1
|
Zhou ZK, Hong K, Huang B, Narlikar GJ. Understanding how genetically encoded tags and crowding agents affect phase separation by heterochromatin protein HP1α. CELL REPORTS METHODS 2025; 5:101029. [PMID: 40262618 DOI: 10.1016/j.crmeth.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/03/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
The heterochromatin protein HP1α (heterochromatin protein 1 alpha) phase separates in vitro and displays properties compatible with phase separation in cells. Phase separation of HP1α in cells is typically studied using genetically encoded fluorescent tags such as green fluorescent protein (GFP). Whether such tags affect the intrinsic phase separation properties of HP1α is understudied. We assessed how tag size and linker length affect phase separation by HP1α in vitro. GFP tags inhibited phase separation by HP1α. In contrast, an UnaG tag with a 16 amino acid glycine-glycine-serine (GGS) linker minimally perturbed HP1α phase separation in vitro and could be used to visualize HP1α dynamics in cells. We further investigated the effects of a commonly used crowding agent, polyethylene glycol (PEG). PEG induced phase separation of proteins with no propensity to phase separate under physiological buffer conditions and dampened the effects of HP1α mutations. Therefore, phase separation of biological macromolecules with PEG-containing crowding agents should be interpreted with caution.
Collapse
Affiliation(s)
- Ziling Kate Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kibeom Hong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Lin L, He F, Jin X, Zhang X, Li Y, Wang D, Wang J, Zheng L, Song H, Zhu X, Cheng Q, Zhao Y, Liang J, Ma J, Gao J, Tong J, Shi L. Liquid-liquid phase separation in normal hematopoiesis and hematological diseases. Cell Tissue Res 2025:10.1007/s00441-025-03974-2. [PMID: 40381034 DOI: 10.1007/s00441-025-03974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging research field in cellular biology. LLPS-driven biomolecular condensates act as reaction chambers and regulatory hubs for critical processes, including chromatin architecture, gene expression, and metabolism. The dysregulation of these processes frequently impedes the proper execution of physiological functions. Current research indicates that abnormal phase separation plays a significant role in the pathogenesis of diseases and aging. This review briefly overviews the fundamental concepts and research methods related to phase separation. We also summarize studies concerning its physiological functions, particularly emphasizing its role in hematopoiesis. We further discuss how abnormal phase separation can lead to hematological disorders, specifically summarizing its involvement in the pathogenesis of leukemia. Despite recent advancements, elucidating LLPS mechanisms in hematopoiesis remains challenging due to the intricate interplay between biomolecular condensates and cellular function. Future research efforts aiming to reveal the role of LLPS in hematological diseases hold promise for novel therapeutic interventions and a deeper understanding of hematopoietic processes.
Collapse
Affiliation(s)
- Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Fang He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yitong Zhao
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Chen Y, Wan Y, Pei X, Wei Z, Wang T, Zhang J, Chen L. GATA3 differentially regulates the transcriptome via zinc finger 2-modulated phase separation. Cell Rep 2025; 44:115702. [PMID: 40372915 DOI: 10.1016/j.celrep.2025.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/28/2025] [Accepted: 04/24/2025] [Indexed: 05/17/2025] Open
Abstract
Phase separation (PS) underlies gene control by transcription factors. However, little is known about whether and how DNA-binding domains (DBDs) regulate the PS for transcription factors to differentially regulate the transcriptome. The transcription factor GATA3, a master immune regulator, is frequently mutated in breast cancer. Here, we report that GATA3 undergoes DBD-modulated PS to mediate the formation of chromatin condensates. We show that the DBD regulates the GATA3 PS through its zinc finger 2 (ZnF2) domain, which provides positive charges for multivalent electrostatic interactions mainly via two arginine amino acids, R329 and R330. Compared with breast-cancer-associated GATA3 without ZnF2-defective mutations, breast cancer GATA3 with ZnF2-defective mutations causes aberrant ZnF2-modulated PS and condensate formation to remodel the differentially regulated transcriptome, resulting in a favorable prognosis for patients and reduced tumor growth in mice. Therefore, GATA3 demonstrates a principle of how a transcription factor differentially regulates the transcriptome via DBD-modulated PS.
