1
|
Santoro AM, Persico M, D’Urso A, Cunsolo A, Tkachuk O, Milardi D, Purrello R, Tundo GR, Sbardella D, Osmulski PA, Gaczynska M, Coletta M, Fattorusso C. Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome. J Enzyme Inhib Med Chem 2025; 40:2482892. [PMID: 40192126 PMCID: PMC11980194 DOI: 10.1080/14756366.2025.2482892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Decreased proteasome activity is a hallmark of brain and retinal neurodegenerative diseases (Alzheimer's, Parkinson's diseases, glaucoma) boosting the search for molecules acting as proteasome activators. Based on the hypothesis of an electrostatic key code driving catalytic core particle (20S) activation by regulatory particles (RPs), we identified the tetra-anionic meso-Tetrakis(4-sulphonatophenyl)-porphyrin (H2TPPS) as a new activator of human proteasome. By means of an integrated approach, including bioinformatics, enzymatic kinetic analysis, atomic force microscopy, and dynamic docking simulations, we show how binding of H2TPPS affects the closed/open conformational equilibrium of human 20S to ultimately promote substrate gate opening and proteolytic activity. These outcomes support our hypothesis and pave the way to the rational discovery of new proteasome allosteric modulators able to reproduce the key structural elements of regulatory particles responsible for catalytic activation.
Collapse
Affiliation(s)
- A. M. Santoro
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - M. Persico
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - A. D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - A. Cunsolo
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Epic Sciences, San Diego, California, USA
| | - O. Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - D. Milardi
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - R. Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G. R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | | | - P. A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - M. Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | | | - C. Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| |
Collapse
|
2
|
Trepczyk K, Er S, Hlushchuk I, Airavaara M, Alwani A, Maziarz K, Chmielarz P, Słomska K, Wieczerzak E, Jankowska E. Peptidomimetics Activating the Proteasome: A New Perspective for Parkinson's Treatment. J Med Chem 2025; 68:8967-8979. [PMID: 40193596 PMCID: PMC12035797 DOI: 10.1021/acs.jmedchem.5c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
The development of age-related neurodegenerative diseases is associated with the accumulation of damaged and misfolded proteins. Such proteins are eliminated from cells by proteolytic systems, mainly by 20S proteasomes, whose activity declines with age. Its stimulation has been recognized as a promising approach to delay the onset or ameliorate the symptoms of neurodegenerative disorders. Here we present peptidomimetics that are very effective in stimulating the proteasome in biochemical assays and in cell culture. They are stable in human plasma and capable of penetrating the cell membranes. The activators demonstrated the ability to enhance h20S degradation of α-synuclein and tau, whose aggregates are involved in the development of Parkinson's and Alzheimer's diseases, respectively. The peptidomimetics did not show cytotoxicity to HEK293T and primary hippocampal cells. Additionally, these compounds were highly effective in reducing the amount of phosphorylated α-synuclein aggregates in hippocampal neurons in a mouse embryonic cell model.
Collapse
Affiliation(s)
- Karolina Trepczyk
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Safak Er
- Pharmacology
and Drug Development Division of Pharmacology and Pharmacotherapy,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Irena Hlushchuk
- Pharmacology
and Drug Development Division of Pharmacology and Pharmacotherapy,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko Airavaara
- Pharmacology
and Drug Development Division of Pharmacology and Pharmacotherapy,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna Alwani
- Department
of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Maziarz
- Department
of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Piotr Chmielarz
- Department
of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Kinga Słomska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ewa Wieczerzak
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Elżbieta Jankowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Cook BD, Narehood SM, McGuire KL, Li Y, Akif Tezcan F, Herzik MA. Preparation of oxygen-sensitive proteins for high-resolution cryoEM structure determination using blot-free vitrification. Nat Commun 2025; 16:3528. [PMID: 40229244 PMCID: PMC11997128 DOI: 10.1038/s41467-025-58243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
High-quality grid preparation for single-particle cryogenic electron microscopy (cryoEM) remains a bottleneck for routinely obtaining high-resolution structures. The issues that arise from traditional grid preparation workflows are particularly exacerbated for oxygen-sensitive proteins, including metalloproteins, whereby oxygen-induced damage and alteration of oxidation states can result in protein inactivation, denaturation, and/or aggregation. Indeed, 99% of the current structures in the EMBD were prepared aerobically and limited successes for anaerobic cryoEM grid preparation exist. Current practices for anaerobic grid preparation involve a vitrification device located in an anoxic chamber, which presents significant challenges including temperature and humidity control, optimization of freezing conditions, costs for purchase and operation, as well as accessibility. Here, we present a streamlined approach that allows for the vitrification of oxygen-sensitive proteins in reduced states using an automated blot-free grid vitrification device - the SPT Labtech chameleon. This robust workflow allows for high-resolution structure determination of dynamic, oxygen-sensitive proteins, of varying complexity and molecular weight.
Collapse
Affiliation(s)
- Brian D Cook
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Sarah M Narehood
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Yizhou Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA.
| |
Collapse
|
4
|
Witkowska J, Giżyńska M, Karpowicz P, Sowik D, Trepczyk K, Hennenberg F, Chari A, Giełdoń A, Pierzynowska K, Gaffke L, Węgrzyn G, Jankowska E. Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome. ACS Chem Biol 2025; 20:266-280. [PMID: 39907714 PMCID: PMC11851449 DOI: 10.1021/acschembio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.
