, Dept. of ISE, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Vassily A Lyubetsky
- Kharkevich Institute for Information Transmission Problems Russian Academy Sciences, Moscow, 127051, Russia
- Department of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Leonid Yu Rusin
- Kharkevich Institute for Information Transmission Problems Russian Academy Sciences, Moscow, 127051, Russia
| | - Xiaoshu Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Jiang N, Li G, Luo S, Kong X, Yin S, Peng J, Jiang Y, Tao W, Li C, Xie H, Deng H, Xie B. Single-cell transcriptomics reveals liver developmental trajectory during lineage reprogramming of human induced hepatocyte-like cells. Cell Mol Life Sci 2025; 82:139. [PMID: 40188417 PMCID: PMC11973031 DOI: 10.1007/s00018-025-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
Hepatocytes are crucial for drug screening, disease modeling, and clinical transplantation, yet generating functional hepatocytes in vitro is challenging due to the difficulty of establishing their authentic gene regulatory networks (GRNs). We have previously developed a two-step lineage reprogramming strategy to generate functionally competent human induced hepatocytes (hiHeps), providing an effective model for studying the establishment of hepatocyte-specific GRNs. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to explore the cell-fate transition and the establishment of hepatocyte-specific GRNs involved in the two-step reprogramming process. Our findings revealed that the late stage of the reprogramming process mimics the natural trajectory of liver development, exhibiting similar transcriptional waves of developmental genes. CD24 and DLK1 were identified as surface markers enriching two distinct hepatic progenitor populations respectively. Lipid metabolism emerged as a key enhancer of hiHeps maturation. Furthermore, transcription factors HNF4A and HHEX were identified as pivotal gatekeepers directing cell fate decisions between hepatocytes and intestinal cells. Collectively, this study provides valuable insights into the establishment of hepatocyte-specific GRNs during hiHeps induction at single-cell resolution, facilitating more efficient production of functional hepatocytes for therapeutic applications.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sen Luo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Lee C, Kim JE, Cha YE, Moon JH, Kim ER, Chang DK, Kim YH, Hong SN. IFN-γ-Induced intestinal epithelial cell-type-specific programmed cell death: PANoptosis and its modulation in Crohn's disease. Front Immunol 2025; 16:1523984. [PMID: 40230837 PMCID: PMC11994596 DOI: 10.3389/fimmu.2025.1523984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Background Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) and is considered a Th1-mediated disease, supported by the over-expression of interferon-gamma (IFN-γ) in the intestinal lamina propria. IFN-γ has a pleiotropic effect on the intestinal epithelial cells (IECs), suggesting that IFN-γ-induced responses may differ between epithelial cell types. Methods We established human small intestinal organoids (enteroids) derived from non-IBD controls and CD patients. Using human enteroids, the major response of IECs induced by IFN-γ was evaluated, focusing on the IFN-γ-induced programmed cell death (PCD) pathway. Identified IFN-γ-induced responses were validated in surgically resected intestinal samples and publicly available single-cell RNA-sequencing datasets. Results IFN-γ stimulated programmed cell death (PCD) of IECs in both control and CD enteroids in a dose-dependent manner. Pyroptosis, apoptosis. and necroptosis were activated in enteroids, suggesting that PANoptosis was the main process of IFN-γ-induced PCD in IECs. The response to IFN-γ depends on the cell type of the IECs. IFN-γ induced depletion of enterocytes with upregulation of PANoptosis-associated genes, while leading to expansion of goblet cells without significant change in PANoptosis-associated gene expression. Individual PCD inhibitors were insufficient to block IFN-γ-induced cytotoxicity, whereas the selective JAK1 inhibitor (upadacitinib) effectively blocked IFN-γ-induced cytotoxicity and PANoptosis. Furthermore, PANoptosis was significantly activated in surgically resected tissues and in publicly available single-cell RNA-sequencing datasets of intestinal tissues from patients with CD. Conclusion IFN-γ induces PANoptosis in enterocytes, which can be treated with a selective JAK1 inhibitor in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeo-Eun Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Ran Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Cheng L, Wang Y, Guan J, Deng H. Decoding human chemical reprogramming: mechanisms and principles. Trends Biochem Sci 2025:S0968-0004(25)00053-2. [PMID: 40169299 DOI: 10.1016/j.tibs.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.
Collapse
Affiliation(s)
- Lin Cheng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanglu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jingyang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
6
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Miao X, Huang Y, Ge KX, Xu Y. Application of scRNA-seq in Dental Research: Seeking Regenerative Clues From the Structure of Tooth and Periodontium in Physical or Pathological States. FRONT BIOSCI-LANDMRK 2025; 30:26200. [PMID: 40018926 DOI: 10.31083/fbl26200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025]
Abstract
This review presents a comprehensive overview of single-cell RNA sequencing (scRNA-seq) analyses used to study tooth and periodontal tissues. The intricate cellular composition of both teeth and periodontium are revealed, leading to the identification of new cell types and tracing lineage profiles for each cell type. Herein, we summarize the progression of dental and periodontal tissue formation, tooth homeostasis, and regenerative mechanisms. scRNA-seq analyses have demonstrated that the cellular constituent ratio of dental and periodontal tissues transforms homeostasis or injury repair. Importantly, single-cell data in the diseased tissue demonstrated a change in both cell types and intercellular communication patterns compared to the normal state. These findings provide valuable insights into the underlying disease mechanisms at the cellular level in the context of single-cell vision, thereby facilitating the investigation of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Miao
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Yufen Huang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Xiao L, Huang Z, Wu Z, Yang Y, Zhang Z, Kumar M, Wu H, Mao H, Lin L, Lin R, Long J, Zeng L, Guo J, Luo R, Li Y, Zhu P, Liao B, Wang L, Liu J. Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression. Nat Commun 2024; 15:10787. [PMID: 39737935 PMCID: PMC11686038 DOI: 10.1038/s41467-024-54924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation. Here, we report that SALL4 alone, under an optimized reprogramming medium iCD4, is capable of reprogramming mouse fibroblasts into iPSCs. Mechanistically, SALL4 facilitates reprogramming by inhibiting somatic genes and activating pluripotent genes, such as Esrrb and Tfap2c. Furthermore, we demonstrate that co-overexpressing SALL4 and OCT4 synergistically enhances reprogramming efficiency. Specifically, the activation of Rsk1/Esrrb/Tfap2c by SALL4, alongside OCT4's activation of Sox2 and the suppression of Mndal by SALL4 and Sbsn by OCT4, cooperate to facilitate SALL4+OCT4-mediated reprogramming. Overall, our study not only establishes an efficient method for iPSCs induction using the SALL4 single factor but also provides insights into the synergistic effects of SALL4 and OCT4 in reprogramming.