Collapse
Affiliation(s)
- Yatao Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yajie Wan
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoying Pei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Tan Wang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Liming Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Innovative Cancer Diagnosis & Therapeutics, Cancer Institute of Jiangsu Province, Nanjing 210009, China.
| |
Collapse
|
4
|
Park S, Merino-Urteaga R, Karwacki-Neisius V, Carrizo GE, Athreya A, Marin-Gonzalez A, Benning NA, Park J, Mitchener MM, Bhanu NV, Garcia BA, Zhang B, Muir TW, Pearce EL, Ha T. Native nucleosomes intrinsically encode genome organization principles. Nature 2025:10.1038/s41586-025-08971-7. [PMID: 40335690 DOI: 10.1038/s41586-025-08971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
The eukaryotic genome is packed into nucleosomes of 147 base pairs around a histone core and is organized into euchromatin and heterochromatin, corresponding to the A and B compartments, respectively1,2. Here we investigated whether individual nucleosomes contain sufficient information for 3D genomic organization into compartments, for example, in their biophysical properties. We purified native mononucleosomes to high monodispersity and used physiological concentrations of polyamines to determine their condensability. The chromosomal regions known to partition into A compartments have low condensability and those for B compartments have high condensability. Chromatin polymer simulations using condensability as the only input, without any trans factors, reproduced the A/B compartments. Condensability is also strongly anticorrelated with gene expression, particularly near the promoters and in a cell type-dependent manner. Therefore, mononucleosomes have biophysical properties associated with genes being on or off. Comparisons with genetic and epigenetic features indicate that nucleosome condensability is an emergent property, providing a natural axis on which to project the high-dimensional cellular chromatin state. Analysis using various condensing agents or histone modifications and mutations indicates that the genome organization principle encoded into nucleosomes is mostly electrostatic in nature. Polyamine depletion in mouse T cells, resulting from either knocking out or inhibiting ornithine decarboxylase, results in hyperpolarized condensability, indicating that when cells cannot rely on polyamines to translate the biophysical properties of nucleosomes to 3D genome organization, they accentuate condensability contrast, which may explain the dysfunction observed with polyamine deficiency3-5.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Violetta Karwacki-Neisius
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gustavo Ezequiel Carrizo
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Advait Athreya
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Alberto Marin-Gonzalez
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nils A Benning
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jonghan Park
- College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Bin Zhang
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Erika L Pearce
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Obuse C, Nakayama JI. Functional involvement of RNAs and intrinsically disordered proteins in the assembly of heterochromatin. Biochim Biophys Acta Gen Subj 2025; 1869:130790. [PMID: 40057003 DOI: 10.1016/j.bbagen.2025.130790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025]
Abstract
Heterochromatin is a highly condensed chromatin structure observed in the nuclei of eukaryotic cells. It plays a pivotal role in repressing undesired gene expression and establishing functional chromosomal domains, including centromeres and telomeres. Heterochromatin is characterized by specific histone modifications and the formation of higher-order chromatin structures mediated by proteins, such as HP1 and Polycomb repressive complexes (PRCs), which recognize the specific histone modifications. Recent studies have identified the involvement of non-coding RNAs (ncRNAs) and intrinsically disordered proteins (IDPs) in heterochromatin, leading to the proposal of a new model in which liquid-liquid phase separation (LLPS) contributes to heterochromatin formation and function. This emerging model not only broadens our understanding of heterochromatin's molecular mechanisms but also provides insights into its dynamic regulation depending on cellular context. Such advancements pave the way for exploring heterochromatin's role in genome organization and stability, as well as its implications in development and disease.