Collapse
Affiliation(s)
- Julia Witkowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Małgorzata Giżyńska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Przemysław Karpowicz
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Daria Sowik
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Trepczyk
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Fabian Hennenberg
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
| | - Ashwin Chari
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
- Research
Group for Structural Biochemistry and Mechanisms, Max-Planck-Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Artur Giełdoń
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Pierzynowska
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Lidia Gaffke
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Elżbieta Jankowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| |
Collapse
|
5
|
Glasner DR, Todd C, Cook B, D’Urso A, Khosla S, Estrada E, Wagner JD, Bartels MD, Ford P, Prych J, Hatch K, Yee BA, Ego KM, Liang Q, Holland SR, Case JB, Corbett KD, Diamond MS, Yeo GW, Herzik MA, Van Nostrand EL, Daugherty MD. Short 5' UTRs serve as a marker for viral mRNA translation inhibition by the IFIT2-IFIT3 antiviral complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637299. [PMID: 39990370 PMCID: PMC11844544 DOI: 10.1101/2025.02.11.637299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Recognition of "non-self" nucleic acids, including cytoplasmic dsDNA, dsRNA, or mRNAs lacking proper 5' cap structures, is critical for the innate immune response to viruses. Here, we demonstrate that short 5' untranslated regions (UTRs), a characteristic of many viral mRNAs, can also serve as a molecular pattern for innate immune recognition via the interferon-induced proteins IFIT2 and IFIT3. The IFIT2-IFIT3 heterodimer, formed through an intricate domain swap structure resolved by cryo-EM, mediates viral mRNA 5' end recognition, translation inhibition, and ultimately antiviral activity. Critically, 5' UTR lengths <50 nucleotides are necessary and sufficient to sensitize an mRNA to translation inhibition by the IFIT2-IFIT3 complex. Accordingly, diverse viruses whose mRNAs contain short 5' UTRs, such as vesicular stomatitis virus and parainfluenza virus 3, are sensitive to IFIT2-IFIT3-mediated antiviral activity. Our work thus reveals a pattern of antiviral nucleic acid immune recognition that takes advantage of the inherent constraints on viral genome size.
Collapse
Affiliation(s)
- Dustin R. Glasner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Candace Todd
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Agustina D’Urso
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Shivani Khosla
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Elena Estrada
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jaxon D. Wagner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Mason D. Bartels
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Pierce Ford
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jordan Prych
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Katie Hatch
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
| | - Qishan Liang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Sarah R. Holland
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - James Brett Case
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California, San Diego, CA, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Eric L. Van Nostrand
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
6
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Eadsforth TC, Torrie LS, Rowland P, Edgar EV, MacLean LM, Paterson C, Robinson DA, Shepherd SM, Thomas J, Thomas MG, Gray DW, Postis VLG, De Rycker M. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J Biol Chem 2025; 301:108049. [PMID: 39638245 PMCID: PMC11748689 DOI: 10.1016/j.jbc.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The proteasome is considered an excellent drug target for many infectious diseases as well as cancer. Challenges with robust and safe supply of proteasomes from infectious agents, lack of structural information, and complex pharmacology due to multiple active sites have hampered progress in the infectious disease space. We recombinantly expressed the proteasome of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, and demonstrate pharmacological equivalence to the native T. cruzi proteasome. Active-site mutant recombinant proteasomes reveal substrate promiscuity for WT proteasomes, with important implications for assessing pharmacological responses of active-site selective inhibitors. Using these mutant proteasomes, we show that some selective parasite proteasome inhibitors only partially inhibit the chymotrypsin-like activity, including a newly developed 5-(phenoxymethyl)furan-2-carboxamide-based proteasome inhibitor. In spite of partial inhibition, these compounds remain potent inhibitors of intracellular T. cruzi growth. Drug-resistant mutants provide further insights in drug mode-of-inhibition. We also present the high-resolution CryoEM structures of both native and recombinantly-expressed T. cruzi proteasomes which reveal pharmacologically relevant differences in the ligand-binding site compared to the related Leishmania proteasome. Furthermore, we show that the trypanosomatid β4/β5 selectivity pocket is not present in the proteasome structures of other protozoan parasites. This work highlights the need, and provides approaches, to precisely assess proteasome substrate selectivity and pharmacology. It enables structure-guided drug discovery for this promising Chagas disease drug target, provides a new chemical starting point for drug discovery, and paves the road for development of robust proteasome drug discovery programmes for other eukaryotic infectious diseases.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Leah S Torrie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Lorna M MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David A Robinson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Sharon M Shepherd
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Michael G Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Vincent L G Postis
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
| |
Collapse
|
8
|
Kaur M, Chen X, Lee SY, Weaver TM, Freudenthal BD, Walters KJ, Roelofs J. Structure of Blm10:13S proteasome intermediate reveals parallel assembly pathways for the proteasome core particle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621988. [PMID: 39574619 PMCID: PMC11580919 DOI: 10.1101/2024.11.04.621988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Proteasomes are formed by chaperone-assisted assembly of core particles (CPs) and regulatory particles (RPs). The CP chaperone dimer Pba1/Pba2 binds early to proteasome subunits, and is thought to be replaced by Blm10 to form Blm10:CP, which promotes ATP-independent degradation of disordered proteins. Here, we present evidence of distinct parallel assembly pathways for CP by solving five cryo-EM structures including a Blm10:13S pre-assembly intermediate. Our data conflict with the current model of Blm10 and Pba1/Pba2 sequential activity in a single assembly pathway, as we find their CP binding is mutually exclusive and both are present on early and late assembly intermediates. CP affinity for Pba1/Pba2 is reduced during maturation, promoting Pba1/Pba2 release. We find Blm10 undergoes no such affinity switch, suggesting this pathway predominantly yields mature Blm10-bound CP. Altogether, our findings conflict with the current paradigm of sequential CP binding to instead indicate parallel assembly pathways by Pba1/Pba2 and Blm10.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Tyler M. Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Kylie J. Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| |
Collapse
|
9
|
Salcedo-Tacuma D, Howells GD, McHose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: a comprehensive database for identifying HbYX motif-containing proteins across the tree of life. BMC Genomics 2024; 25:951. [PMID: 39396964 PMCID: PMC11475706 DOI: 10.1186/s12864-024-10864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were experimentally tested by pulldowns, confirming that they directly interact with the proteasome, with one of them directly activating it. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Giovanni D Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Coleman McHose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr, Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
10
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O'Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat Commun 2024; 15:8621. [PMID: 39366995 PMCID: PMC11452676 DOI: 10.1038/s41467-024-53022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
| |
Collapse
|
11
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
12
|
Bartolome A, Heiby JC, Di Fraia D, Heinze I, Knaudt H, Spaeth E, Omrani O, Minetti A, Hofmann M, Kirkpatrick JM, Dau T, Ori A. Quantitative mapping of proteasome interactomes and substrates using ProteasomeID. eLife 2024; 13:RP93256. [PMID: 39230574 PMCID: PMC11374303 DOI: 10.7554/elife.93256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.