Collapse
Grants
- This research was supported by grants from the National Key Research and Development Program of China (2018YFE0204800 [J.L.]), National Natural Science Foundation of China (U20A2013 [T.W.], 32370791 [J.L.]), Guangdong Basic and Applied Basic Research Foundation (2020A1515110122 [L.W.]), Science and Technology Projects in Guangzhou, China (Grant No.(202201010510[Z.Z])), Science and Technology Planning Project of Guangdong Province (2023B1212060050 [J.L.], 2023B1212120009 [J.L.], 2022B1212010010 [Y.L. and P.Z]), Basic Research Project of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBHBRP23-02[J.L.]), Health@InnoHK Program launched by the Innovation Technology Commission of the Hong Kong SAR, P.R. China, the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (No.GZC20232689[L.Z.].), and Grants from Guangdong Province (2024A1515013168 [B.L.], 2024ZDZX2055 [B.L.]).
Collapse
Affiliation(s)
- Lizhan Xiao
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifen Huang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zixuan Wu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongzheng Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen Zhang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Manish Kumar
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haokaifeng Wu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huiping Mao
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Runxia Lin
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingxian Long
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihua Zeng
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Guo
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Rongping Luo
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Li
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Baojian Liao
- School of Basic Medical Sciences, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luqin Wang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Jing Liu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, PR China.
| |
Collapse
|
9
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
10
|
Liu S, Ren J, Hu Y, Zhou F, Zhang L. TGFβ family signaling in human stem cell self-renewal and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:26. [PMID: 39604763 PMCID: PMC11602941 DOI: 10.1186/s13619-024-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Human stem cells are undifferentiated cells with the capacity for self-renewal and differentiation into distinct cell lineages, playing important role in the development and maintenance of diverse tissues and organs. The microenvironment of stem cell provides crucial factors and components that exert significant influence over the determination of cell fate. Among these factors, cytokines from the transforming growth factor β (TGFβ) superfamily, including TGFβ, bone morphogenic protein (BMP), Activin and Nodal, have been identified as important regulators governing stem cell maintenance and differentiation. In this review, we present a comprehensive overview of the pivotal roles played by TGFβ superfamily signaling in governing human embryonic stem cells, somatic stem cells, induced pluripotent stem cells, and cancer stem cells. Furthermore, we summarize the latest research and advancements of TGFβ family in various cancer stem cells and stem cell-based therapy, discussing their potential clinical applications in cancer therapy and regeneration medicine.
Collapse
Affiliation(s)
- Sijia Liu
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanmei Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- International Biomed-X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Liu Y, Zhong L, Yan B, Chen Z, Yu Y, Yu D, Qin J, Wang J. A self-attention-driven deep learning framework for inference of transcriptional gene regulatory networks. Brief Bioinform 2024; 26:bbae639. [PMID: 39679439 DOI: 10.1093/bib/bbae639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The interactions between transcription factors (TFs) and the target genes could provide a basis for constructing gene regulatory networks (GRNs) for mechanistic understanding of various biological complex processes. From gene expression data, particularly single-cell transcriptomic data containing rich cell-to-cell variations, it is highly desirable to infer TF-gene interactions (TGIs) using deep learning technologies. Numerous models or software including deep learning-based algorithms have been designed to identify transcriptional regulatory relationships between TFs and the downstream genes. However, these methods do not significantly improve predictions of TGIs due to some limitations regarding constructing underlying interactive structures linking regulatory components. In this study, we introduce a deep learning framework, DeepTGI, that encodes gene expression profiles from single-cell and/or bulk transcriptomic data and predicts TGIs with high accuracy. Our approach could fuse the features extracted from Auto-encoder with self-attention mechanism and other networks and could transform multihead attention modules to define representative features. By comparing it with other models or methods, DeepTGI exhibits its superiority to identify more potential TGIs and to reconstruct the GRNs and, therefore, could provide broader perspectives for discovery of more biological meaningful TGIs and for understanding transcriptional gene regulatory mechanisms.
Collapse
Affiliation(s)
- Yong Liu
- College of Electronic Information, Guangxi Minzu University, 188 East University Road, Nanning, Guangxi, 530006, China
| | - Le Zhong
- College of Electronic Information, Guangxi Minzu University, 188 East University Road, Nanning, Guangxi, 530006, China
| | - Bin Yan
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Zhuobin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 66 Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Yanjia Yu
- College of Electronic Information, Guangxi Minzu University, 188 East University Road, Nanning, Guangxi, 530006, China
| | - Dan Yu
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 66 Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
- Department of Quantitative Health Sciences, Center for Individualized Medicine, and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, United States
| |
Collapse
|
12
|
Cho B, Kim J, Kim S, An S, Hwang Y, Kim Y, Kwon D, Kim J. Epigenetic Dynamics in Reprogramming to Dopaminergic Neurons for Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403105. [PMID: 39279468 PMCID: PMC11538697 DOI: 10.1002/advs.202403105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Direct lineage reprogramming into dopaminergic (DA) neurons holds great promise for the more effective production of DA neurons, offering potential therapeutic benefits for conditions such as Parkinson's disease. However, the reprogramming pathway for fully reprogrammed DA neurons remains largely unclear, resulting in immature and dead-end states with low efficiency. In this study, using single-cell RNA sequencing, the trajectory of reprogramming DA neurons at multiple time points, identifying a continuous pathway for their reprogramming is analyzed. It is identified that intermediate cell populations are crucial for resetting host cell fate during early DA neuronal reprogramming. Further, longitudinal dissection uncovered two distinct trajectories: one leading to successful reprogramming and the other to a dead end. Notably, Arid4b, a histone modifier, as a crucial regulator at this branch point, essential for the successful trajectory and acquisition of mature dopaminergic neuronal identity is identified. Consistently, overexpressing Arid4b in the DA neuronal reprogramming process increases the yield of iDA neurons and effectively reverses the disease phenotypes observed in the PD mouse brain. Thus, gaining insights into the cellular trajectory holds significant importance for devising regenerative medicine strategies, particularly in the context of addressing neurodegenerative disorders like Parkinson's disease.
Collapse
Affiliation(s)
- Byounggook Cho
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Junyeop Kim
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Sumin Kim
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Saemin An
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Yerim Hwang
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Yunkyung Kim
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Daeyeol Kwon
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell ReprogrammingDepartment of Chemistry and Biomedical EngineeringDongguk UniversitySeoul04620Republic of Korea
| |
Collapse
|
13
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
14
|
Hu J, Yuan J, Shi Q, Guo X, Liu L, Esteban MA, Lv Y. Single-cell profiling identifies LIN28A mRNA targets in the mouse pluripotent-to-2C-like transition and somatic cell reprogramming. J Biol Chem 2024; 300:107824. [PMID: 39343008 PMCID: PMC11584578 DOI: 10.1016/j.jbc.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate totipotency, pluripotency maintenance, and induction. The intricacies of how they modulate these processes through their interaction with RNAs remain to be elucidated. Here we employed Targets of RBPs Identified By Editing (TRIBE) with single-cell resolution (scTRIBE) to profile the mRNA targets of the key pluripotency regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell embryo-like cells (2CLCs), and somatic cell reprogramming. LIN28A is known to act by controlling the maturation of the let-7 microRNA, but, in addition, it binds to multiple mRNAs and influences their stability and translation efficiency. However, the mRNA targets of LIN28A in 2CLCs and reprogramming are unclear. Through quantitative single-cell analysis of the scTRIBE dataset, we observed a marked increase in the binding of LIN28A to mRNAs of ribosome biogenesis factors and a selected group of totipotency factors in 2CLCs within ESC cultures. Our results suggest that LIN28A extends the half-life of at least some of these mRNAs, providing new insights into its role in the totipotent state. We also uncovered the distinct trajectory-specific LIN28A-mRNA networks in reprogramming, helping explain how LIN28A facilitates the mesenchymal-to-epithelial transition and pluripotency acquisition. Our study not only clarifies the multifunctional role of LIN28A in these processes but also highlights the importance of decoding RNA-protein interactions at the single-cell level.
