1
|
Li W, Cao D, Shi M, Yang X. BIRC3 RNA Editing Modulates Lipopolysaccharide-Induced Liver Inflammation: Potential Implications for Animal Health. Int J Mol Sci 2025; 26:2941. [PMID: 40243536 PMCID: PMC11988743 DOI: 10.3390/ijms26072941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Animals and humans are frequently infected by bacteria or exposed to bacterial derivatives in contaminated food, drinking water, or air, which significantly impacts their health. Among these bacterial sources, LPS (lipopolysaccharide) is the primary culprit. While it is widely known that LPS can cause liver inflammation and damage in animals, few studies have investigated this mechanism from the perspective of RNA editing. In this study, we administered LPS to mice via gavage to induce a liver injury model. We then used RNA editing omics approaches (RE-seq) to analyze RNA editing events potentially leading to liver inflammation following LPS administration, aiming to reveal the crucial role of RNA editing in LPS-induced processes. At the RNA editing level, we observed significant differences between the LPS group and the control (CON) group. Specifically, we identified 354 differentially edited genes, with 192 upregulated and 162 downregulated. These differentially edited genes were significantly enriched in pathways related to apoptosis, mTOR signaling, oxidative stress, and Nf-Kappa B signaling. By further integrating gene expression profiles and using a nine-quadrant analysis, we identified an important gene, Birc3, which showed significantly higher editing and expression levels in the LPS group. This gene is directly linked to liver inflammation and damage. The RNA editing of Birc3 represents a significant potential mechanism underlying LPS-induced liver damage, providing a novel approach for addressing animal and human health issues.
Collapse
Affiliation(s)
| | | | | | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (D.C.)
| |
Collapse
|
2
|
Foyt D, Brown D, Zhou S, Huang B. HybriSeq: Probe-based Device-free Single-cell RNA Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559406. [PMID: 37808850 PMCID: PMC10557710 DOI: 10.1101/2023.09.27.559406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
We have developed the HybriSeq method for single-cell RNA profiling, which utilizes in situ hybridization of multiple probes for targeted transcripts, followed by split-pool barcoding and sequencing analysis of the probes. We have shown that HybriSeq can achieve high sensitivity for RNA detection with multiple probes and profile differential splicing. The utility of HybriSeq is demonstrated in characterizing cell-to-cell heterogeneities of a panel of 95 cell-cycle-related genes and the detection of misannotated transcripts.
Collapse
Affiliation(s)
- Daniel Foyt
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Shuqin Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94143, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94143, United States of America
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California, 94158, United States of America
| |
Collapse
|
3
|
Fansler MM, Mitschka S, Mayr C. Quantifying 3'UTR length from scRNA-seq data reveals changes independent of gene expression. Nat Commun 2024; 15:4050. [PMID: 38744866 PMCID: PMC11094166 DOI: 10.1038/s41467-024-48254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Although more than half of all genes generate transcripts that differ in 3'UTR length, current analysis pipelines only quantify the amount but not the length of mRNA transcripts. 3'UTR length is determined by 3' end cleavage sites (CS). We map CS in more than 200 primary human and mouse cell types and increase CS annotations relative to the GENCODE database by 40%. Approximately half of all CS are used in few cell types, revealing that most genes only have one or two major 3' ends. We incorporate the CS annotations into a computational pipeline, called scUTRquant, for rapid, accurate, and simultaneous quantification of gene and 3'UTR isoform expression from single-cell RNA sequencing (scRNA-seq) data. When applying scUTRquant to data from 474 cell types and 2134 perturbations, we discover extensive 3'UTR length changes across cell types that are as widespread and coordinately regulated as gene expression changes but affect mostly different genes. Our data indicate that mRNA abundance and mRNA length are two largely independent axes of gene regulation that together determine the amount and spatial organization of protein synthesis.