Collapse
Affiliation(s)
| | - Julia C Heiby
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Ivonne Heinze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Hannah Knaudt
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Ellen Spaeth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alberto Minetti
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Maleen Hofmann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | | - Therese Dau
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
13
|
Lawong A, Gahalawat S, Ray S, Ho N, Han Y, Ward KE, Deng X, Chen Z, Kumar A, Xing C, Hosangadi V, Fairhurst KJ, Tashiro K, Liszczak G, Shackleford DM, Katneni K, Chen G, Saunders J, Crighton E, Casas A, Robinson JJ, Imlay LS, Zhang X, Lemoff A, Zhao Z, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Campbell SF, Fidock DA, Laleu B, Charman SA, Ready JM, Phillips MA. Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria. Cell Chem Biol 2024; 31:1503-1517.e19. [PMID: 39084225 PMCID: PMC11531662 DOI: 10.1016/j.chembiol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome β5 active-site (Pfβ5). A potent analog (SW584) showed efficacy in a mouse model of human malaria after oral dosing. SW584 had a low propensity to generate resistance (minimum inoculum for resistance [MIR] >109) and was synergistic with dihydroartemisinin. Pf_proteasome purification was facilitated by His8-tag introduction onto β7. Inhibition of Pfβ5 correlated with parasite killing, without inhibiting human proteasome isoforms or showing cytotoxicity. The Pf_proteasome_SW584 cryoelectron microscopy (cryo-EM) structure showed that SW584 bound non-covalently distal from the catalytic threonine, in an unexplored pocket at the β5/β6/β3 subunit interface that has species differences between Pf and human proteasomes. Identification of a reversible, species selective, orally active series with low resistance propensity provides a path for drugging this essential target.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Sneha Ray
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nhi Ho
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kurt E Ward
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Chao Xing
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Varun Hosangadi
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Arturo Casas
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Joshua J Robinson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Leah S Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iñigo Angulo-Barturen
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | | | - David A Fidock
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. Nat Struct Mol Biol 2024; 31:1176-1188. [PMID: 38600324 PMCID: PMC11327110 DOI: 10.1038/s41594-024-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Dedicated assembly factors orchestrate the stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here we report cryo-electron microscopy reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, as well as how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors and reveals conceptual principles underlying human proteasome biogenesis, thus providing an explanation for many previous biochemical and genetic observations.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen A Goodall
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Richard M Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Cook BD, Narehood SM, McGuire KL, Li Y, Tezcan FA, Herzik MA. Preparation of oxygen-sensitive proteins for high-resolution cryoEM structure determination using (an)aerobic blot-free vitrification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604374. [PMID: 39091810 PMCID: PMC11291078 DOI: 10.1101/2024.07.19.604374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
High-quality grid preparation for single-particle cryogenic electron microscopy (cryoEM) remains a bottleneck for routinely obtaining high-resolution structures. The issues that arise from traditional grid preparation workflows are particularly exacerbated for oxygen-sensitive proteins, including metalloproteins, whereby oxygen-induced damage and alteration of oxidation states can result in protein inactivation, denaturation, and/or aggregation. Indeed, 99% of the current structures in the EMBD were prepared aerobically and limited successes for anaerobic cryoEM grid preparation exist. Current practices for anaerobic grid preparation involve a vitrification device located in an anoxic chamber, which presents significant challenges including temperature and humidity control, optimization of freezing conditions, costs for purchase and operation, as well as accessibility. Here, we present a streamlined approach that allows for the (an)aerobic vitrification of oxygen-sensitive proteins using an automated aerobic blot-free grid vitrification device - the SPT Labtech chameleon. This robust workflow allows for high-resolution structure determination of dynamic, oxygen-sensitive proteins, of varying complexity and molecular weight.
Collapse
Affiliation(s)
- Brian D. Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Sarah M. Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Yizhou Li
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| |
Collapse
|
16
|
Salcedo-Tacuma D, Howells G, Mchose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: A Comprehensive Database for Identifying HbYX Motif-Containing Proteins Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598080. [PMID: 38895466 PMCID: PMC11185799 DOI: 10.1101/2024.06.08.598080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were tested and found to directly interact with the proteasome. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer. Link: http://proend.org/.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Coleman Mchose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
17
|
Wen P, Sun Y, Jiang TX, Qiu XB. PA200-Mediated Proteasomal Protein Degradation and Regulation of Cellular Senescence. Int J Mol Sci 2024; 25:5637. [PMID: 38891826 PMCID: PMC11171664 DOI: 10.3390/ijms25115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Cellular senescence is closely related to DNA damage, proteasome inactivity, histone loss, epigenetic alterations, and tumorigenesis. The mammalian proteasome activator PA200 (also referred to as PSME4) or its yeast ortholog Blm10 promotes the acetylation-dependent degradation of the core histones during transcription, DNA repair, and spermatogenesis. According to recent studies, PA200 plays an important role in senescence, probably because of its role in promoting the degradation of the core histones. Loss of PA200 or Blm10 is a major cause of the decrease in proteasome activity during senescence. In this paper, recent research progress on the association of PA200 with cellular senescence is summarized, and the potential of PA200 to serve as a therapeutic target in age-related diseases is discussed.