Collapse
Affiliation(s)
- Jieyi Hu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianwen Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; BGI Research, Shenzhen, China; 3DC STAR Lab, BGI CELL, Shenzhen, China
| | - Quan Shi
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangpeng Guo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China.
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
15
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
16
|
Fansler MM, Mitschka S, Mayr C. Quantifying 3'UTR length from scRNA-seq data reveals changes independent of gene expression. Nat Commun 2024; 15:4050. [PMID: 38744866 PMCID: PMC11094166 DOI: 10.1038/s41467-024-48254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Although more than half of all genes generate transcripts that differ in 3'UTR length, current analysis pipelines only quantify the amount but not the length of mRNA transcripts. 3'UTR length is determined by 3' end cleavage sites (CS). We map CS in more than 200 primary human and mouse cell types and increase CS annotations relative to the GENCODE database by 40%. Approximately half of all CS are used in few cell types, revealing that most genes only have one or two major 3' ends. We incorporate the CS annotations into a computational pipeline, called scUTRquant, for rapid, accurate, and simultaneous quantification of gene and 3'UTR isoform expression from single-cell RNA sequencing (scRNA-seq) data. When applying scUTRquant to data from 474 cell types and 2134 perturbations, we discover extensive 3'UTR length changes across cell types that are as widespread and coordinately regulated as gene expression changes but affect mostly different genes. Our data indicate that mRNA abundance and mRNA length are two largely independent axes of gene regulation that together determine the amount and spatial organization of protein synthesis.
Collapse
Affiliation(s)
- Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Zhu F, Yan N, Lu X, Xu J, Gu H, Liang J, Cheng K, Wang X, Ma X, Ma N, Zhao X, Chen C, Nie G. Cell-Reprogramming-Inspired Dynamically Responsive Hydrogel Boosts the Induction of Pluripotency via Phase-Separated Biomolecular Condensates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211609. [PMID: 36989141 DOI: 10.1002/adma.202211609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Indexed: 05/16/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have wide applications in disease modeling, personalized medicine, and tissue engineering. The generation of iPSCs from somatic cells via transcriptional-factor- or chemical molecule-based approaches are time-consuming and inefficient. Here, a cell-reprogramming-inspired dynamically responsive hydrogel is fabricated via a synthetic-biology-based strategy. Human and mouse somatic cells (including senescent cells) are efficiently reprogrammed into iPSCs that exhibit key features of embryonic stem cells. The cell-reprogramming-responsive hydrogel possesses dynamic bioresponsiveness, and it faithfully senses metabolic remodeling and extracellular acidification during cell reprogramming, responding by changing its mechanical properties accordingly. Mechanistic study demonstrates that the autonomous change of the mechanical properties of the cell-reprogramming-responsive hydrogel elicits the formation of Yes-associated protein (YAP) biomolecular condensates with the appropriate timing during cell reprogramming, ensuring a faster and more efficient generation of iPSCs than conventional cell reprogramming approach. Taken together, this study reveals the robust induction of pluripotency by coordination of cell-reprogramming-inspired dynamically responsive hydrogel and phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Na Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaona Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| |
Collapse
|
18
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
19
|
Huyghe A, Trajkova A, Lavial F. Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol 2024; 34:255-267. [PMID: 37648593 DOI: 10.1016/j.tcb.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Aneta Trajkova
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Fabrice Lavial
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
20
|
Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, Emert B, Jiang CL, Dardani IP, Reffsin S, Arnett M, Yang W, Raj A. Retrospective identification of cell-intrinsic factors that mark pluripotency potential in rare somatic cells. Cell Syst 2024; 15:109-133.e10. [PMID: 38335955 PMCID: PMC10940218 DOI: 10.1016/j.cels.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.
Collapse
Affiliation(s)
- Naveen Jain
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie L Jiang
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian P Dardani
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles Arnett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
22
|
Long C, Li H, Liang P, Chao L, Hong Y, Zhang J, Xi Q, Zuo Y. Deciphering the decisive factors driving fate bifurcations in somatic cell reprogramming. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102044. [PMID: 37869261 PMCID: PMC10585637 DOI: 10.1016/j.omtn.2023.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Single-cell studies have demonstrated that somatic cell reprogramming is a continuous process of cell fates transition. Only partial reprogramming intermediates can overcome the molecular bottlenecks to acquire pluripotency. To decipher the underlying decisive factors driving cell fate, we identified induced pluripotent stem cells or stromal-like cells (iPSCs/SLCs) and iPSCs or trophoblast-like cells (iPSCs/TLCs) fate bifurcations by reconstructing cellular trajectory. The mesenchymal-epithelial transition and the activation of pluripotency networks are the main molecular series in successful reprogramming. Correspondingly, intermediates diverge into SLCs accompanied by the inhibition of cell cycle genes and the activation of extracellular matrix genes, whereas the TLCs fate is characterized by the up-regulation of placenta development genes. Combining putative gene regulatory networks, seven (Taf7, Ezh2, Klf2, etc.) and three key factors (Cdc5l, Klf4, and Nanog) were individually identified as drivers of the successful reprogramming by triggering downstream pluripotent networks during iPSCs/SLCs and iPSCs/TLCs fate bifurcation. Conversely, 11 factors (Cebpb, Sox4, Junb, etc.) and four factors (Gata2, Jund, Ctnnb1, etc.) drive SLCs fate and TLCs fate, respectively. Our study sheds new light on the understanding of decisive factors driving cell fate, which is helpful for improving reprogramming efficiency through manipulating cell fates to avoid alternative fates.
Collapse
Affiliation(s)
- Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lemuge Chao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yan Hong
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Junping Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
23
|
Lasry R, Maoz N, Cheng AW, Yom Tov N, Kulenkampff E, Azagury M, Yang H, Ople C, Markoulaki S, Faddah DA, Makedonski K, Orzech D, Sabag O, Jaenisch R, Buganim Y. Complex haploinsufficiency in pluripotent cells yields somatic cells with DNA methylation abnormalities and pluripotency induction defects. Stem Cell Reports 2023; 18:2174-2189. [PMID: 37832543 PMCID: PMC10679652 DOI: 10.1016/j.stemcr.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.
Collapse
Affiliation(s)
- Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noam Maoz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nataly Yom Tov
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisabeth Kulenkampff
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hui Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cora Ople
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Styliani Markoulaki
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina A Faddah
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
24
|
Park S, Lee J, Ahn KS, Shim HW, Yoon J, Hyun J, Lee JH, Jang S, Yoo KH, Jang Y, Kim T, Kim HK, Lee MR, Jang J, Shim H, Kim H. Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303395. [PMID: 37727069 PMCID: PMC10646259 DOI: 10.1002/advs.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.