Collapse
Affiliation(s)
- Chikashi Obuse
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan; Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Hammonds EF, Singh A, Suresh KK, Yang S, Zahorodny SSM, Gupta R, Potoyan DA, Banerjee PR, Morrison EA. Histone H3 tail charge patterns govern nucleosome condensate formation and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.647968. [PMID: 40291647 PMCID: PMC12027143 DOI: 10.1101/2025.04.09.647968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Emerging models of nuclear organization suggest that chromatin forms functionally distinct microenvironments through phase separation. As chromatin architecture is organized at the level of the nucleosome and regulated by histone post-translational modifications, we investigated how these known regulatory mechanisms influence nucleosome phase behavior. By systematically altering charge distribution within the H3 tail, we found that specific regions modulate the phase boundary and tune nucleosome condensate viscosity, as revealed by microscopy-based assays, microrheology, and simulations. Nuclear magnetic resonance relaxation experiments showed that H3 tails remain dynamically mobile within condensates, and their mobility correlates with condensate viscosity. These results demonstrate that the number, identity, and spatial arrangement of basic residues in the H3 tail critically regulate nucleosome phase separation. Our findings support a model in which nucleosomes, through their intrinsic properties and modifications, actively shape the local chromatin microenvironment-providing new insight into the histone language in chromatin condensates.
Collapse
|
7
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
9
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
10
|
Li Z, Portillo-Ledesma S, Janani M, Schlick T. Incorporating multiscale methylation effects into nucleosome-resolution chromatin models for simulating mesoscale fibers. J Chem Phys 2025; 162:094107. [PMID: 40047512 PMCID: PMC11888786 DOI: 10.1063/5.0242199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3.
Collapse
Affiliation(s)
| | | | - Moshe Janani
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA
| | | |
Collapse
|
11
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Shen S, Chen F, Zhang Y, Li F, Yao X, Liu D, Shi Y, Zhang L. TRIM66-HP1γ remodels the chromatin through phase separation. BIOPHYSICS REPORTS 2025; 11:18-33. [PMID: 40070663 PMCID: PMC11891075 DOI: 10.52601/bpr.2024.240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025] Open
Abstract
Chromatin contains not only heterochromatin (HC) and euchromatins (EC) but also facultative heterochromatin (fHC), which experience the dynamic remodeling between HCs and ECs by different regulators. The regulation of fHCs involves lots of different cell functions, like genomic stability and gene transcription. Heterochromatin protein 1 (HP1) recognizes methylated H3K9 and reshapes the chromatin into the fHCs through liquid-liquid phase separation (LLPS). Among the three members of the HP1 family, HP1α can condensate by itself and HP1β forms granules with the help of TRIM28, while the HP1γ cannot phase separation alone either and the coordinator is still unclear. So, in this study, we investigated the molecular mechanism of how HP1γ interacts with TRIM66 through PxVxL motif. Based on that, we examined the key regions that controlled the TRIM66-HP1γ co-phase separation behaviors both in vitro and in vivo. Furthermore, we proved that the liquid granules of TRIM66-HP1γ and chromatin highly correlated with H3K9me3 sites, which indicated the relationship with DNA damage response. Finally, combined with our previous study, we proposed the system for how TRIM66 remodeled the chromatin into compressed fHC through the TRIM66-HP1γ-H3K9me3 axis with liquid-liquid phase separation.
Collapse
Affiliation(s)
- Siyuan Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Yifan Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Fudong Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Yunyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| | - Liang Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
- Hefei National Research Center for Cross disciplinary Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
13
|
Qu T, Zhang C, Lu X, Dai J, He X, Li W, Han L, Yin D, Zhang E. 8q24 derived ZNF252P promotes tumorigenesis by driving phase separation to activate c-Myc mediated feedback loop. Nat Commun 2025; 16:1986. [PMID: 40011431 PMCID: PMC11865308 DOI: 10.1038/s41467-025-56879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
As a well-known cancer risk region, the 8q24 locus is frequently amplified in a variety of solid tumors. Here we identify a pseudogene-derived oncogenic lncRNA, ZNF252P, which is upregulated in a variety of cancer types by copy number gain as well as c-Myc-mediated transcriptional activation. Mechanistically, ZNF252P binds and drives "phase separation" of HNRNPK and ILF3 protein in the nucleus and cytoplasm, respectively, to transcriptionally and posttranscriptionally activate c-Myc, thus forming a c-Myc/ZNF252P/c-Myc positive feedback loop. These findings expand the understanding of the relationship between genomic instability in the 8q24 region and tumorigenesis and clarify a regulatory mechanism involved in transcription and posttranscription from the perspective of RNA-mediated nuclear and cytoplasmic protein phase separation, which sheds light on the dialogue with the driver oncogene c-Myc. The pivotal regulatory axis of ZNF252P/c-Myc has potential as a promising biomarker and therapeutic target in cancer development.