Collapse
Affiliation(s)
- Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
18
|
Cruz-León S, Majtner T, Hoffmann PC, Kreysing JP, Kehl S, Tuijtel MW, Schaefer SL, Geißler K, Beck M, Turoňová B, Hummer G. High-confidence 3D template matching for cryo-electron tomography. Nat Commun 2024; 15:3992. [PMID: 38734767 PMCID: PMC11088655 DOI: 10.1038/s41467-024-47839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Sebastian Kehl
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748, Garching, Germany
| | - Maarten W Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Katharina Geißler
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
- Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
VerPlank JJ, Gawron JM, Silvestri NJ, Wrabetz L, Feltri ML. Knockout of PA200 improves proteasomal degradation and myelination in a proteotoxic neuropathy. Life Sci Alliance 2024; 7:e202302349. [PMID: 38320810 PMCID: PMC10847332 DOI: 10.26508/lsa.202302349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The cellular response to a decrease in protein degradation by 26S proteasomes in chronic diseases is poorly understood. Pharmacological inhibition of proteasomes increases the expression of proteasome subunits and Proteasome Activator 200 (PA200), an alternative proteasome activator. In the S63del mouse model of the peripheral neuropathy Charcot Marie Tooth 1B (CMT1B), proteasomal protein degradation is decreased and proteasome gene expression is increased. Here, we show an increase in PA200 and PA200-bound proteasomes in the peripheral nerves of S63del mice. To test genetically whether the upregulation of PA200 was compensatory, we generated S63del//PA200-/- mice. Unexpectedly, in the sciatic nerves of these mice, there was greater proteasomal protein degradation than in S63del, less polyubiquitinated proteins and markers of the unfolded protein response, and a greater amount of assembled, active 26S proteasomes. These changes were not seen in PA200-/- controls and were therefore specific to the neuropathy. Furthermore, in S63del//PA200-/- mice, myelin thickness and nerve conduction were restored to WT levels. Thus, the upregulation of PA200 is maladaptive in S63del mice and its genetic ablation prevented neuropathy.
Collapse
Affiliation(s)
- Jordan Js VerPlank
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph M Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicholas J Silvestri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- IRCCS Neurological Institute "Carlo Besta," Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita' degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, Harper JW, Hanna J, Schulman BA. Visualizing chaperone-mediated multistep assembly of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577538. [PMID: 38328185 PMCID: PMC10849659 DOI: 10.1101/2024.01.27.577538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Dedicated assembly factors orchestrate stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here, we report cryo-EM reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, and how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates, and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. The structural findings reported here explain many previous biochemical and genetic observations. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors, and reveals conceptual principles underlying human proteasome biogenesis.
Collapse
Affiliation(s)
- Frank Adolf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ellen A. Goodall
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - J. Wade Harper
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
21
|
Bicev RN, de Souza Degenhardt MF, de Oliveira CLP, da Silva ER, Degrouard J, Tresset G, Ronsein GE, Demasi M, da Cunha FM. Glucose restriction in Saccharomyces cerevisiae modulates the phosphorylation pattern of the 20S proteasome and increases its activity. Sci Rep 2023; 13:19383. [PMID: 37938622 PMCID: PMC10632367 DOI: 10.1038/s41598-023-46614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation. We show that glucose restriction increases the ability of 20S proteasomes, isolated from Saccharomyces cerevisiae cells, to degrade model substrates and whole proteins. In addition, threonine 55 and/or serine 56 of the α5-subunit, were/was consistently found to be phosphorylated in proteasomes isolated from glucose restricted cells, which may be involved in the increased proteolysis capacity of proteasomes from restricted cells. We were not able to observe changes in the gate opening nor in the spatial conformation in 20S proteasome particles isolated from glucose restricted cells, suggesting that the changes in activity were not accompanied by large conformational alterations in the 20S proteasome but involved allosteric activation of proteasome catalytic site.
Collapse
Affiliation(s)
- Renata Naporano Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | - Emerson Rodrigo da Silva
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brasil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
22
|
Thomas T, Salcedo-Tacuma D, Smith DM. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Biomolecules 2023; 13:1326. [PMID: 37759726 PMCID: PMC10526260 DOI: 10.3390/biom13091326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The proteasome, a complex multi-catalytic protease machinery, orchestrates the protein degradation essential for maintaining cellular homeostasis, and its dysregulation also underlies many different types of diseases. Its function is regulated by many different mechanisms that encompass various factors such as proteasome activators (PAs), adaptor proteins, and post-translational modifications. This review highlights the unique characteristics of proteasomal regulation through the lens of a distinct family of regulators, the 11S, REGs, or PA26/PA28. This ATP-independent family, spanning from amoebas to mammals, exhibits a common architectural structure; yet, their cellular biology and criteria for protein degradation remain mostly elusive. We delve into their evolution and cellular biology, and contrast their structure and function comprehensively, emphasizing the unanswered questions regarding their regulatory mechanisms and broader roles in proteostasis. A deeper understanding of these processes will illuminate the roles of this regulatory family in biology and disease, thus contributing to the advancement of therapeutic strategies.
Collapse
Affiliation(s)
- Taylor Thomas
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O’Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553660. [PMID: 37645851 PMCID: PMC10462138 DOI: 10.1101/2023.08.17.553660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven β subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the β1, β2 and β5 subunits, while CP-17 binds the β2 and β5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lars Eckmann
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
24
|
Wu DG, Wang YN, Zhou Y, Gao H, Zhao B. Inhibition of the Proteasome Regulator PA28 Aggravates Oxidized Protein Overload in the Diabetic Rat Brain. Cell Mol Neurobiol 2023; 43:2857-2869. [PMID: 36715894 PMCID: PMC11410126 DOI: 10.1007/s10571-023-01322-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Oxidized protein overloading caused by diabetes is one accelerating pathological pathway in diabetic encephalopathy development. To determine whether the PA28-regulated function of the proteasome plays a role in diabetes-induced oxidative damaged protein degradation, brain PA28α and PA28β interference experiments were performed in a high-fat diet (HFD) and streptozotocin (STZ)-induced rat model. The present results showed that proteasome activity was changed in the brains of diabetic rats, but the constitutive subunits were not. In vivo PA28α and PA28β inhibition via adeno-associated virus (AAV) shRNA infection successfully decreased PA28 protein levels and further exacerbated oxidized proteins load by regulating proteasome catalytic activity. These findings suggest that the proteasome plays a role in the elimination of oxidized proteins and that PA28 is functionally involved in the regulation of proteasome activity in vivo. This study suggests that abnormal protein turbulence occurring in the diabetic brain could be explained by the proteasome-mediated degradation pathway. Changes in proteasome activity regulator PA28 could be a reason to induce oxidative aggregation in diabetic brain. Proteasome regulator PA28 inhibition in vivo by AAV vector injection could aggravate oxidized proteins abundance in brain of HFD-STZ diabetic rat model.