Collapse
|
25
|
Nair S, Ameen M, Sundaram L, Pampari A, Schreiber J, Balsubramani A, Wang YX, Burns D, Blau HM, Karakikes I, Wang KC, Kundaje A. Transcription factor stoichiometry, motif affinity and syntax regulate single-cell chromatin dynamics during fibroblast reprogramming to pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560808. [PMID: 37873116 PMCID: PMC10592962 DOI: 10.1101/2023.10.04.560808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ectopic expression of OCT4, SOX2, KLF4 and MYC (OSKM) transforms differentiated cells into induced pluripotent stem cells. To refine our mechanistic understanding of reprogramming, especially during the early stages, we profiled chromatin accessibility and gene expression at single-cell resolution across a densely sampled time course of human fibroblast reprogramming. Using neural networks that map DNA sequence to ATAC-seq profiles at base-resolution, we annotated cell-state-specific predictive transcription factor (TF) motif syntax in regulatory elements, inferred affinity- and concentration-dependent dynamics of Tn5-bias corrected TF footprints, linked peaks to putative target genes, and elucidated rewiring of TF-to-gene cis-regulatory networks. Our models reveal that early in reprogramming, OSK, at supraphysiological concentrations, rapidly open transient regulatory elements by occupying non-canonical low-affinity binding sites. As OSK concentration falls, the accessibility of these transient elements decays as a function of motif affinity. We find that these OSK-dependent transient elements sequester the somatic TF AP-1. This redistribution is strongly associated with the silencing of fibroblast-specific genes within individual nuclei. Together, our integrated single-cell resource and models reveal insights into the cis-regulatory code of reprogramming at unprecedented resolution, connect TF stoichiometry and motif syntax to diversification of cell fate trajectories, and provide new perspectives on the dynamics and role of transient regulatory elements in somatic silencing.
Collapse
Affiliation(s)
- Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mohamed Ameen
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | | | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA, USA
| | - David Burns
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kevin C Wang
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
26
|
Han L, Song B, Zhang P, Zhong Z, Zhang Y, Bo X, Wang H, Zhang Y, Cui X, Zhou W. PC3T: a signature-driven predictor of chemical compounds for cellular transition. Commun Biol 2023; 6:989. [PMID: 37758874 PMCID: PMC10533498 DOI: 10.1038/s42003-023-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular transitions hold great promise in translational medicine research. However, therapeutic applications are limited by the low efficiency and safety concerns of using transcription factors. Small molecules provide a temporal and highly tunable approach to overcome these issues. Here, we present PC3T, a computational framework to enrich molecules that induce desired cellular transitions, and PC3T was able to consistently enrich small molecules that had been experimentally validated in both bulk and single-cell datasets. We then predicted small molecule reprogramming of fibroblasts into hepatic progenitor-like cells (HPLCs). The converted cells exhibited epithelial cell-like morphology and HPLC-like gene expression pattern. Hepatic functions were also observed, such as glycogen storage and lipid accumulation. Finally, we collected and manually curated a cell state transition resource containing 224 time-course gene expression datasets and 153 cell types. Our framework, together with the data resource, is freely available at http://pc3t.idrug.net.cn/ . We believe that PC3T is a powerful tool to promote chemical-induced cell state transitions.
Collapse
Affiliation(s)
- Lu Han
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Peilin Zhang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China
| | - Zhi Zhong
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Hongyang Wang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiuliang Cui
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
27
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
28
|
Fu X, Zhuang Q, Babarinde IA, Shi L, Ma G, Hu H, Li Y, Chen J, Xiao Z, Deng B, Sun L, Jauch R, Hutchins AP. Restricting epigenetic activity promotes the reprogramming of transformed cells to pluripotency in a line-specific manner. Cell Death Discov 2023; 9:245. [PMID: 37452056 PMCID: PMC10349098 DOI: 10.1038/s41420-023-01533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.
Collapse
Affiliation(s)
- Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang Zhuang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Lv T, Jiang S, Wang X, Hou Y. Profiling A-to-I RNA editing during mouse somatic reprogramming at the single-cell level. Heliyon 2023; 9:e18133. [PMID: 37519753 PMCID: PMC10375800 DOI: 10.1016/j.heliyon.2023.e18133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Mouse somatic cells can be reprogrammed into induced pluripotent stem cells through a highly heterogeneous process regulated by numerous biological factors, including adenosine-to-inosine (A-to-I) RNA editing. In this study, we analyzed A-to-I RNA editing sites using a single-cell RNA sequencing (scRNA-seq) dataset with high-depth and full-length coverage. Our method revealed that A-to-I RNA editing frequency varied widely at the single-cell level and underwent dynamic changes. We also found that A-to-I RNA editing level was correlated with the expression of the RNA editing enzyme ADAR1. The analysis combined with gene ontology (GO) enrichment revealed that ADAR1-dependent A-to-I editing may downregulate the expression levels of Igtp, Irgm2, Mndal, Ifi202b, and Tapbp in the early stage, to inhibit the pathways of cellular response to interferon-beta and regulation of protein complex stability to promote mesenchymal-epithelial transition (MET). Notably, we identified a negative correlation between A-to-I RNA editing frequency and the expression of certain genes, such as Nras, Ube2l6, Zfp987, and Adsl.
Collapse
Affiliation(s)
- Tianhang Lv
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Siyuan Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
30
|
Sun Y, Shim WJ, Shen S, Sinniah E, Pham D, Su Z, Mizikovsky D, White MD, Ho JK, Nguyen Q, Bodén M, Palpant N. Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity. Nucleic Acids Res 2023; 51:e62. [PMID: 37125641 PMCID: PMC10287941 DOI: 10.1093/nar/gkad307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/28/2023] [Indexed: 05/02/2023] Open
Abstract
Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.
Collapse
Affiliation(s)
- Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Duy Pham
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Jin Y, Lu Y, Lin L, Liu C, Ma X, Chen X, Zhou Z, Hu Z, Pu J, Chen G, Deng Q, Jiang L, Li Y, Zhao Y, Wang H, Fu J, Li W, Zhu S. Harnessing endogenous transcription factors directly by small molecules for chemically induced pluripotency inception. Proc Natl Acad Sci U S A 2023; 120:e2215155120. [PMID: 37192170 PMCID: PMC10214147 DOI: 10.1073/pnas.2215155120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 05/18/2023] Open
Abstract
Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming. Mechanistically, CD3254-RXRα axis can directly activate all the 11 RNA exosome component genes (Exosc1-10 and Dis3) at transcriptional level. Unexpectedly, rather than degrading mRNAs as its substrates, RNA exosome mainly modulates the degradation of transposable element (TE)-associated RNAs, particularly MMVL30, which is identified as a new barrier for cell-fate determination. In turn, MMVL30-mediated inflammation (IFN-γ and TNF-α pathways) is reduced, contributing to the promotion of successful reprogramming. Collectively, our study provides conceptual advances for translating environmental cues into pluripotency inception, particularly, identifies that CD3254-RXRα-RNA exosome axis can promote chemical reprogramming, and suggests modulation of TE-mediated inflammation via CD3254-inducible RNA exosome as important opportunities for controlling cell fates and regenerative medicine.