Collapse
Affiliation(s)
- Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Ding M, Wang D, Chen H, Kesner B, Grimm NB, Weissbein U, Lappala A, Jiang J, Rivera C, Lou J, Li P, Lee JT. A biophysical basis for the spreading behavior and limited diffusion of Xist. Cell 2025; 188:978-997.e25. [PMID: 39824183 PMCID: PMC11863002 DOI: 10.1016/j.cell.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome. HNRNPK droplets pull on Xist and internalize the RNA. Once internalized, Xist induces a further phase transition and "softens" the HNRNPK droplet. Xist alters the condensate's deformability, adhesiveness, and wetting properties in vitro. Other Xist-interacting proteins are internalized and entrapped within the droplet, resulting in a concentration of Xist and protein partners within the condensate. We attribute LLPS to HNRNPK's RGG and Xist's repeat B (RepB) motifs. Mutating these motifs causes Xist diffusion, disrupts polycomb recruitment, and precludes the required mixing of chromosomal compartments for Xist's migration. Thus, we hypothesize that phase transitions in HNRNPK condensates allow Xist to locally concentrate silencing factors and to spread through internal channels of the HNRNPK-encapsulated chromosome.
Collapse
Affiliation(s)
- Mingrui Ding
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hui Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Attar AG, Paturej J, Sariyer OS, Banigan EJ, Erbas A. Peripheral heterochromatin tethering is required for chromatin-based nuclear mechanical response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637704. [PMID: 39990304 PMCID: PMC11844546 DOI: 10.1101/2025.02.12.637704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The cell nucleus is a mechanically responsive structure that governs how external forces affect chromosomes. Chromatin, particularly transcriptionally inactive heterochromatin, resists nuclear deformations through its mechanical response. However, chromatin also exhibits liquid-like properties, casting ambiguity on the physical mechanisms of chromatin-based nuclear elasticity. To determine how heterochromatin strengthens nuclear mechanical response, we performed polymer physics simulations of a nucleus model validated by micromechanical measurements and chromosome conformation capture data. The attachment of peripheral heterochromatin to the lamina is required to transmit forces directly to the chromatin and elicit its elastic response. Thus, increases in heterochromatin levels increase nuclear rigidity by increasing the linkages between chromatin and the lamina. Crosslinks within heterochromatin, such as HP1 α proteins, can also stiffen nuclei, but only if chromatin is peripherally tethered. In contrast, heterochromatin affinity interactions that may drive liquid-liquid phase separation do not contribute to nuclear rigidity. When the nucleus is stretched, gel-like peripheral heterochromatin can bear stresses and deform, while the more fluid-like interior euchromatin is less perturbed. Thus, heterochromatin's internal structure and stiffness may regulate nuclear mechanics via peripheral attachment to the lamina, while also enabling nuclear mechanosensing of external forces and external measurement of the nucleus' internal architecture.
Collapse
|
16
|
Erkelens AM, van Erp B, Meijer WJJ, Dame RT. Rok from B. subtilis: Bridging genome structure and transcription regulation. Mol Microbiol 2025; 123:109-123. [PMID: 38511404 PMCID: PMC11841835 DOI: 10.1111/mmi.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors. In this review, we provide arguments supporting this view using the Gram-positive bacterium Bacillus subtilis as a model. Proteins BsSMC, HBsu and Rok all impact the structure of the B. subtilis chromosome. Particularly for Rok, there is compelling evidence that it combines its structural function with a role as global gene regulator. Many studies describe either function of Rok, but rarely both are addressed at the same time. Here, we review both sides of the coin and integrate them into one model. Rok forms unusually stable DNA-DNA bridges and this ability likely underlies its repressive effect on transcription by either preventing RNA polymerase from binding to DNA or trapping it inside DNA loops. Partner proteins are needed to change or relieve Rok-mediated gene repression. Lastly, we investigate which features characterize H-NS-like proteins, a family that, at present, lacks a clear definition.