Collapse
Affiliation(s)
- Mervin M Fansler
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Chen HH, Yu HI, Chang JJS, Li CW, Yang MH, Hung MC, Tarn WY. DDX3 regulates cancer immune surveillance via 3' UTR-mediated cell-surface expression of PD-L1. Cell Rep 2024; 43:113937. [PMID: 38489268 DOI: 10.1016/j.celrep.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Programmed death-1 (PD-1)/PD ligand-1 (PD-L1)-mediated immune escape contributes to cancer development and has been targeted as an anti-cancer strategy. Here, we show that inhibition of the RNA helicase DDX3 increased CD8+ T cell infiltration in syngeneic oral squamous cell carcinoma tumors. DDX3 knockdown compromised interferon-γ-induced PD-L1 expression and, in particular, reduced the level of cell-surface PD-L1. DDX3 promoted surface PD-L1 expression by recruiting the adaptor protein 2 (AP2) complex to the 3' UTR of PD-L1 mRNA. DDX3 depletion or 3' UTR truncation increased the binding of the coatomer protein complexes to PD-L1, leading to its intracellular accumulation. Therefore, this 3' UTR-dependent mechanism may counteract cellular negative effects on surface trafficking of PD-L1. Finally, pharmaceutic disruption of DDX3's interaction with AP2 reduced surface PD-L1 expression, supporting that the DDX3-AP2 pathway routes PD-L1 to the cell surface. Targeting DDX3 to modulate surface trafficking of immune checkpoint proteins may provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chao-Tung University, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Ritmeester-Loy SA, Draper IH, Bueter EC, Lautz JD, Zhang-Wong Y, Gustafson JA, Wilson AL, Lin C, Gafken PR, Jensen MC, Orentas R, Smith SEP. Differential protein-protein interactions underlie signaling mediated by the TCR and a 4-1BB domain-containing CAR. Sci Signal 2024; 17:eadd4671. [PMID: 38442200 PMCID: PMC10986860 DOI: 10.1126/scisignal.add4671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/09/2024] [Indexed: 03/07/2024]
Abstract
Cells rely on activity-dependent protein-protein interactions to convey biological signals. For chimeric antigen receptor (CAR) T cells containing a 4-1BB costimulatory domain, receptor engagement is thought to stimulate the formation of protein complexes similar to those stimulated by T cell receptor (TCR)-mediated signaling, but the number and type of protein interaction-mediating binding domains differ between CARs and TCRs. Here, we performed coimmunoprecipitation mass spectrometry analysis of a second-generation, CD19-directed 4-1BB:ζ CAR (referred to as bbζCAR) and identified 128 proteins that increased their coassociation after target engagement. We compared activity-induced TCR and CAR signalosomes by quantitative multiplex coimmunoprecipitation and showed that bbζCAR engagement led to the activation of two modules of protein interactions, one similar to TCR signaling that was more weakly engaged by bbζCAR as compared with the TCR and one composed of TRAF signaling complexes that was not engaged by the TCR. Batch-to-batch and interindividual variations in production of the cytokine IL-2 correlated with differences in the magnitude of protein network activation. Future CAR T cell manufacturing protocols could measure, and eventually control, biological variation by monitoring these signalosome activation markers.
Collapse
Affiliation(s)
- Samuel A. Ritmeester-Loy
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Isabella H. Draper
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Eric C. Bueter
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yue Zhang-Wong
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Joshua A. Gustafson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Ashley L. Wilson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Chenwei Lin
- Proteomics and Metabolomics Facility, Fred Hutchinson Cancer Center, Seattle, WA 98101, USA
| | - Philip R. Gafken
- Proteomics and Metabolomics Facility, Fred Hutchinson Cancer Center, Seattle, WA 98101, USA
| | - Michael C. Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Seattle Children’s Therapeutics, Seattle Children’s Research Institute, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Rimas Orentas
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Stephen E. P. Smith
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
6
|
Ghosh S, Hom Choudhury S, Mukherjee K, Bhattacharyya SN. HuR-miRNA complex activates RAS GTPase RalA to facilitate endosome targeting and extracellular export of miRNAs. J Biol Chem 2024; 300:105750. [PMID: 38360271 PMCID: PMC10956062 DOI: 10.1016/j.jbc.2024.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.
Collapse
Affiliation(s)
- Syamantak Ghosh
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sourav Hom Choudhury
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| |
Collapse
|
7
|
Horste EL, Fansler MM, Cai T, Chen X, Mitschka S, Zhen G, Lee FCY, Ule J, Mayr C. Subcytoplasmic location of translation controls protein output. Mol Cell 2023; 83:4509-4523.e11. [PMID: 38134885 PMCID: PMC11146010 DOI: 10.1016/j.molcel.2023.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.
Collapse
Affiliation(s)
- Ellen L Horste
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA
| | - Ting Cai
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gang Zhen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Flora C Y Lee
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jernej Ule
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christine Mayr
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA.
| |
Collapse
|
8
|
Marcotegui N, Romero-Murillo S, Marco-Sanz J, Peris I, Berrozpe BS, Vicente C, Odero MD, Arriazu E. Set Protein Is Involved in FLT3 Membrane Trafficking. Cancers (Basel) 2023; 15:cancers15082233. [PMID: 37190162 DOI: 10.3390/cancers15082233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
The in-frame internal tandem duplication (ITD) of the FLT3 gene is an important negative prognostic factor in acute myeloid leukemia (AML). FLT3-ITD is constitutive active and partially retained in the endoplasmic reticulum (ER). Recent reports show that 3'UTRs function as scaffolds that can regulate the localization of plasma membrane proteins by recruiting the HuR-interacting protein SET to the site of translation. Therefore, we hypothesized that SET could mediate the FLT3 membrane location and that the FLT3-ITD mutation could somehow disrupt the model, impairing its membrane translocation. Immunofluorescence and immunoprecipitation assays demonstrated that SET and FLT3 co-localize and interact in FLT3-WT cells but hardly in FLT3-ITD. SET/FLT3 interaction occurs before FLT3 glycosylation. Furthermore, RNA immunoprecipitation in FLT3-WT cells confirmed that this interaction occurs through the binding of HuR to the 3'UTR of FLT3. HuR inhibition and SET nuclear retention reduced FLT3 in the membrane of FLT3-WT cells, indicating that both proteins are involved in FLT3 membrane trafficking. Interestingly, the FLT3 inhibitor midostaurin increases FLT3 in the membrane and SET/FLT3 binding. Therefore, our results show that SET is involved in the transport of FLT3-WT to the membrane; however, SET barely binds FLT3 in FLT3-ITD cells, contributing to its retention in the ER.