Collapse
Affiliation(s)
- Yan Jin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yunkun Lu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Lianyu Lin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojie Ma
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Xi Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Ziyu Zhou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Zhensheng Hu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Jiaqi Pu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Guo Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Qian Deng
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Liling Jiang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yuhan Li
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yulong Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, Zhejiang University, Hangzhou310008, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Saiyong Zhu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
32
|
Cheng Y, Fan X, Zhang J, Li Y. A scalable sparse neural network framework for rare cell type annotation of single-cell transcriptome data. Commun Biol 2023; 6:545. [PMID: 37210444 DOI: 10.1038/s42003-023-04928-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Automatic cell type annotation methods are increasingly used in single-cell RNA sequencing (scRNA-seq) analysis due to their fast and precise advantages. However, current methods often fail to account for the imbalance of scRNA-seq datasets and ignore information from smaller populations, leading to significant biological analysis errors. Here, we introduce scBalance, an integrated sparse neural network framework that incorporates adaptive weight sampling and dropout techniques for auto-annotation tasks. Using 20 scRNA-seq datasets with varying scales and degrees of imbalance, we demonstrate that scBalance outperforms current methods in both intra- and inter-dataset annotation tasks. Additionally, scBalance displays impressive scalability in identifying rare cell types in million-level datasets, as shown in the bronchoalveolar cell landscape. scBalance is also significantly faster than commonly used tools and comes in a user-friendly format, making it a superior tool for scRNA-seq analysis on the Python-based platform.
Collapse
Affiliation(s)
- Yuqi Cheng
- Department of Computer Science and Engineering (CSE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xingyu Fan
- School of Information and Software Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Jianing Zhang
- Department of Computer Science and Engineering (CSE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Yu Li
- Department of Computer Science and Engineering (CSE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
- The CUHK Shenzhen Research Institute, Hi-Tech Park, Nanshan, 518057, Shenzhen, China.
| |
Collapse
|
33
|
Panariello F, Gagliano O, Luni C, Grimaldi A, Angiolillo S, Qin W, Manfredi A, Annunziata P, Slovin S, Vaccaro L, Riccardo S, Bouche V, Dionisi M, Salvi M, Martewicz S, Hu M, Cui M, Stuart H, Laterza C, Baruzzo G, Schiebinger G, Di Camillo B, Cacchiarelli D, Elvassore N. Cellular population dynamics shape the route to human pluripotency. Nat Commun 2023; 14:2829. [PMID: 37198156 DOI: 10.1038/s41467-023-37270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of reprogramming, which acts via HGF accumulation within the confined system of microfluidics, and in conventional dishes needs to be supplied exogenously to enhance efficiency. Our data suggest that human cellular reprogramming is a transcription factor-driven process that it is deeply dependent on extracellular context and cell population determinants.
Collapse
Affiliation(s)
- Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna, Italy
| | - Antonio Grimaldi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Silvia Angiolillo
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Wei Qin
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Patrizia Annunziata
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Shaked Slovin
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic srl), Pozzuoli, Italy
| | - Valentina Bouche
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Manuela Dionisi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Marcello Salvi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Manli Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Hannah Stuart
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy.
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy.
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy.
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| |
Collapse
|
34
|
Li H, Long C, Hong Y, Luo L, Zuo Y. Characterizing Cellular Differentiation Potency and Waddington Landscape via Energy Indicator. RESEARCH (WASHINGTON, D.C.) 2023; 6:0118. [PMID: 37223479 PMCID: PMC10202187 DOI: 10.34133/research.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
The precise characterization of cellular differentiation potency remains an open question, which is fundamentally important for deciphering the dynamics mechanism related to cell fate transition. We quantitatively evaluated the differentiation potency of different stem cells based on the Hopfield neural network (HNN). The results emphasized that cellular differentiation potency can be approximated by Hopfield energy values. We then profiled the Waddington energy landscape of embryogenesis and cell reprogramming processes. The energy landscape at single-cell resolution further confirmed that cell fate decision is progressively specified in a continuous process. Moreover, the transition of cells from one steady state to another in embryogenesis and cell reprogramming processes was dynamically simulated on the energy ladder. These two processes can be metaphorized as the motion of descending and ascending ladders, respectively. We further deciphered the dynamics of the gene regulatory network (GRN) for driving cell fate transition. Our study proposes a new energy indicator to quantitatively characterize cellular differentiation potency without prior knowledge, facilitating the further exploration of the potential mechanism of cellular plasticity.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| | - Yan Hong
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| | - Liaofu Luo
- Department of Physics,
Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
35
|
Bonefas KM, Vallianatos CN, Raines B, Tronson NC, Iwase S. Sexually Dimorphic Alterations in the Transcriptome and Behavior with Loss of Histone Demethylase KDM5C. Cells 2023; 12:637. [PMID: 36831303 PMCID: PMC9954040 DOI: 10.3390/cells12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina N. Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brynne Raines
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie C. Tronson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, Emert B, Jiang CL, Dardani IP, Reffsin S, Raj A. Retrospective identification of intrinsic factors that mark pluripotency potential in rare somatic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527870. [PMID: 36798299 PMCID: PMC9934612 DOI: 10.1101/2023.02.10.527870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Pluripotency can be induced in somatic cells by the expression of the four "Yamanaka" factors OCT4, KLF4, SOX2, and MYC. However, even in homogeneous conditions, usually only a rare subset of cells admit reprogramming, and the molecular characteristics of this subset remain unknown. Here, we apply retrospective clone tracing to identify and characterize the individual human fibroblast cells that are primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis led to increased reprogramming efficiency, identifying it as a barrier to reprogramming. Changing the frequency of reprogramming by inhibiting the activity of LSD1 led to an enlarging of the pool of cells that were primed for reprogramming. Our results show that even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.
Collapse
Affiliation(s)
- Naveen Jain
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher J Cote
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie L Jiang
- Genetics and Epigenetics Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Dardani
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Durand S, Bruelle M, Bourdelais F, Bennychen B, Blin-Gonthier J, Isaac C, Huyghe A, Martel S, Seyve A, Vanbelle C, Adrait A, Couté Y, Meyronet D, Catez F, Diaz JJ, Lavial F, Ricci EP, Ducray F, Gabut M. RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells. Nat Commun 2023; 14:356. [PMID: 36690642 PMCID: PMC9870888 DOI: 10.1038/s41467-023-36037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.
Collapse
Affiliation(s)
- Sébastien Durand
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Marion Bruelle
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
| | - Fleur Bourdelais
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Inovarion, 75005, Paris, France
| | - Bigitha Bennychen
- Dept. of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Juliana Blin-Gonthier
- Laboratoire de Biologie et de Modélisation de la Cellule, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Lyon, France
| | - Caroline Isaac
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Aurélia Huyghe
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Equipe labellisée la Ligue contre le cancer, Lyon, France
| | - Sylvie Martel
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
| | - Antoine Seyve
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Neuro-oncology department, Hospices Civils de Lyon, Lyon, France
| | - Christophe Vanbelle
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
| | - Annie Adrait
- University Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - David Meyronet
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Institut de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Catez
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Fabrice Lavial
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Equipe labellisée la Ligue contre le cancer, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et de Modélisation de la Cellule, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Lyon, France
| | - François Ducray
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Neuro-oncology department, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Gabut
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France.