Collapse
Affiliation(s)
- Amanda M. Erkelens
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
- Present address:
Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Bert van Erp
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)C. Nicolás Cabrera 1, Universidad AutónomaMadridSpain
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden UniversityLeidenthe Netherlands
- Centre for Microbial Cell BiologyLeiden UniversityLeidenthe Netherlands
- Centre for Interdisciplinary Genome ResearchLeiden UniversityLeidenthe Netherlands
| |
Collapse
|
17
|
Ma N, Li X, Ci D, Zeng HY, Zhang C, Xie X, Zhong C, Deng XW, Li D, He H. Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408861. [PMID: 39731323 PMCID: PMC11831494 DOI: 10.1002/advs.202408861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Indexed: 12/29/2024]
Abstract
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood. This study integrates Hi-C data from diverse plant species, demonstrating that nuclear DNA content influences large-scale chromosome conformation and affects the finer details of compartmental patterns. These contrasting compartmental patterns are distinguished by gene-to-gene loops and validated through cytological observations. Additionally, a novel chromatin domain type associated with tandem duplicate gene clusters is identified. These domains are independent of H3K27me3-mediated chromatin compartmentalization and exhibit evolutionary conservation across species. Gene pairs within TAD-like domains are younger and show higher levels of coexpression. These domains potentially promote the formation of tandem duplicates, a property appears unique to the Actinidia family. Overall, this study reveals functional chromatin domains in plants and provides evidence for the role of three-dimensional chromatin architecture in gene regulation and genome evolution.
Collapse
Affiliation(s)
- Ni Ma
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Xiaopeng Li
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dong Ci
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Hai Yue Zeng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Congxiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xiaodong Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| |
Collapse
|
18
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
19
|
Li C, Bian Y, Tang Y, Meng L, Yin P, Hong Y, Cheng J, Li Y, Lin J, Tang C, Chen C, Li W, Qi Z. Deciphering the molecular mechanism underlying morphology transition in two-component DNA-protein cophase separation. Structure 2025; 33:62-77.e8. [PMID: 39541973 DOI: 10.1016/j.str.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/10/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Nucleic acid and protein co-condensates exhibit diverse morphologies crucial for fundamental cellular processes. Despite many previous studies that advanced our understanding of this topic, several interesting biophysical questions regarding the underlying molecular mechanisms remain. We investigated DNA and human transcription factor p53 co-condensates-a scenario where neither dsDNA nor the protein demonstrates phase-separation behavior individually. Through a combination of experimental assays and theoretical approaches, we elucidated: (1) the phase diagram of DNA-protein co-condensates at a certain observation time, identifying a phase transition between viscoelastic fluid and viscoelastic solid states, and a morphology transition from droplet-like to "pearl chain"-like co-condensates; (2) the growth dynamics of co-condensates. Droplet-like and "pearl chain"-like co-condensates share a common initial critical microscopic cluster size at the nanometer scale during the early stage of phase separation. These findings provide important insights into the biophysical mechanisms underlying multi-component phase separation within cellular environments.
Collapse
Affiliation(s)
- Cheng Li
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yiting Tang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China
| | - Lingyu Meng
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peipei Yin
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ye Hong
- The Integrated Science Program, Yuanpei College, Peking University, Beijing 100871, China
| | - Jun Cheng
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuchen Li
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Physics, Peking University, Beijing 100871, China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Department of Physics, National Laboratory of Solid-State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Physics, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Lukose B, Goyal S, Naganathan AN. Oligomerization-mediated phase separation in the nucleoid-associated sensory protein H-NS is controlled by ambient cues. Protein Sci 2025; 34:e5250. [PMID: 39660932 PMCID: PMC11633056 DOI: 10.1002/pro.5250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/26/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024]
Abstract
H-NS, a nucleoid-associated protein (NAP) from enterobacteria, regulates gene expression by dynamically transducing environmental cues to conformational assembly and DNA binding. In this work, we show that H-NS from Escherichia coli, which can assemble into octameric and tetrameric oligomerization states, forms spontaneous micron-sized liquid-like condensates with DNA at sub-physiological concentrations in vitro. The heterotypic condensates are metastable at 298 K, partially solubilizing with time, while still retaining their liquid-like properties. The condensates display UCST-like phase behavior solubilizing at higher temperatures, but with a large decrease in droplet-assembly propensities at 310 K and at higher ionic strength. Condensate formation can be tuned in a cyclic manner between 298 and 310 K with the extent of reversibility determined by the incubation time, highlighting strong hysteresis. An engineered phospho-mimetic variant of H-NS (Y61E), which is dimeric and only weakly binds DNA, is unable to form condensates. The Y61E mutant solubilizes pre-formed H-NS condensates with DNA in a few minutes with nearly an order of magnitude speed-up in droplet dissolution at 310 K relative to 298 K, demonstrating rapid molecular transport between dilute and condensed phases. Our results establish that the oligomerization of H-NS is intrinsically tied not only to DNA binding but also its phase-separation tendencies, while showcasing the regulatable and programmable nature of heterotypic condensates formed by an archetypal NAP via multiple cues and their lifetimes.