Collapse
Affiliation(s)
- Nerea Marcotegui
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Javier Marco-Sanz
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Irene Peris
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Blanca S Berrozpe
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - María D Odero
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Hilgers V. Regulation of neuronal RNA signatures by ELAV/Hu proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1733. [PMID: 35429136 DOI: 10.1002/wrna.1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding proteins encoded by the highly conserved elav/Hu gene family, found in all metazoans, regulate the expression of a wide range of genes, at both the co-transcriptional and posttranscriptional level. Nervous-system-specific ELAV/Hu proteins are prominent for their essential role in neuron differentiation, and mutations have been associated with human neurodevelopmental and neurodegenerative diseases. Drosophila ELAV, the founding member of the protein family, mediates the synthesis of neuronal RNA signatures by promoting alternative splicing and alternative polyadenylation of hundreds of genes. The recent identification of ELAV's direct RNA targets revealed the protein's central role in shaping the neuronal transcriptome, and highlighted the importance of neuronal transcript signatures for neuron maintenance and organism survival. Animals have evolved multiple cellular mechanisms to ensure robustness of ELAV/Hu function. In Drosophila, elav autoregulates in a 3'UTR-dependent manner to maintain optimal protein levels. A complete absence of ELAV causes the activation and nuclear localization of the normally cytoplasmic paralogue FNE, in a process termed EXon-Activated functional Rescue (EXAR). Other species, including mammals, seem to utilize different strategies, such as protein redundancy, to maintain ELAV protein function and effectively safeguard the identity of the neuronal transcriptome. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
10
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
12
|
A Degradation Motif in STAU1 Defines a Novel Family of Proteins Involved in Inflammation. Int J Mol Sci 2022; 23:ijms231911588. [PMID: 36232890 PMCID: PMC9569955 DOI: 10.3390/ijms231911588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer development is regulated by inflammation. Staufen1 (STAU1) is an RNA-binding protein whose expression level is critical in cancer cells as it is related to cell proliferation or cell death. STAU1 protein levels are downregulated during mitosis due to its degradation by the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). In this paper, we map the molecular determinant involved in STAU1 degradation to amino acids 38-50, and by alanine scanning, we shorten the motif to F39PxPxxLxxxxL50 (FPL-motif). Mutation of the FPL-motif prevents STAU1 degradation by APC/C. Interestingly, a search in databases reveals that the FPL-motif is shared by 15 additional proteins, most of them being involved in inflammation. We show that one of these proteins, MAP4K1, is indeed degraded via the FPL-motif; however, it is not a target of APC/C. Using proximity labeling with STAU1, we identify TRIM25, an E3 ubiquitin ligase involved in the innate immune response and interferon production, as responsible for STAU1 and MAP4K1 degradation, dependent on the FPL-motif. These results are consistent with previous studies that linked STAU1 to cancer-induced inflammation and identified a novel degradation motif that likely coordinates a novel family of proteins involved in inflammation. Data are available via ProteomeXchange with the identifier PXD036675.
Collapse
|
13
|
Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, Desi N, Subramaniam N, Siemens A, Kinanti T, Ong S, Sanchez-Mejias A, Ly PT, An O, Sundar R, Fan X, Wang S, Siew BE, Lee KC, Chong CS, Lieske B, Cheong WK, Goh Y, Fam WN, Ooi MG, Koh BTH, Iyer SG, Ling WH, Chen J, Yoong BK, Chanwat R, Bonney GK, Goh BKP, Zhai W, Fullwood MJ, Wang W, Tan KK, Chng WJ, Dan YY, Pitt JJ, Roca X, Guccione E, Vardy LA, Chen L, Gao X, Chow PKH, Yang H, Tay Y. Pan-cancer pervasive upregulation of 3' UTR splicing drives tumourigenesis. Nat Cell Biol 2022; 24:928-939. [PMID: 35618746 PMCID: PMC9203280 DOI: 10.1038/s41556-022-00913-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
Abstract
Most mammalian genes generate messenger RNAs with variable untranslated regions (UTRs) that are important post-transcriptional regulators. In cancer, shortening at 3' UTR ends via alternative polyadenylation can activate oncogenes. However, internal 3' UTR splicing remains poorly understood as splicing studies have traditionally focused on protein-coding alterations. Here we systematically map the pan-cancer landscape of 3' UTR splicing and present this in SpUR ( http://www.cbrc.kaust.edu.sa/spur/home/ ). 3' UTR splicing is widespread, upregulated in cancers, correlated with poor prognosis and more prevalent in oncogenes. We show that antisense oligonucleotide-mediated inhibition of 3' UTR splicing efficiently reduces oncogene expression and impedes tumour progression. Notably, CTNNB1 3' UTR splicing is the most consistently dysregulated event across cancers. We validate its upregulation in hepatocellular carcinoma and colon adenocarcinoma, and show that the spliced 3' UTR variant is the predominant contributor to its oncogenic functions. Overall, our study highlights the importance of 3' UTR splicing in cancer and may launch new avenues for RNA-based anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Adil Salhi
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhi Hao Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, USA
| | - Chun You Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ng Desi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nagavidya Subramaniam
- A*STAR Skin Research Labs and Skin Research Institute of Singapore, A*STAR, Immunos, Singapore, Singapore
| | - Angela Siemens
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tyas Kinanti
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shane Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Avencia Sanchez-Mejias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Integra Therapeutics S.L., Barcelona, Spain
| | - Phuong Thao Ly
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kuok Chung Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Choon Seng Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Yufen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee Nih Fam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Melissa G Ooi
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan T H Koh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shridhar Ganpathi Iyer
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Hepatobiliary & Pancreatic Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Wen Huan Ling