- Institut Convergence Plascan, Lyon, France.
| |
Collapse
|
38
|
Comparative roadmaps of reprogramming and oncogenic transformation identify Bcl11b and Atoh8 as broad regulators of cellular plasticity. Nat Cell Biol 2022; 24:1350-1363. [PMID: 36075976 PMCID: PMC9481462 DOI: 10.1038/s41556-022-00986-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/27/2022] [Indexed: 12/22/2022]
Abstract
Coordinated changes of cellular plasticity and identity are critical for pluripotent reprogramming and oncogenic transformation. However, the sequences of events that orchestrate these intermingled modifications have never been comparatively dissected. Here, we deconvolute the cellular trajectories of reprogramming (via Oct4/Sox2/Klf4/c-Myc) and transformation (via Ras/c-Myc) at the single-cell resolution and reveal how the two processes intersect before they bifurcate. This approach led us to identify the transcription factor Bcl11b as a broad-range regulator of cell fate changes, as well as a pertinent marker to capture early cellular intermediates that emerge simultaneously during reprogramming and transformation. Multiomics characterization of these intermediates unveiled a c-Myc/Atoh8/Sfrp1 regulatory axis that constrains reprogramming, transformation and transdifferentiation. Mechanistically, we found that Atoh8 restrains cellular plasticity, independent of cellular identity, by binding a specific enhancer network. This study provides insights into the partitioned control of cellular plasticity and identity for both regenerative and cancer biology. Huyghe, Furlan et al. compare pluripotent reprogramming with oncogenic transformation and identify Bcl11b and Atoh8 as regulators of cellular plasticity in both processes, thus offering a unifying theory on the factors constraining cell fate changes.
Collapse
|
39
|
Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Reports 2022; 17:1799-1809. [PMID: 35947961 PMCID: PMC9391510 DOI: 10.1016/j.stemcr.2022.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The METTL3-METTL14 complex, the “writer” of N6-methyladenosine (m6A), plays an important role in many biological processes. Previous studies have shown that Mettl3 overexpression can increase the level of m6A and promote somatic cell reprogramming. Here, we demonstrate that Mettl14, another component of the methyltransferase complex, can significantly enhance the generation of induced pluripotent stem cells (iPSCs) in an m6A-independent manner. In cooperation with Oct4, Sox2, Klf4, and c-Myc, overexpressed Mettl14 transiently promoted senescence-associated secretory phenotype (SASP) gene expression in non-reprogrammed cells in the late stage of reprogramming. Subsequently, we demonstrated that interleukin-6 (IL-6), a component of the SASP, significantly enhanced somatic cell reprogramming. In contrast, blocking the SASP using a senolytic agent or a nuclear factor κB (NF-κB) inhibitor impaired the effect of Mettl14 on reprogramming. Our results highlight the m6A-independent function of Mettl14 in reprogramming and provide new insight into the interplay between senescence and reprogramming in vitro. Mettl14 can facilitate somatic cell reprogramming in an m6A-independent manner Mettl14 transcriptionally drives the senescence-associated secretory phenotype (SASP) Mettl14-driven SASPs are mainly secreted from non-reprogramming cells Blocking of SASP impairs the effect of Mettl14 on reprogramming
Collapse
|
40
|
Roux AE, Zhang C, Paw J, Zavala-Solorio J, Malahias E, Vijay T, Kolumam G, Kenyon C, Kimmel JC. Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst 2022; 13:574-587.e11. [PMID: 35690067 DOI: 10.1016/j.cels.2022.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/15/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Partial pluripotent reprogramming can reverse features of aging in mammalian cells, but the impact on somatic identity and the necessity of individual reprogramming factors remain unknown. Here, we used single-cell genomics to map the identity trajectory induced by partial reprogramming in multiple murine cell types and dissected the influence of each factor by screening all Yamanaka Factor subsets with pooled single-cell screens. We found that partial reprogramming restored youthful expression in adipogenic and mesenchymal stem cells but also temporarily suppressed somatic identity programs. Our pooled screens revealed that many subsets of the Yamanaka Factors both restore youthful expression and suppress somatic identity, but these effects were not tightly entangled. We also found that a multipotent reprogramming strategy inspired by amphibian regeneration restored youthful expression in myogenic cells. Our results suggest that various sets of reprogramming factors can restore youthful expression with varying degrees of somatic identity suppression. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Antoine E Roux
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Chunlian Zhang
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Jonathan Paw
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - José Zavala-Solorio
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Evangelia Malahias
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Twaritha Vijay
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Ganesh Kolumam
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Jacob C Kimmel
- Calico Life Sciences, LLC, 1170 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
He J, Lin L, Chen J. Practical bioinformatics pipelines for single-cell RNA-seq data analysis. BIOPHYSICS REPORTS 2022; 8:158-169. [PMID: 37288243 PMCID: PMC10189648 DOI: 10.52601/bpr.2022.210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/01/2022] [Indexed: 11/05/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool to explore cells. With an increasing number of scRNA-seq data analysis tools that have been developed, it is challenging for users to choose and compare their performance. Here, we present an overview of the workflow for computational analysis of scRNA-seq data. We detail the steps of a typical scRNA-seq analysis, including experimental design, pre-processing and quality control, feature selection, dimensionality reduction, cell clustering and annotation, and downstream analysis including batch correction, trajectory inference and cell-cell communication. We provide guidelines according to our best practice. This review will be helpful for the experimentalists interested in analyzing their data, and will aid the users seeking to update their analysis pipelines.
Collapse
Affiliation(s)
- Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Lihui Lin
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
42
|
Comparative parallel multi-omics analysis during the induction of pluripotent and trophectoderm states. Nat Commun 2022; 13:3475. [PMID: 35715410 PMCID: PMC9205865 DOI: 10.1038/s41467-022-31131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Following fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.