Collapse
Affiliation(s)
- Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Saloni Goyal
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| |
Collapse
|
21
|
Huang X, Ma Z, He D, Han X, Liu X, Dong Q, Tan C, Yu B, Sun T, Nordenskiöld L, Lu L, Miao Y, Hou X. Molecular condensation of the CO/NF-YB/NF-YC/FT complex gates floral transition in Arabidopsis. EMBO J 2025; 44:225-250. [PMID: 39567828 PMCID: PMC11696179 DOI: 10.1038/s44318-024-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
The plant master photoperiodic regulator CONSTANS (CO) interacts with Nuclear Factor-Y subunits B2 (NF-YB2) and C9 (NF-YC9) and transcriptionally activates the florigen gene FLOWERING LOCUS T (FT), regulating floral transition. However, the molecular mechanism of the functional four-component complex assembly in the nucleus remains elusive. We report that co-phase separation of CO with NF-YB2/NF-YC9/FT precisely controls heterogeneous CO assembly and FT transcriptional activation. In response to light signals, CO proteins form functional percolation clusters from a diffuse distribution in a B-box-motif-dependent manner. Multivalent coassembly with NF-YC9 and NF-YB2 prevents inhibitory condensate formation and is necessary to maintain proper CO assembly and material properties. The intrinsically disordered region (IDR) of NF-YC9, containing a polyglutamine motif, fine-tunes the functional properties of CO/NF-YB/NF-YC condensates. Specific FT promoter recognition with polyelectrolyte partitioning also enables the fluidic functional properties of CO/NF-YB/NF-YC/FT condensates. Our findings offer novel insights into the tunable macromolecular condensation of the CO/NF-YB/NF-YC/FT complex in controlling flowering in the photoperiod control.
Collapse
Affiliation(s)
- Xiang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Danxia He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Dong
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921, Singapore.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Li Y, Ge S, Liu J, Sun D, Xi Y, Chen P. Nuclear Structure, Size Regulation, and Role in Cell Migration. Cells 2024; 13:2130. [PMID: 39768219 PMCID: PMC11675058 DOI: 10.3390/cells13242130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The nucleus serves as a pivotal regulatory and control hub in the cell, governing numerous aspects of cellular functions, including DNA replication, transcription, and RNA processing. Therefore, any deviations in nuclear morphology, structure, or organization can strongly affect cellular activities. In this review, we provide an updated perspective on the structure and function of nuclear components, focusing on the linker of nucleoskeleton and cytoskeleton complex, the nuclear envelope, the nuclear lamina, and chromatin. Additionally, nuclear size should be considered a fundamental parameter for the cellular state. Its regulation is tightly linked to environmental changes, development, and various diseases, including cancer. Hence, we also provide a concise overview of different mechanisms by which nuclear size is determined, the emerging role of the nucleus as a mechanical sensor, and the implications of altered nuclear morphology on the physiology of diseased cells.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Shanghao Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Jiayi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Deseng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| | - Pan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China;
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China (D.S.); (Y.X.)
| |
Collapse
|
23
|
Attar AG, Paturej J, Banigan EJ, Erbaş A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. Nucleus 2024; 15:2351957. [PMID: 38753956 PMCID: PMC11407394 DOI: 10.1080/19491034.2024.2351957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.