- Program in Clinical and Translational Liver Cancer Research, National Cancer Center Singapore, Singapore, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Boon-Koon Yoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok, Thailand
| | - Glenn Kunnath Bonney
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Hepatobiliary & Pancreatic Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Brian K P Goh
- Department of Hepatopancreatobiliary and Transplantation Surgery, Singapore General Hospital and National Cancer Center Singapore, Singapore, Singapore
| | - Weiwei Zhai
- Program in Clinical and Translational Liver Cancer Research, National Cancer Center Singapore, Singapore, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Melissa J Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason J Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Leah A Vardy
- A*STAR Skin Research Labs and Skin Research Institute of Singapore, A*STAR, Immunos, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioMap, Beijing, China
| | - Pierce K H Chow
- Program in Clinical and Translational Liver Cancer Research, National Cancer Center Singapore, Singapore, Singapore
- Department of Hepatopancreatobiliary and Transplantation Surgery, Singapore General Hospital and National Cancer Center Singapore, Singapore, Singapore
- Academic Clinical Programme for Surgery, SingHealth Duke-NUS Academic Medical Centre (AMC), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Kwon B, Fansler MM, Patel ND, Lee J, Ma W, Mayr C. Enhancers regulate 3' end processing activity to control expression of alternative 3'UTR isoforms. Nat Commun 2022; 13:2709. [PMID: 35581194 PMCID: PMC9114392 DOI: 10.1038/s41467-022-30525-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor. In reporter assays, enhancers increase transcript production when paired with single-UTR gene promoters. However, when combined with multi-UTR gene promoters, they change 3'UTR isoform expression by increasing 3' end processing activity of polyadenylation sites. Processing activity of polyadenylation sites is affected by transcription factors, including NF-κB and MYC, transcription elongation factors, chromatin remodelers, and histone acetyltransferases. As endogenous cell type-specific enhancers are associated with genes that increase their short 3'UTRs in a cell type-specific manner, our data suggest that transcriptional enhancers integrate cellular signals to regulate cell type-and condition-specific 3'UTR isoform expression.
Collapse
Affiliation(s)
- Buki Kwon
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA
| | - Neil D Patel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jihye Lee
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Graduate College, New York, NY, 10021, USA.
| |
Collapse
|
15
|
Davis AG, Johnson DT, Zheng D, Wang R, Jayne ND, Liu M, Shin J, Wang L, Stoner SA, Zhou JH, Ball ED, Tian B, Zhang DE. Alternative polyadenylation dysregulation contributes to the differentiation block of acute myeloid leukemia. Blood 2022; 139:424-438. [PMID: 34482400 PMCID: PMC8777198 DOI: 10.1182/blood.2020005693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among posttranscriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia. Furthermore, it is poorly understood how altered poly(A) site usage of individual genes contributes to malignancy or whether targeting global APA patterns might alter oncogenic potential. In this study, we examined global APA dysregulation in patients with acute myeloid leukemia (AML) by performing 3' region extraction and deep sequencing (3'READS) on a subset of AML patient samples along with healthy hematopoietic stem and progenitor cells (HSPCs) and by analyzing publicly available data from a broad AML patient cohort. We show that patient cells exhibit global 3' untranslated region (UTR) shortening and coding sequence lengthening due to differences in poly(A) site (PAS) usage. Among APA regulators, expression of FIP1L1, one of the core cleavage and polyadenylation factors, correlated with the degree of APA dysregulation in our 3'READS data set. Targeting global APA by FIP1L1 knockdown reversed the global trends seen in patients. Importantly, FIP1L1 knockdown induced differentiation of t(8;21) cells by promoting 3'UTR lengthening and downregulation of the fusion oncoprotein AML1-ETO. In non-t(8;21) cells, FIP1L1 knockdown also promoted differentiation by attenuating mechanistic target of rapamycin complex 1 (mTORC1) signaling and reducing MYC protein levels. Our study provides mechanistic insights into the role of APA in AML pathogenesis and indicates that targeting global APA patterns can overcome the differentiation block in patients with AML.
Collapse
Affiliation(s)
- Amanda G Davis
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Daniel T Johnson
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruijia Wang
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Nathan D Jayne
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Jihae Shin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Luyang Wang
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA
| | | | - Jie-Hua Zhou
- Division of Blood and Marrow Transplantation, Department of Medicine; and
| | - Edward D Ball
- Division of Blood and Marrow Transplantation, Department of Medicine; and
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA
| | - Dong-Er Zhang
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
- Department of Pathology, University of California San Diego, La Jolla, CA
| |
Collapse
|
16
|
Bae B, Miura P. CRISPR-Mediated Knockout of Long 3' UTR mRNA Isoforms in mESC-Derived Neurons. Front Genet 2022; 12:789434. [PMID: 34976020 PMCID: PMC8718760 DOI: 10.3389/fgene.2021.789434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative cleavage and polyadenylation (APA) is pervasive, occurring for more than 70% of human and mouse genes. Distal poly(A) site selection to generate longer 3′ UTR mRNA isoforms is prevalent in the nervous system, affecting thousands of genes. Here, we establish mouse embryonic stem cell (mESC)-derived neurons (mES-neurons) as a suitable system to study long 3′ UTR isoforms. RNA-seq analysis revealed that mES-neurons show widespread 3′ UTR lengthening that closely resembles APA patterns found in mouse cortex. mESCs are highly amenable to genetic manipulation. We present a method to eliminate long 3′ UTR isoform expression using CRISPR/Cas9 editing. This approach can lead to clones with the desired deletion within several weeks. We demonstrate this strategy on the Mprip gene as a proof-of-principle. To confirm loss of long 3′ UTR expression and the absence of cryptic poly(A) site usage stemming from the CRISPR deletion, we present a simple and cost-efficient targeted long-read RNA-sequencing strategy using the Oxford Nanopore Technologies platform. Using this method, we confirmed specific loss of the Mprip long 3′ UTR isoform. CRISPR gene editing of mESCs thus serves as a highly relevant platform for studying the molecular and cellular functions of long 3′ UTR mRNA isoforms.