Collapse
Affiliation(s)
- Dong-Gui Wu
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
- Zhuhai People's Hospital, 79th Kangning Road, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yu-Na Wang
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Ye Zhou
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Han Gao
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Bei Zhao
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China.
- Li Yun-Qing Expert Workstation of Yunnan Province (No. 202005AF150014) based in Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
25
|
Deshmukh FK, Ben-Nissan G, Olshina MA, Füzesi-Levi MG, Polkinghorn C, Arkind G, Leushkin Y, Fainer I, Fleishman SJ, Tawfik D, Sharon M. Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family. Nat Commun 2023; 14:3126. [PMID: 37253751 DOI: 10.1038/s41467-023-38404-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 β-subunit with attenuation of the complex's three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome's enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.
Collapse
Affiliation(s)
- Fanindra Kumar Deshmukh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maria G Füzesi-Levi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Caley Polkinghorn
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dan Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
26
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Sahu I, Bajorek M, Tan X, Srividya M, Krutauz D, Reis N, Osmulski PA, Gaczynska ME, Glickman MH. A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing. Biomolecules 2023; 13:480. [PMID: 36979414 PMCID: PMC10046698 DOI: 10.3390/biom13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Bajorek
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Xiaolin Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Madabhushi Srividya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daria Krutauz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Noa Reis
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria E. Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael H. Glickman
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
28
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
29
|
Ermel UH, Arghittu SM, Frangakis AS. ArtiaX: An electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci 2022; 31:e4472. [PMID: 36251681 PMCID: PMC9667824 DOI: 10.1002/pro.4472] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Cryo-electron tomography analysis involves the selection of macromolecular complexes to be used for subsequent sub-tomogram averaging and structure determination. Here, we describe a plugin developed for UCSF ChimeraX that allows for the display, selection, and editing of particles within tomograms. Positions and orientations of selected particles can be manually set, modified and inspected in real time, both on screen and in virtual reality, and exported to various file formats. The plugin allows for the parallel visualization of particles stored in several meta data lists, in the context of any three-dimensional image that can be opened with UCSF ChimeraX. The particles are rendered in user-defined colors or using colormaps, such that individual classes or groups of particles, cross-correlation coefficients, or other types of information can be highlighted to the user. The implemented functions are fast, reliable, and intuitive, exploring the broad range of features in UCSF ChimeraX. They allow for a fluent human-machine interaction, which enables an effective understanding of the sub-tomogram processing pipeline, even for non-specialist users.
Collapse
Affiliation(s)
- Utz H. Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
| | - Serena M. Arghittu
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
- Buchmann Institute for Molecular Life SciencesFrankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Achilleas S. Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
| |
Collapse
|
30
|
Cecarini V, Selmi S, Cuccioloni M, Gong C, Bonfili L, Zheng Y, Cortese M, Angeletti M, Kilani S, Eleuteri AM. Targeting Proteolysis with Cyanogenic Glycoside Amygdalin Induces Apoptosis in Breast Cancer Cells. Molecules 2022; 27:7591. [PMID: 36364419 PMCID: PMC9657530 DOI: 10.3390/molecules27217591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed cancer among women, and its incidence and mortality are rapidly growing worldwide. In this regard, plant-derived natural compounds have been shown to be effective as chemotherapeutic and preventative agents. Apricot kernels are a rich source of nutrients including proteins, lipids, fibers, and phenolic compounds and contain the aromatic cyanogenic glycoside amygdalin that has been shown to exert a cytotoxic effect on cancer cells by affecting the cell cycle, inducing apoptosis, and regulating the immune function. METHODS Here, we describe a previously unexplored proapoptotic mechanism of action of amygdalin in breast cancer (MCF7) cells that involves the modulation of intracellular proteolysis. For comparative purposes, the same investigations were also conducted upon cell treatment with two apricot kernel aqueous extracts from Prunus armeniaca L. RESULTS We observed that both the 20S and 26S proteasome activities were downregulated in the MCF7 cells upon 24 h treatments. Simultaneously, the autophagy cascade resulted in being impaired due to cathepsin B and L inhibition that also contributed to a reduction in cancer cell migration. The inhibition of these proteolytic systems finally promoted the activation of apoptotic events in the MCF7 cells. CONCLUSION Collectively, our data unveil a novel mechanism of the anticancer activity of amygdalin, prompting further investigations for potential application in cancer preventative strategies.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Salima Selmi
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
- Department of Pharmaceutical Sciences A, Faculty of Pharmacy of Monastir, University of Monastir, Avicenne Street, Monastir 5019, Tunisia
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Manuela Cortese
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Soumaya Kilani
- Research Unit for Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
- Department of Pharmaceutical Sciences A, Faculty of Pharmacy of Monastir, University of Monastir, Avicenne Street, Monastir 5019, Tunisia
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
31
|
Yazgili AS, Ebstein F, Meiners S. The Proteasome Activator PA200/PSME4: An Emerging New Player in Health and Disease. Biomolecules 2022; 12:1150. [PMID: 36009043 PMCID: PMC9406137 DOI: 10.3390/biom12081150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Proteasomes comprise a family of proteasomal complexes essential for maintaining protein homeostasis. Accordingly, proteasomes represent promising therapeutic targets in multiple human diseases. Several proteasome inhibitors are approved for treating hematological cancers. However, their side effects impede their efficacy and broader therapeutic applications. Therefore, understanding the biology of the different proteasome complexes present in the cell is crucial for developing tailor-made inhibitors against specific proteasome complexes. Here, we will discuss the structure, biology, and function of the alternative Proteasome Activator 200 (PA200), also known as PSME4, and summarize the current evidence for its dysregulation in different human diseases. We hereby aim to stimulate research on this enigmatic proteasome regulator that has the potential to serve as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Ayse Seda Yazgili
- Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Max-Lebsche Platz 31, 81377 Munich, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ/7, 17475 Greifswald, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Sülfeld, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
| |
Collapse
|
32
|
Structural insights into the human PA28-20S proteasome enabled by efficient tagging and purification of endogenous proteins. Proc Natl Acad Sci U S A 2022; 119:e2207200119. [PMID: 35858375 PMCID: PMC9388094 DOI: 10.1073/pnas.2207200119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ability to produce folded and functional proteins is a necessity for structural biology and many other biological sciences. This task is particularly challenging for numerous biomedically important targets in human cells, including membrane proteins and large macromolecular assemblies, hampering mechanistic studies and drug development efforts. Here we describe a method combining CRISPR-Cas gene editing and fluorescence-activated cell sorting to rapidly tag and purify endogenous proteins in HEK cells for structural characterization. We applied this approach to study the human proteasome from HEK cells and rapidly determined cryogenic electron microscopy structures of major proteasomal complexes, including a high-resolution structure of intact human PA28αβ-20S. Our structures reveal that PA28 with a subunit stoichiometry of 3α/4β engages tightly with the 20S proteasome. Addition of a hydrophilic peptide shows that polypeptides entering through PA28 are held in the antechamber of 20S prior to degradation in the proteolytic chamber. This study provides critical insights into an important proteasome complex and demonstrates key methodologies for the tagging of proteins from endogenous sources.