Collapse
Affiliation(s)
- Ali Goktug Attar
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | | | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Institute of Physics, University of Silesia, Chorzów, Poland
| |
Collapse
|
24
|
Korsak S, Banecki K, Plewczynski D. Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome. Comput Struct Biotechnol J 2024; 23:3537-3548. [PMID: 39435339 PMCID: PMC11492436 DOI: 10.1016/j.csbj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Motivation: We present a user-friendly 3D chromatin simulation model for the human genome based on OpenMM, addressing the challenges posed by existing models with use-specific implementations. Our approach employs a multi-scale energy minimization strategy, capturing chromatin's hierarchical structure. Initiating with a Hilbert curve-based structure, users can input files specifying nucleosome positioning, loops, compartments, or subcompartments. Results: The model utilizes an energy minimization approach with a large choice of numerical integrators, providing the entire genome's structure within minutes. Output files include the generated structures for each chromosome, offering a versatile and accessible tool for chromatin simulation in bioinformatics studies. Furthermore, MultiMM is capable of producing nucleosome-resolution structures by making simplistic geometric assumptions about the structure and the density of nucleosomes on the DNA. Code availability: Open-source software and the manual are freely available on https://github.com/SFGLab/MultiMM or via pip https://pypi.org/project/MultiMM/.
Collapse
Affiliation(s)
- Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Golembeski A, Lequieu J. A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin. J Phys Chem B 2024; 128:10593-10603. [PMID: 39413416 PMCID: PMC11533178 DOI: 10.1021/acs.jpcb.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation. By leveraging a multiscale approach, our molecular model is able to reproduce chromatin's chemical and structural details at the level of a few nanometers, yet remain efficient enough to simulate chromatin phase separation across 100 nm length scales. We first demonstrate that our model can reproduce key experiments of phase separating nucleosomal arrays, and then apply our model to quantify the interactions that drive their formation into chromatin condensates with either liquid- or solid-like material properties. We next use our model to characterize the molecular structure within chromatin condensates and find that this structure is irregularly ordered and is inconsistent with existing 30 nm fiber models. Lastly we examine how post-translational modifications can modulate chromatin phase separation and how the acetylation of chromatin can lead to chromatin decompaction while still preserving phase separation. Taken together, our work provides a molecular view into the structure and dynamics of phase-separated chromatin and provides new insights into how phase separation might manifest in the nucleus of living cells.
Collapse
Affiliation(s)
- Andrew Golembeski
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Lequieu
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
27
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Xie J, Lu ZN, Bai SH, Cui XF, Lian HY, Xie CY, Wang N, Wang L, Han ZG. Heterochromatin formation and remodeling by IRTKS condensates counteract cellular senescence. EMBO J 2024; 43:4542-4577. [PMID: 39192031 PMCID: PMC11480336 DOI: 10.1038/s44318-024-00212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Ning Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi-Hao Bai
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Fang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - He-Yuan Lian
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen-Yi Xie
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
Chen R, Shen F, Zhang Y, Sun M, Dong Y, Yin Y, Su C, Peng C, Liu J, Xu J. Calcium modulates the tethering of BCOR-PRC1.1 enzymatic core to KDM2B via liquid-liquid phase separation. Commun Biol 2024; 7:1112. [PMID: 39256555 PMCID: PMC11387744 DOI: 10.1038/s42003-024-06820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Recruitment of non-canonical BCOR-PRC1.1 to non-methylated CpG islands via KDM2B plays a fundamental role in transcription control during developmental processes and cancer progression. However, the mechanism is still largely unknown on how this recruitment is regulated. Here, we unveiled the importance of the Poly-D/E regions within the linker of BCOR for its binding to KDM2B. Interestingly, we also demonstrated that these negatively charged Poly-D/E regions on BCOR play autoinhibitory roles in liquid-liquid phase separation (LLPS) of BCORANK-linker-PUFD/PCGF1RAWUL. Through neutralizing negative charges of these Poly-D/E regions, Ca2+ not only weakens the interaction between BCOR/PCGF1 and KDM2B, but also promotes co-condensation of the enzymatic core of BCOR-PRC1.1 with KDM2B into liquid-like droplet. Accordingly, we propose that Ca2+ could modulate the compartmentation and recruitment of the enzymatic core of BCOR-PRC1.1 on KDM2B target loci. Thus, our finding advances the mechanistic understanding on how the tethering of BCOR-PRC1.1 enzymatic core to KDM2B is regulated.