Collapse
Affiliation(s)
- Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
17
|
Chen X, Mayr C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA (NEW YORK, N.Y.) 2022; 28:76-87. [PMID: 34706978 PMCID: PMC8675283 DOI: 10.1261/rna.078995.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
18
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Mohanan NK, Shaji F, Koshre GR, Laishram RS. Alternative polyadenylation: An enigma of transcript length variation in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1692. [PMID: 34581021 DOI: 10.1002/wrna.1692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Alternative polyadenylation (APA) is a molecular mechanism during a pre-mRNA processing that involves usage of more than one polyadenylation site (PA-site) generating transcripts of varying length from a single gene. The location of a PA-site affects transcript length and coding potential of an mRNA contributing to both mRNA and protein diversification. This variation in the transcript length affects mRNA stability and translation, mRNA subcellular and tissue localization, and protein function. APA is now considered as an important regulatory mechanism in the pathophysiology of human diseases. An important consequence of the changes in the length of 3'-untranslated region (UTR) from disease-induced APA is altered protein expression. Yet, the relationship between 3'-UTR length and protein expression remains a paradox in a majority of diseases. Here, we review occurrence of APA, mechanism of PA-site selection, and consequences of transcript length variation in different diseases. Emerging evidence reveals coordinated involvement of core RNA processing factors including poly(A) polymerases in the PA-site selection in diseases-associated APAs. Targeting such APA regulators will be therapeutically significant in combating drug resistance in cancer and other complex diseases. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease Translation > Regulation.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ganesh R Koshre
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
- Manipal Academy of Higher Education, Manipal, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
20
|
Chen HH, Yu HI, Rudy R, Lim SL, Chen YF, Wu SH, Lin SC, Yang MH, Tarn WY. DDX3 modulates the tumor microenvironment via its role in endoplasmic reticulum-associated translation. iScience 2021; 24:103086. [PMID: 34568799 PMCID: PMC8449240 DOI: 10.1016/j.isci.2021.103086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Using antibody arrays, we found that the RNA helicase DDX3 modulates the expression of secreted signaling factors in oral squamous cell carcinoma (OSCC) cells. Ribo-seq analysis confirmed amphiregulin (AREG) as a translational target of DDX3. AREG exerts important biological functions in cancer, including promoting cell migration and paracrine effects of OSCC cells and reprogramming the tumor microenvironment (TME) of OSCC in mice. DDX3-mediated translational control of AREG involves its 3′-untranslated region. Proteomics identified the signal recognition particle (SRP) as an unprecedented interacting partner of DDX3. DDX3 and SRP54 were located near the endoplasmic reticulum, regulated the expression of a common set of secreted factors, and were essential for targeting AREG mRNA to membrane-bound polyribosomes. Finally, OSCC-associated mutant DDX3 increased the expression of AREG, emphasizing the role of DDX3 in tumor progression via SRP-dependent, endoplasmic reticulum-associated translation. Therefore, pharmacological targeting of DDX3 may inhibit the tumor-promoting functions of the TME. DDX3-AREG axis promotes cancer progression through microenvironment remodeling DDX3 activates AREG translation via binding to its 3′ UTR DDX3 interacts with the signal recognition particle (SRP) DDX3-SRP-mediated mRNA recruitment assists ER-associated translation
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Rudy Rudy
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | - Sim-Lin Lim
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B, Gahr M. An Unbiased Molecular Approach Using 3'-UTRs Resolves the Avian Family-Level Tree of Life. Mol Biol Evol 2021; 38:108-127. [PMID: 32781465 PMCID: PMC7783168 DOI: 10.1093/molbev/msaa191] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Presumably, due to a rapid early diversification, major parts of the higher-level phylogeny of birds are still resolved controversially in different analyses or are considered unresolvable. To address this problem, we produced an avian tree of life, which includes molecular sequences of one or several species of ∼90% of the currently recognized family-level taxa (429 species, 379 genera) including all 106 family-level taxa of the nonpasserines and 115 of the passerines (Passeriformes). The unconstrained analyses of noncoding 3-prime untranslated region (3′-UTR) sequences and those of coding sequences yielded different trees. In contrast to the coding sequences, the 3′-UTR sequences resulted in a well-resolved and stable tree topology. The 3′-UTR contained, unexpectedly, transcription factor binding motifs that were specific for different higher-level taxa. In this tree, grebes and flamingos are the sister clade of all other Neoaves, which are subdivided into five major clades. All nonpasserine taxa were placed with robust statistical support including the long-time enigmatic hoatzin (Opisthocomiformes), which was found being the sister taxon of the Caprimulgiformes. The comparatively late radiation of family-level clades of the songbirds (oscine Passeriformes) contrasts with the attenuated diversification of nonpasseriform taxa since the early Miocene. This correlates with the evolution of vocal production learning, an important speciation factor, which is ancestral for songbirds and evolved convergent only in hummingbirds and parrots. As 3′-UTR-based phylotranscriptomics resolved the avian family-level tree of life, we suggest that this procedure will also resolve the all-species avian tree of life