Collapse
|
43
|
Sun J, Wu G, Pastor F, Rahman N, Wang WH, Zhang Z, Merle P, Hui L, Salvetti A, Durantel D, Yang D, Andrisani O. RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes. Gut 2022; 71:991-1005. [PMID: 34021034 PMCID: PMC8606016 DOI: 10.1136/gutjnl-2020-323126] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/09/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE RNA helicase DDX5 is downregulated during HBV replication and poor prognosis HBV-related hepatocellular carcinoma (HCC). The objective of this study is to investigate the role of DDX5 in interferon (IFN) signalling. We provide evidence of a novel mechanism involving DDX5 that enables translation of transcription factor STAT1 mediating the IFN response. DESIGN AND RESULTS Molecular, pharmacological and biophysical assays were used together with cellular models of HBV replication, HCC cell lines and liver tumours. We demonstrate that DDX5 regulates STAT1 mRNA translation by resolving a G-quadruplex (rG4) RNA structure, proximal to the 5' end of STAT1 5'UTR. We employed luciferase reporter assays comparing wild type (WT) versus mutant rG4 sequence, rG4-stabilising compounds, CRISPR/Cas9 editing of the STAT1-rG4 sequence and circular dichroism determination of the rG4 structure. STAT1-rG4 edited cell lines were resistant to the effect of rG4-stabilising compounds in response to IFN-α, while HCC cell lines expressing low DDX5 exhibited reduced IFN response. Ribonucleoprotein and electrophoretic mobility assays demonstrated direct and selective binding of RNA helicase-active DDX5 to the WT STAT1-rG4 sequence. Immunohistochemistry of normal liver and liver tumours demonstrated that absence of DDX5 corresponded to absence of STAT1. Significantly, knockdown of DDX5 in HBV infected HepaRG cells reduced the anti-viral effect of IFN-α. CONCLUSION RNA helicase DDX5 resolves a G-quadruplex structure in 5'UTR of STAT1 mRNA, enabling STAT1 translation. We propose that DDX5 is a key regulator of the dynamic range of IFN response during innate immunity and adjuvant IFN-α therapy.
Collapse
Affiliation(s)
- Jiazeng Sun
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Guanhui Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111-CNRS UMR5308, Lyon, France
| | - Naimur Rahman
- Basic Medical Sciences, Purdue University System, West Lafayette, Indiana, USA
| | - Wen-Hung Wang
- Gene Editing Core, Bindley Biosciences Center, Purdue University, West Lafayette, Indiana, USA
| | - Zhengtao Zhang
- Department of Biochemistry and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Philippe Merle
- Service d'Hépatologie, Hôpital de La Croix-Rousse Centre Livet, Lyon, Rhône-Alpes, France
| | - Lijian Hui
- Department of Biochemistry and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111-CNRS UMR5308, Lyon, France
| | - David Durantel
- INSERM U1111-CNRS UMR5308 International Center for Infectiology Research (CIRI), Lyon, France
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
44
|
Hörnblad A, Remeseiro S. Epigenetics, Enhancer Function and 3D Chromatin Organization in Reprogramming to Pluripotency. Cells 2022; 11:cells11091404. [PMID: 35563711 PMCID: PMC9105757 DOI: 10.3390/cells11091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Genome architecture, epigenetics and enhancer function control the fate and identity of cells. Reprogramming to induced pluripotent stem cells (iPSCs) changes the transcriptional profile and chromatin landscape of the starting somatic cell to that of the pluripotent cell in a stepwise manner. Changes in the regulatory networks are tightly regulated during normal embryonic development to determine cell fate, and similarly need to function in cell fate control during reprogramming. Switching off the somatic program and turning on the pluripotent program involves a dynamic reorganization of the epigenetic landscape, enhancer function, chromatin accessibility and 3D chromatin topology. Within this context, we will review here the current knowledge on the processes that control the establishment and maintenance of pluripotency during somatic cell reprogramming.
Collapse
Affiliation(s)
- Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (A.H.); (S.R.)
| |
Collapse
|
45
|
Bae J, Kim JE, Perumalsamy H, Park S, Kim Y, Jun DW, Yoon TH. Mass Cytometry Study on Hepatic Fibrosis and Its Drug-Induced Recovery Using Mouse Peripheral Blood Mononuclear Cells. Front Immunol 2022; 13:814030. [PMID: 35222390 PMCID: PMC8863676 DOI: 10.3389/fimmu.2022.814030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
The number of patients with liver diseases has increased significantly with the progress of global industrialization. Hepatic fibrosis, one of the most common liver diseases diagnosed in many developed countries, occurs in response to chronic liver injury and is primarily driven by the development of inflammation. Earlier immunological studies have been focused on the importance of the innate immune response in the pathophysiology of steatohepatitis and fibrosis, but recently, it has also been reported that adaptive immunity, particularly B cells, plays an essential role in hepatic inflammation and fibrosis. However, despite recent data showing the importance of adaptive immunity, relatively little is known about the role of B cells in the pathogenesis of steatohepatitis fibrosis. In this study, a single-cell-based, high-dimensional mass cytometric investigation of the peripheral blood mononuclear cells collected from mice belonging to three groups [normal chow (NC), thioacetamide (TAA), and 11beta-HSD inhibitor drug] was conducted to further understand the pathogenesis of liver fibrosis through reliable noninvasive biomarkers. Firstly, major immune cell types and their population changes were qualitatively analyzed using UMAP dimensionality reduction and two-dimensional visualization technique combined with a conventional manual gating strategy. The population of B cells displayed a twofold increase in the TAA group compared to that in the NC group, which was recovered slightly after treatment with the 11beta-HSD inhibitor drug. In contrast, the populations of NK cells, effector CD4+ T cells, and memory CD8+ T cells were significantly reduced in the TAA group compared with those in the NC group. Further identification and quantification of the major immune cell types and their subsets were conducted based on automated clustering approaches [PhenoGraph (PG) and FlowSOM]. The B-cell subset corresponding to PhenoGraph cluster PG#2 (CD62LhighCD44highLy6chigh B cells) and PG#3 (CD62LhighCD44highLy6clow B cell) appears to play a major role in both the development of hepatic fibrosis and recovery via treatment, whereas PG#1 (CD62LlowCD44highLy6clow B cell) seems to play a dominant role in the development of hepatic fibrosis. These findings provide insights into the roles of cellular subsets of B cells during the progression of, and recovery from, hepatic fibrosis.