Collapse
|
33
|
Thomas TA, Smith DM. Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. J Biol Chem 2022; 298:102140. [PMID: 35714770 PMCID: PMC9287138 DOI: 10.1016/j.jbc.2022.102140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Proteasome activator 28γ (PA28γ/REGγ) is a member of the 11S family of proteasomal regulators that is constitutively expressed in the nucleus and implicated in various diseases, including certain cancers and systemic lupus erythematosus. Despite years of investigation, how PA28γ functions to stimulate proteasomal protein degradation remains unclear. Alternative hypotheses have been proposed for the molecular mechanism of PA28γ, including the following: (1) substrate selection, (2) allosteric upregulation of the trypsin-like (T-L) site, (3) allosteric inhibition of the chymotrypsin-like (CT-L) and caspase-like (C-L) sites, (4) conversion of the CT-L or C-L sites to new T-L sites, and (5) gate opening alone or in combination with a previous hypothesis. Here, by mechanistically decoupling gating effects from active site effects, we unambiguously demonstrate that WT PA28γ allosterically activates the T-L site. We show PA28γ binding increases the Kcat/Km by 13-fold for T-L peptide substrates while having little-to-no effect on hydrolysis kinetics for CT-L or C-L substrates. Furthermore, mutagenesis and domain swaps of PA28γ reveal that it does not select for T-L peptide substrates through either the substrate entry pore or the distal intrinsically disordered region. We also show that a previously reported point mutation can functionally switch PA28γ from a T-L activating to a gate-opening activator in a mutually exclusive fashion. Finally, using cryogenic electron microscopy, we visualized the PA28γ-proteasome complex at 4.3 Å and confirmed its expected quaternary structure. The results of this study provide unambiguous evidence that PA28γ can function by binding the 20S proteasome to allosterically activate the T-L proteolytic site.
Collapse
Affiliation(s)
- Taylor A Thomas
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - David M Smith
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; Department of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; WVU Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA; WVU Cancer Institute, Morgantown, West Virginia, USA.
| |
Collapse
|
34
|
Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Nat Struct Mol Biol 2022; 29:791-800. [PMID: 35927584 PMCID: PMC9399903 DOI: 10.1038/s41594-022-00808-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Proteasome inhibitors are widely used as therapeutics and research tools, and typically target one of the three active sites, each present twice in the proteasome complex. An endogeneous proteasome inhibitor, PI31, was identified 30 years ago, but its inhibitory mechanism has remained unclear. Here, we identify the mechanism of Saccharomyces cerevisiae PI31, also known as Fub1. Using cryo-electron microscopy (cryo-EM), we show that the conserved carboxy-terminal domain of Fub1 is present inside the proteasome's barrel-shaped core particle (CP), where it simultaneously interacts with all six active sites. Targeted mutations of Fub1 disrupt proteasome inhibition at one active site, while leaving the other sites unaffected. Fub1 itself evades degradation through distinct mechanisms at each active site. The gate that allows substrates to access the CP is constitutively closed, and Fub1 is enriched in mutant CPs with an abnormally open gate, suggesting that Fub1 may function to neutralize aberrant proteasomes, thereby ensuring the fidelity of proteasome-mediated protein degradation.
Collapse
|
35
|
Sae-Lee W, McCafferty CL, Verbeke EJ, Havugimana PC, Papoulas O, McWhite CD, Houser JR, Vanuytsel K, Murphy GJ, Drew K, Emili A, Taylor DW, Marcotte EM. The protein organization of a red blood cell. Cell Rep 2022; 40:111103. [PMID: 35858567 PMCID: PMC9764456 DOI: 10.1016/j.celrep.2022.111103] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.
Collapse
Affiliation(s)
- Wisath Sae-Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Eric J Verbeke
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - John R Houser
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - George J Murphy
- Center for Regenerative Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - David W Taylor
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Enenkel C, Kang RW, Wilfling F, Ernst OP. Intracellular localization of the proteasome in response to stress conditions. J Biol Chem 2022; 298:102083. [PMID: 35636514 PMCID: PMC9218506 DOI: 10.1016/j.jbc.2022.102083] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin–proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid–liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.