Collapse
Affiliation(s)
- Heiner Kuhl
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Max Planck Institute for Molecular Genetics, Sequencing Core Facility, Berlin, Germany.,Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Antje Bakker
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gerald Mayr
- Ornithological Section, Senckenberg Research Institute, Frankfurt am Main, Germany
| | - Gerhard Nikolaus
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Stefan T Boerno
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, Berlin, Germany
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, Berlin, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
22
|
Mitschka S, Fansler MM, Mayr C. Generation of 3'UTR knockout cell lines by CRISPR/Cas9-mediated genome editing. Methods Enzymol 2021; 655:427-457. [PMID: 34183132 DOI: 10.1016/bs.mie.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the protein code, messenger RNAs (mRNAs) also contain untranslated regions (UTRs). 3'UTRs span the region between the translational stop codon and the poly(A) tail. Sequence elements located in 3'UTRs are essential for pre-mRNA processing. 3'UTRs also contain elements that can regulate protein abundance, localization, and function. At least half of all human genes use alternative cleavage and polyadenylation (APA) to further diversify the regulatory potential of protein functions. Traditional gene editing approaches are designed to disrupt the production of functional proteins. Here, we describe a method that allows investigators to manipulate 3'UTR sequences of endogenous genes for both single- 3'UTR and multi-3'UTR genes. As 3'UTRs can regulate individual functions of proteins, techniques to manipulate 3'UTRs at endogenous gene loci will help to disentangle multi-functionality of proteins. Furthermore, the ability to directly examine the impact of gene regulatory elements in 3'UTRs will provide further insights into their functional significance.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY, United States.
| |
Collapse
|
23
|
Mitschka S, Mayr C. Endogenous p53 expression in human and mouse is not regulated by its 3'UTR. eLife 2021; 10:65700. [PMID: 33955355 PMCID: PMC8137139 DOI: 10.7554/elife.65700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The TP53 gene encodes the tumor suppressor p53 which is functionally inactivated in many human cancers. Numerous studies suggested that 3′UTR-mediated p53 expression regulation plays a role in tumorigenesis and could be exploited for therapeutic purposes. However, these studies did not investigate post-transcriptional regulation of the native TP53 gene. Here, we used CRISPR/Cas9 to delete the human and mouse TP53/Trp53 3′UTRs while preserving endogenous mRNA processing. This revealed that the endogenous 3′UTR is not involved in regulating p53 mRNA or protein expression neither in steady state nor after genotoxic stress. Using reporter assays, we confirmed the previously observed repressive effects of the isolated 3′UTR. However, addition of the TP53 coding region to the reporter had a dominant negative impact on expression as its repressive effect was stronger and abrogated the contribution of the 3′UTR. Our data highlight the importance of genetic models in the validation of post-transcriptional gene regulatory effects.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
24
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
27
|
Miyashita H, Oikawa D, Terawaki S, Kabata D, Shintani A, Tokunaga F. Crosstalk Between NDP52 and LUBAC in Innate Immune Responses, Cell Death, and Xenophagy. Front Immunol 2021; 12:635475. [PMID: 33815386 PMCID: PMC8017197 DOI: 10.3389/fimmu.2021.635475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Nuclear dot protein 52 kDa (NDP52, also known as CALCOCO2) functions as a selective autophagy receptor. The linear ubiquitin chain assembly complex (LUBAC) specifically generates the N-terminal Met1-linked linear ubiquitin chain, and regulates innate immune responses, such as nuclear factor-κB (NF-κB), interferon (IFN) antiviral, and apoptotic pathways. Although NDP52 and LUBAC cooperatively regulate bacterial invasion-induced xenophagy, their functional crosstalk remains enigmatic. Here we show that NDP52 suppresses canonical NF-κB signaling through the broad specificity of ubiquitin-binding at the C-terminal UBZ domain. Upon TNF-α-stimulation, NDP52 associates with LUBAC through the HOIP subunit, but does not disturb its ubiquitin ligase activity, and has a modest suppressive effect on NF-κB activation by functioning as a component of TNF-α receptor signaling complex I. NDP52 also regulates the TNF-α-induced apoptotic pathway, but not doxorubicin-induced intrinsic apoptosis. A chemical inhibitor of LUBAC (HOIPIN-8) cancelled the increased activation of the NF-κB and IFN antiviral pathways, and enhanced apoptosis in NDP52-knockout and -knockdown HeLa cells. Upon Salmonella-infection, colocalization of Salmonella, LC3, and linear ubiquitin was detected in parental HeLa cells to induce xenophagy. Treatment with HOIPIN-8 disturbed the colocalization and facilitated Salmonella expansion. In contrast, HOIPIN-8 showed little effect on the colocalization of LC3 and Salmonella in NDP52-knockout cells, suggesting that NDP52 is a weak regulator in LUBAC-mediated xenophagy. These results indicate that the crosstalk between NDP52 and LUBAC regulates innate immune responses, apoptosis, and xenophagy.