Collapse
Affiliation(s)
- Jiwon Bae
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea
| | - Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Clinical Pharmacology and Therapeutics, Hanyang University Hospital, Seoul, South Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea.,Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul, South Korea.,Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Convergence of Basic Science, Hanyang University, Seoul, South Korea.,Institute of Next Generation Material Design, Hanyang University, Seoul, South Korea.,Yoon Idea Lab. Co. Ltd, Seoul, South Korea
| |
Collapse
|
46
|
Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, Li S, Zheng D, Cui Y, Wu Q, Long Y, Yao Y, Wei Z, Hong Q, Wu Y, Mai Y, Gou S, Li X, Weinkove R, Norton S, Luo W, Feng W, Zhou H, Liu Q, Chen J, Lai L, Chen X, Pei D, Graf T, Liu X, Li Y, Liu P, Zhang Z, Li P. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res 2022; 10:13. [PMID: 35331335 PMCID: PMC8943975 DOI: 10.1186/s40364-022-00358-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) is a particularly promising area of cancer immunotherapy, engineered T and NK cells that express chimeric antigen receptors (CAR) are being explored for treating hematopoietic malignancies but exhibit limited clinical benefits for solid tumour patients, successful cellular immunotherapy of solid tumors demands new strategies. METHODS Inactivation of BCL11B were performed by CRISPR/Cas9 in human T cells. Immunophenotypic and transcriptional profiles of sgBCL11B T cells were characterized by cytometer and transcriptomics, respectively. sgBCL11B T cells are further engineered with chimeric antigen receptor. Anti-tumor activity of ITNK or CAR-ITNK cells were evaluated in preclinical and clinical studies. RESULTS We report that inactivation of BCL11B in human CD8+ and CD4+ T cells induced their reprogramming into induced T-to-natural killer cells (ITNKs). ITNKs contained a diverse TCR repertoire; downregulated T cell-associated genes such as TCF7 and LEF1; and expressed high levels of NK cell lineage-associated genes. ITNKs and chimeric antigen receptor (CAR)-transduced ITNKs selectively lysed a variety of cancer cells in culture and suppressed the growth of solid tumors in xenograft models. In a preliminary clinical study, autologous administration of ITNKs in patients with advanced solid tumors was well tolerated, and tumor stabilization was seen in six out nine patients, with one partial remission. CONCLUSIONS The novel ITNKs thus may be a promising novel cell source for cancer immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT03882840 . Registered 20 March 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Zhiwu Jiang
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuou Tang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Liao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingxuan Shi
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanglin Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhihui Wei
- Guangdong Zhaotai InVivo Biomedicine Co. Ltd., Guangzhou, China
| | - Qilan Hong
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yi Wu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuanbang Mai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Guangzhou, China
| | - Jiekai Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Thomas Graf
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xingguo Liu
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
| | - Zhenfeng Zhang
- Department of Radiology; Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment; Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
| |
Collapse
|
47
|
Borisova E, Nishimura K, An Y, Takami M, Li J, Song D, Matsuo-Takasaki M, Luijkx D, Aizawa S, Kuno A, Sugihara E, Sato TA, Yumoto F, Terada T, Hisatake K, Hayashi Y. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. iScience 2022; 25:103525. [PMID: 35106457 PMCID: PMC8786646 DOI: 10.1016/j.isci.2021.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors. KLF4 L507A variant accelerates and stabilizes reprogramming to pluripotency KLF4 L507A has distinctive features of transcriptional binding and activation KLF4 L507A may acquire a unique conformation with additional DNA interaction Smaller amino acid residues in L507 position cause higher reprogramming efficiency
Collapse
Affiliation(s)
- Evgeniia Borisova
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Miho Takami
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jingyue Li
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Dorian Luijkx
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiho Aizawa
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan.,The Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan
| | - Fumiaki Yumoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization in Tsukuba, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
48
|
Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, Yang R, Chen S, Zhou L, Zhang D, Yang Q, Song J, Tang C, Zhang Y, Lin JW, Cheng L, Chen L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e66. [PMID: 35288753 PMCID: PMC9226526 DOI: 10.1093/nar/gkac167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative polyadenylation increases transcript diversities at the 3’ end, regulating biological processes including cell differentiation, embryonic development and cancer progression. Here, we present a Bayesian method SCAPE, which enables de novo identification and quantification of polyadenylation (pA) sites at single-cell level by utilizing insert size information. We demonstrated its accuracy and robustness and identified 31 558 sites from 36 mouse organs, 43.8% (13 807) of which were novel. We illustrated that APA isoforms were associated with miRNAs binding and regulated in tissue-, cell type-and tumor-specific manners where no difference was found at gene expression level, providing an extra layer of information for cell clustering. Furthermore, we found genome-wide dynamic changes of APA usage during erythropoiesis and induced pluripotent stem cell (iPSC) differentiation, suggesting APA contributes to the functional flexibility and diversity of single cells. We expect SCAPE to aid the analyses of cellular dynamics and diversities in health and disease.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuran Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruirui Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shasha Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lifang Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-wen Lin
- To whom correspondence should be addressed. Tel: +86 028 8546 8389;
| | - Lu Cheng
- Correspondence may also be addressed to Lu Cheng.
| | - Lu Chen
- Correspondence may also be addressed to Lu Chen.
| |
Collapse
|
49
|
Talon I, Janiszewski A, Theeuwes B, Lefevre T, Song J, Bervoets G, Vanheer L, De Geest N, Poovathingal S, Allsop R, Marine JC, Rambow F, Voet T, Pasque V. Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biol 2021; 22:302. [PMID: 34724962 PMCID: PMC8558763 DOI: 10.1186/s13059-021-02518-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Precise gene dosage of the X chromosomes is critical for normal development and cellular function. In mice, XX female somatic cells show transcriptional X chromosome upregulation of their single active X chromosome, while the other X chromosome is inactive. Moreover, the inactive X chromosome is reactivated during development in the inner cell mass and in germ cells through X chromosome reactivation, which can be studied in vitro by reprogramming of somatic cells to pluripotency. How chromatin processes and gene regulatory networks evolved to regulate X chromosome dosage in the somatic state and during X chromosome reactivation remains unclear. RESULTS Using genome-wide approaches, allele-specific ATAC-seq and single-cell RNA-seq, in female embryonic fibroblasts and during reprogramming to pluripotency, we show that chromatin accessibility on the upregulated mammalian active X chromosome is increased compared to autosomes. We further show that increased accessibility on the active X chromosome is erased by reprogramming, accompanied by erasure of transcriptional X chromosome upregulation and the loss of increased transcriptional burst frequency. In addition, we characterize gene regulatory networks during reprogramming and X chromosome reactivation, revealing changes in regulatory states. Our data show that ZFP42/REX1, a pluripotency-associated gene that evolved specifically in placental mammals, targets multiple X-linked genes, suggesting an evolutionary link between ZFP42/REX1, X chromosome reactivation, and pluripotency. CONCLUSIONS Our data reveal the existence of intrinsic compensatory mechanisms that involve modulation of chromatin accessibility to counteract X-to-Autosome gene dosage imbalances caused by evolutionary or in vitro X chromosome loss and X chromosome inactivation in mammalian cells.
Collapse
Affiliation(s)
- Irene Talon
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Bart Theeuwes
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Thomas Lefevre
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Juan Song
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Vanheer
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Suresh Poovathingal
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ryan Allsop
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Jean-Christophe Marine
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| |
Collapse
|
50
|
Liu X, Zhu R, Luo Y, Wang S, Zhao Y, Qiu Z, Zhang Y, Liu X, Yao X, Li X, Li W. Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 2021; 54:2305-2320.e11. [PMID: 34508661 DOI: 10.1016/j.immuni.2021.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Langerhans cells (LCs) play a pivotal role in skin homeostasis, and the heterogeneity of LCs has long been considered. In this study, we have identified two steady-state (LC1 and LC2) and two activated LC subsets in the epidermis of human skin and in LCs derived from CD34+ hemopoietic stem cells (HSC-LCs) by utilizing single-cell RNA sequencing and mass cytometry. Analysis of HSC-LCs at multiple time-points during differentiation revealed that EGR1 and Notch signaling were among the top pathways regulating the bifurcation of LC1 and LC2. LC1 were characterized as classical LCs, mainly related to innate immunity and antigen processing. LC2 were similar to monocytes or myeloid dendritic cells, involving in immune responses and leukocyte activation. LC1 remained stable under inflammatory microenvironment, whereas LC2 were prone to being activated and demonstrated elevated expression of immuno-suppressive molecules. We revealed distinct human LC subsets that require different developmental regulation and orchestrate reciprocal functions.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiao Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518052, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas 77030, USA.
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|