Collapse
Affiliation(s)
- Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Ryu Won Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Mishto M, Horokhovskyi Y, Cormican JA, Yang X, Lynham S, Urlaub H, Liepe J. Database search engines and target database features impinge upon the identification of post-translationally cis-spliced peptides in HLA class I immunopeptidomes. Proteomics 2022; 22:e2100226. [PMID: 35184383 PMCID: PMC9286349 DOI: 10.1002/pmic.202100226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines - that is, Mascot, Mascot+Percolator, and PEAKS DB - as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods' performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- Francis Crick InstituteLondonUK
| | | | - John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Xiaoping Yang
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Steven Lynham
- Proteomics Core Facility, James Black CentreKing's CollegeLondonUK
| | - Henning Urlaub
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
- Institute of Clinical ChemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
38
|
Schnell HM, Walsh RM, Rawson S, Hanna J. Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights. J Cell Sci 2022; 135:275096. [PMID: 35451017 PMCID: PMC9080555 DOI: 10.1242/jcs.259622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much of cellular activity is mediated by large multisubunit complexes. However, many of these complexes are too complicated to assemble spontaneously. Instead, their biogenesis is facilitated by dedicated chaperone proteins, which are themselves excluded from the final product. This is the case for the proteasome, a ubiquitous and highly conserved cellular regulator that mediates most selective intracellular protein degradation in eukaryotes. The proteasome consists of two subcomplexes: the core particle (CP), where proteolysis occurs, and the regulatory particle (RP), which controls substrate access to the CP. Ten chaperones function in proteasome biogenesis. Here, we review the pathway of CP biogenesis, which requires five of these chaperones and proceeds through a highly ordered multistep pathway. We focus on recent advances in our understanding of CP assembly, with an emphasis on structural insights. This pathway of CP biogenesis represents one of the most dramatic examples of chaperone-mediated assembly and provides a paradigm for understanding how large multisubunit complexes can be produced.
Collapse
Affiliation(s)
- Helena M Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Richard M Walsh
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shaun Rawson
- Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
39
|
Schnell HM, Ang J, Rawson S, Walsh RM, Micoogullari Y, Hanna J. Mechanism of Proteasome Gate Modulation by Assembly Chaperones Pba1 and Pba2. J Biol Chem 2022; 298:101906. [PMID: 35398095 PMCID: PMC9065996 DOI: 10.1016/j.jbc.2022.101906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/04/2022] Open
Abstract
The active sites of the proteasome are housed within its central core particle (CP), a barrel-shaped chamber of four stacked heptameric rings, and access of substrates to the CP interior is mediated by gates at either axial end. These gates are constitutively closed and may be opened by the regulatory particle (RP), which binds the CP and facilitates substrate degradation. We recently showed that the heterodimeric CP assembly chaperones Pba1/2 also mediate gate opening through an unexpected structural arrangement that facilitates the insertion of the N terminus of Pba1 into the CP interior; however, the full mechanism of Pba1/2-mediated gate opening is unclear. Here, we report a detailed analysis of CP gate modulation by Pba1/2. The clustering of key residues at the interface between neighboring α-subunits is a critical feature of RP-mediated gate opening, and we find that Pba1/2 recapitulate this strategy. Unlike RP, which inserts at six α-subunit interfaces, Pba1/2 insert at only two α-subunit interfaces. Nevertheless, Pba1/2 are able to regulate six of the seven interfacial clusters, largely through direct interactions. The N terminus of Pba1 also physically interacts with the center of the gate, disrupting the intersubunit contacts that maintain the closed state. This novel mechanism of gate modulation appears to be unique to Pba1/2 and therefore likely occurs only during proteasome assembly. Our data suggest that release of Pba1/2 at the conclusion of assembly is what allows the nascent CP to assume its mature gate conformation, which is primarily closed, until activated by RP.
Collapse
|
40
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
41
|
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis. Cells 2022; 11:1058. [PMID: 35326509 PMCID: PMC8947704 DOI: 10.3390/cells11061058] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.
Collapse
Affiliation(s)
- Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, 3 East Qing Chun Rd, Hangzhou 310020, China;
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
42
|
The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Nat Commun 2022; 13:1226. [PMID: 35264557 PMCID: PMC8907193 DOI: 10.1038/s41467-022-28864-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
The 20S proteasome (20S) facilitates turnover of most eukaryotic proteins. Substrate entry into the 20S first requires opening of gating loops through binding of HbYX motifs that are present at the C-termini of certain proteasome activators (PAs). The HbYX motif has been predominantly characterized in the archaeal 20S, whereas little is known about the sequence preferences of the human 20S (h20S). Here, we synthesize and screen ~120 HbYX-like peptides, revealing unexpected differences from the archaeal system and defining the h20S recognition sequence as the Y-F/Y (YФ) motif. To gain further insight, we create a functional chimera of the optimized sequence, NLSYYT, fused to the model activator, PA26E102A. A cryo-EM structure of PA26E102A-h20S is used to identify key interactions, including non-canonical contacts and gate-opening mechanisms. Finally, we demonstrate that the YФ sequence preferences are tuned by valency, allowing multivalent PAs to sample greater sequence space. These results expand the model for termini-mediated gating and provide a template for the design of h20S activators. The proteasome complexes, composed of 20S core particles and one or two regulatory particles (proteasome activators), degrade most eukaryotic proteins. Here, the authors identify a sequence motif and resolve its interactions mediating the activation of the human 20S proteasome.
Collapse
|
43
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
44
|
Henneberg F, Chari A. Chromatography-Free Purification Strategies for Large Biological Macromolecular Complexes Involving Fractionated PEG Precipitation and Density Gradients. Life (Basel) 2021; 11:1289. [PMID: 34947821 PMCID: PMC8707722 DOI: 10.3390/life11121289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
A complex interplay between several biological macromolecules maintains cellular homeostasis. Generally, the demanding chemical reactions which sustain life are not performed by individual macromolecules, but rather by several proteins that together form a macromolecular complex. Understanding the functional interactions amongst subunits of these macromolecular machines is fundamental to elucidate mechanisms by which they maintain homeostasis. As the faithful function of macromolecular complexes is essential for cell survival, their mis-function leads to the development of human diseases. Furthermore, detailed mechanistic interrogation of the function of macromolecular machines can be exploited to develop and optimize biotechnological processes. The purification of intact macromolecular complexes is an essential prerequisite for this; however, chromatographic purification schemes can induce the dissociation of subunits or the disintegration of the whole complex. Here, we discuss the development and application of chromatography-free purification strategies based on fractionated PEG precipitation and orthogonal density gradient centrifugation that overcomes existing limitations of established chromatographic purification protocols. The presented case studies illustrate the capabilities of these procedures for the purification of macromolecular complexes.