Collapse
Affiliation(s)
- Hirohisa Miyashita
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Seigo Terawaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
28
|
Bae B, Gruner HN, Lynch M, Feng T, So K, Oliver D, Mastick GS, Yan W, Pieraut S, Miura P. Elimination of Calm1 long 3'-UTR mRNA isoform by CRISPR-Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. RNA (NEW YORK, N.Y.) 2020; 26:1414-1430. [PMID: 32522888 PMCID: PMC7491327 DOI: 10.1261/rna.076430.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 05/04/2023]
Abstract
The majority of mouse and human genes are subject to alternative cleavage and polyadenylation (APA), which most often leads to the expression of two or more alternative length 3' untranslated region (3'-UTR) mRNA isoforms. In neural tissues, there is enhanced expression of APA isoforms with longer 3'-UTRs on a global scale, but the physiological relevance of these alternative 3'-UTR isoforms is poorly understood. Calmodulin 1 (Calm1) is a key integrator of calcium signaling that generates short (Calm1-S) and long (Calm1-L) 3'-UTR mRNA isoforms via APA. We found Calm1-L expression to be largely restricted to neural tissues in mice including the dorsal root ganglion (DRG) and hippocampus, whereas Calm1-S was more broadly expressed. smFISH revealed that both Calm1-S and Calm1-L were subcellularly localized to neural processes of primary hippocampal neurons. In contrast, cultured DRG showed restriction of Calm1-L to soma. To investigate the in vivo functions of Calm1-L, we implemented a CRISPR-Cas9 gene editing strategy to delete a small region encompassing the Calm1 distal poly(A) site. This eliminated Calm1-L expression while maintaining expression of Calm1-S Mice lacking Calm1-L (Calm1ΔL/ΔL ) exhibited disorganized DRG migration in embryos, and reduced experience-induced neuronal activation in the adult hippocampus. These data indicate that Calm1-L plays functional roles in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bongmin Bae
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hannah N Gruner
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Maebh Lynch
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Kevin So
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wei Yan
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
29
|
Moissoglu K, Stueland M, Gasparski AN, Wang T, Jenkins LM, Hastings ML, Mili S. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J 2020; 39:e104958. [PMID: 32946136 PMCID: PMC7604616 DOI: 10.15252/embj.2020104958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous RNAs exhibit specific distribution patterns in mammalian cells. However, the functional and mechanistic consequences are relatively unknown. Here, we investigate the functional role of RNA localization at cellular protrusions of migrating mesenchymal cells, using as a model the RAB13 RNA, which encodes a GTPase important for vesicle‐mediated membrane trafficking. While RAB13 RNA is enriched at peripheral protrusions, the expressed protein is concentrated perinuclearly. By specifically preventing RAB13 RNA localization, we show that peripheral RAB13 translation is not important for the overall distribution of the RAB13 protein or its ability to associate with membranes, but is required for full activation of the GTPase and for efficient cell migration. RAB13 translation leads to a co‐translational association of nascent RAB13 with the exchange factor RABIF. Our results indicate that RAB13‐RABIF association at the periphery is required for directing RAB13 GTPase activity to promote cell migration. Thus, translation of RAB13 in specific subcellular environments imparts the protein with distinct properties and highlights a means of controlling protein function through local RNA translation.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Stueland
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Weiße J, Rosemann J, Krauspe V, Kappler M, Eckert AW, Haemmerle M, Gutschner T. RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6835. [PMID: 32957697 PMCID: PMC7555251 DOI: 10.3390/ijms21186835] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.
Collapse
Affiliation(s)
- Jonas Weiße
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Julia Rosemann
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Vanessa Krauspe
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany; (J.W.); (J.R.); (V.K.)
| |
Collapse
|
31
|
Ribeiro DM, Prod'homme A, Teixeira A, Zanzoni A, Brun C. The role of 3'UTR-protein complexes in the regulation of protein multifunctionality and subcellular localization. Nucleic Acids Res 2020; 48:6491-6502. [PMID: 32484544 PMCID: PMC7337931 DOI: 10.1093/nar/gkaa462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023] Open
Abstract
Multifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3'UTRs were found to regulate the cellular localization of newly synthesized proteins through the formation of 3'UTR-protein complexes. Here, we investigate the formation of 3'UTR-protein complexes involving multifunctional proteins by exploiting large-scale protein-protein and protein-RNA interaction networks. Focusing on 238 human 'extreme multifunctional' (EMF) proteins, we predicted 1411 3'UTR-protein complexes involving 54% of those proteins and evaluated their role in regulating protein cellular localization and multifunctionality. We find that EMF proteins lacking localization addressing signals, yet present at both the nucleus and cell surface, often form 3'UTR-protein complexes, and that the formation of these complexes could provide EMF proteins with the diversity of interaction partners necessary to their multifunctionality. Our findings are reinforced by archetypal moonlighting proteins predicted to form 3'UTR-protein complexes. Finally, the formation of 3'UTR-protein complexes that involves up to 17% of the proteins in the human protein-protein interaction network, may be a common and yet underestimated protein trafficking mechanism, particularly suited to regulate the localization of multifunctional proteins.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Adrien Teixeira
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Andreas Zanzoni
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, Inserm, TAGC, UMR_S1090, Marseille, France.,CNRS, Marseille, France
| |
Collapse
|
32
|
Fernandes N, Buchan JR. RPS28B mRNA acts as a scaffold promoting cis-translational interaction of proteins driving P-body assembly. Nucleic Acids Res 2020; 48:6265-6279. [PMID: 32396167 PMCID: PMC7293044 DOI: 10.1093/nar/gkaa352] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
P-bodies (PBs) are cytoplasmic mRNA-protein (mRNP) granules conserved throughout eukaryotes which are implicated in the repression, storage and degradation of mRNAs. PB assembly is driven by proteins with self-interacting and low-complexity domains. Non-translating mRNA also stimulates PB assembly, however no studies to date have explored whether particular mRNA transcripts are more critical than others in facilitating PB assembly. Previous work revealed that rps28bΔ (small ribosomal subunit-28B) mutants do not form PBs under normal growth conditions. Here, we demonstrate that the RPS28B 3′UTR is important for PB assembly, consistent with it harboring a binding site for the PB assembly protein Edc3. However, expression of the RPS28B 3′UTR alone is insufficient to drive PB assembly. Intriguingly, chimeric mRNA studies revealed that Rps28 protein, translated in cis from an mRNA bearing the RPS28B 3′UTR, physically interacts more strongly with Edc3 than Rps28 protein synthesized in trans. This Edc3-Rps28 interaction in turn facilitates PB assembly. Our work indicates that PB assembly may be nucleated by specific RNA ‘scaffolds’. Furthermore, this is the first description in yeast to our knowledge of a cis-translated protein interacting with another protein in the 3′UTR of the mRNA which encoded it, which in turn stimulates assembly of cellular structures.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
33
|
Emerging Roles for 3' UTRs in Neurons. Int J Mol Sci 2020; 21:ijms21103413. [PMID: 32408514 PMCID: PMC7279237 DOI: 10.3390/ijms21103413] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in 3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions, and impart translational control. Thousands of mRNAs are localized to subcellular compartments in neurons—including axons, dendrites, and synapses—where they are thought to undergo local translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in neurons, the specific RNA sequences and structural features at play remain poorly understood. The nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA). The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing. Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological disorders—more studies are needed to uncover how these mutations impact gene regulation and what is their relationship to disease severity.
Collapse
|
34
|
3' UTRs Regulate Protein Functions by Providing a Nurturing Niche during Protein Synthesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:95-104. [PMID: 31900325 DOI: 10.1101/sqb.2019.84.039206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Messenger RNAs (mRNAs) are the templates for protein synthesis as the coding region is translated into the amino acid sequence. mRNAs also contain 3' untranslated regions (3' UTRs) that harbor additional elements for the regulation of protein function. If the amino acid sequence of a protein is necessary and sufficient for its function, we call it 3' UTR-independent. In contrast, functions that are accomplished by protein complexes whose formation requires the presence of a specific 3' UTR are 3' UTR-dependent protein functions. We showed that 3' UTRs can regulate protein activity without affecting protein abundance, and alternative 3' UTRs can diversify protein functions. We currently think that the regulation of protein function by 3' UTRs is facilitated by the local environment at the site of protein synthesis, which we call the nurturing niche for nascent proteins. This niche is composed of the mRNA and the bound proteins that consist of RNA-binding proteins and recruited proteins. It enables the formation of specific protein complexes, as was shown for TIS granules, a recently discovered cytoplasmic membraneless organelle. This finding suggests that changing the niche for nascent proteins will alter protein activity and function, implying that cytoplasmic membraneless organelles can regulate protein function in a manner that is independent of protein abundance.
Collapse
|
35
|
Mitra M, Lee HN, Coller HA. Splicing Busts a Move: Isoform Switching Regulates Migration. Trends Cell Biol 2020; 30:74-85. [PMID: 31810769 PMCID: PMC8219349 DOI: 10.1016/j.tcb.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
Cell migration is essential for normal development, neural patterning, pathogen eradication, and cancer metastasis. Pre-mRNA processing events such as alternative splicing and alternative polyadenylation result in greater transcript and protein diversity as well as function and activity. A critical role for alternative pre-mRNA processing in cell migration has emerged in axon outgrowth during neuronal development, immune cell migration, and cancer metastasis. These findings suggest that migratory signals result in expression changes of post-translational modifications of splicing or polyadenylation factors, leading to splicing events that generate promigratory isoforms. We summarize this recent progress and suggest emerging technologies that may facilitate a deeper understanding of the role of alternative splicing and polyadenylation in cell migration.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ha Neul Lee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Yewdell JW, Dersh D, Fåhraeus R. Peptide Channeling: The Key to MHC Class I Immunosurveillance? Trends Cell Biol 2019; 29:929-939. [PMID: 31662235 DOI: 10.1016/j.tcb.2019.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA.
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Robin Fåhraeus
- Inserm, 27 rue Juliette Dodu, 750 10 Paris, France; International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| |
Collapse
|