Collapse
Affiliation(s)
- Fabian Henneberg
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany;
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
45
|
Duan J, Li W, Shu X, Yang B, He X, Guo X. Conserved Mitotic Phosphorylation of a Proteasome Subunit Regulates Cell Proliferation. Cells 2021; 10:3075. [PMID: 34831298 PMCID: PMC8620773 DOI: 10.3390/cells10113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists on the unassembled α5 subunit of the proteasome. The modified residue, α5-Ser16, is within a SP motif typically recognized by cyclin-dependent kinases (CDKs). Using a phospho-specific antibody generated against this site, we found that α5-S16 phosphorylation is mitosis-specific in both yeast and mammalian cells. Blocking this site with a S16A mutation caused growth defect and G2/M arrest of the cell cycle. α5-S16 phosphorylation depends on CDK1 activity and is highly abundant in some but not all mitotic cells. Immunoprecipitation and mass spectrometry (IP-MS) studies identified numerous proteins that could interact with phosphorylated α5, including PLK1, a key regulator of mitosis. α5-PLK1 interaction increased upon mitosis and could be facilitated by S16 phosphorylation. CDK1 activation downstream of PLK1 activity was delayed in S16A mutant cells, suggesting an important role of α5-S16 phosphorylation in regulating PLK1 and mitosis. These data have revealed an unappreciated function of "exo-proteasome" phosphorylation of a proteasome subunit and may bring new insights to our understanding of cell cycle control.
Collapse
Affiliation(s)
- Jinyuan Duan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Wenzhu Li
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
| | - Xin Shu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (J.D.); (W.L.); (X.S.); (B.Y.); (X.H.)
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Hangzhou 310058, China
| |
Collapse
|
46
|
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 2021; 12:6173. [PMID: 34702852 PMCID: PMC8548400 DOI: 10.1038/s41467-021-26427-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sachitanand M Mali
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roni Morag
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Sumeet K Singh
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zhanyu Ding
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sharleen Day
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Ashraf Brik
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
47
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
48
|
Yerlikaya A, Kanbur E. The Ubiquitin-Proteasome Pathway and Resistance Mechanisms Developed Against the Proteasomal Inhibitors in Cancer Cells. Curr Drug Targets 2021; 21:1313-1325. [PMID: 32448101 DOI: 10.2174/1389450121666200525004714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ubiquitin-proteasome pathway is crucial for all cellular processes and is, therefore, a critical target for the investigation and development of novel strategies for cancer treatment. In addition, approximately 30% of newly synthesized proteins never attain their final conformations due to translational errors or defects in post-translational modifications; therefore, they are also rapidly eliminated by the ubiquitin-proteasome pathway. OBJECTIVE Here, an effort was made to outline the recent findings deciphering the new molecular mechanisms involved in the regulation of ubiquitin-proteasome pathway as well as the resistance mechanisms developed against proteasome inhibitors in cell culture experiments and in the clinical trials. RESULTS Since cancer cells have higher proliferation rates and are more prone to translational errors, they require the ubiquitin-proteasome pathway for selective advantage and sustained proliferation. Therefore, drugs targeting the ubiquitin-proteasome pathway are promising agents for the treatment of both hematological and solid cancers. CONCLUSION A number of proteasome inhibitors are approved and used for the treatment of advanced and relapsed multiple myeloma. Unfortunately, drug resistance mechanisms may develop very fast within days of the start of the proteasome inhibitor-treatment either due to the inherent or acquired resistance mechanisms under selective drug pressure. However, a comprehensive understanding of the mechanisms leading to the proteasome inhibitor-resistance will eventually help the design and development of novel strategies involving new drugs and/or drug combinations for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biology, Kütahya, Turkey
| | - Ertan Kanbur
- Bursa Uludag University, Faculty of Medicine, Department of Immunology, Bursa, Turkey
| |
Collapse
|
49
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
50
|
Cecarini V, Cuccioloni M, Zheng Y, Bonfili L, Gong C, Angeletti M, Mena P, Del Rio D, Eleuteri AM. Flavan-3-ol Microbial Metabolites Modulate Proteolysis in Neuronal Cells Reducing Amyloid-beta (1-42) Levels. Mol Nutr Food Res 2021; 65:e2100380. [PMID: 34318994 PMCID: PMC9285603 DOI: 10.1002/mnfr.202100380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegeneration characterized by extensive protein aggregation and deposition in the brain, associated with defective proteasomal and autophagic-lysosomal proteolytic pathways. Since current drugs can only reduce specific symptoms, the identification of novel treatments is a major concern in AD research. Among natural compounds, (poly)phenols and their derivatives/metabolites are emerging as candidates in AD prevention due to their multiple beneficial effects. This study aims to investigate the ability of a selection of phenyl-γ-valerolactones, gut microbiota-derived metabolites of flavan-3-ols, to modulate the functionality of cellular proteolytic pathways. METHODS AND RESULTS Neuronal SH-SY5Y cells transfected with either the wild-type or the 717 valine-to-glycine amyloid precursor protein mutated gene are used as an AD model and treated with 5-(4'-hydroxyphenyl)-γ-valerolactone, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone and 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate. Combining in vitro and in silico studies, it is observed that the phenyl-γ-valerolactones of interest modulated cellular proteolysis via proteasome inhibition and consequent autophagy upregulation and inhibited cathepsin B activity, eventually reducing the amount of intra- and extracellular amyloid-beta (1-42) peptides. CONCLUSION The findings of this study establish, for the first time, that these metabolites exert a neuroprotective activity by regulating intracellular proteolysis and confirm the role of autophagy and cathepsin B as possible targets of AD preventive/therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | | | - Yadong Zheng
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Laura Bonfili
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Chunmei Gong
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Mauro Angeletti
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Pedro Mena
- Human Nutrition UnitDepartment of Food and DrugsUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Daniele Del Rio
- Human Nutrition UnitDepartment of Food and DrugsUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| |
Collapse
|