Collapse
Affiliation(s)
- Rui Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Shen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingze Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Jinsong Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
30
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Zhan Z, Zhang J, Liang H, Wang C, Hong L, Liu W. KAT6A Condensates Impair PARP1 Trapping of PARP Inhibitors in Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400140. [PMID: 38973255 PMCID: PMC11425913 DOI: 10.1002/advs.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/04/2024] [Indexed: 07/09/2024]
Abstract
Most clinical PARP inhibitors (PARPis) trap PARP1 in a chromatin-bound state, leading to PARPi-mediated cytotoxicity. PARPi resistance impedes the treatment of ovarian cancer in clinical practice. However, the mechanism by which cancer cells overcome PARP1 trapping to develop PARPi resistance remains unclear. Here, it is shown that high levels of KAT6A promote PARPi resistance in ovarian cancer, regardless of its catalytic activity. Mechanistically, the liquid-liquid phase separation (LLPS) of KAT6A, facilitated by APEX1, inhibits the cytotoxic effects of PARP1 trapping during PARPi treatment. The stable KAT6A-PARP1-APEX1 complex reduces the amount of PARP1 trapped at the DNA break sites. In addition, inhibition of KAT6A LLPS, rather than its catalytic activity, impairs DNA damage repair and restores PARPi sensitivity in ovarian cancer both in vivo and in vitro. In conclusion, the findings demonstrate the role of KAT6A LLPS in fostering PARPi resistance and suggest that repressing KAT6A LLPS can be a potential therapeutic strategy for PARPi-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhiyan Zhan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Clinical Research Center, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jiarong Zhang
- Department of Obstetrics and GynecologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Huisheng Liang
- Department of GynecologyZhongshan Hospital, Fudan University (Xiamen Branch)Xiamen361000China
| | - Chong Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of MedicineShanghai Jiao Tong University85 Wujin RoadShanghai200080China
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Clinical Research Center, Shanghai Children's Medical Center, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenxue Liu
- Department of Obstetrics and GynecologyZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
32
|
He R, Dong T, Chu J, Wang Y, Wang X, Song Y, Sun Y. Phaser-Trim: A Phase Separation Based Genetically Encoded Reporter for H3K9 Trimethylation in Living Cells. Anal Chem 2024; 96:13007-13014. [PMID: 39101551 DOI: 10.1021/acs.analchem.4c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Histone methylation is a key epigenetic modification that regulates the chromatin structure and gene expression for proper cellular and physiological processes. Aberrant histone methylation patterns are implicated in many diseases. Therefore, monitoring histone methylation dynamics in living cells and species is essential for elucidating its regulatory mechanisms and identifying potential therapeutic targets. However, current methods for detecting histone methylation are limited by their low sensitivity and specificity. To overcome this challenge, we have developed a genetically encoded biosensor named Phaser-Trim (Phase separation based genetically encoded reporter for H3K9 Trimethylation) to detect the dynamic changes of H3K9me3 in living cells and species through the generation and disappearance of phase-separated droplets. Phaser-Trim demonstrates advantages of clear phenotypic characteristics, convenient operation, quantitative accuracy, biocompatibility, high specificity, and superior imaging performance with high signal-to-background ratio (SBR) for in vivo animal imaging. Using Phaser-Trim, we have successfully detected the dynamics of the H3K9me3 level during the differentiation of neural stem cells in Drosophila. Furthermore, Phaser-Trim also holds promise for application in high-throughput screening systems to facilitate the discovery of novel anticancer drugs.
Collapse
Affiliation(s)
- Renxi He
- National Biomedical Imaging Center, College of Future Technology, State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Tian Dong
- National Biomedical Imaging Center, College of Future Technology, State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Jingyi Chu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yao Wang
- National Biomedical Imaging Center, College of Future Technology, State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xiaotian Wang
- National Biomedical Imaging Center, College of Future Technology, State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Sun
- National Biomedical Imaging Center, College of Future Technology, State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| |
Collapse
|
33
|
Yu Z, Wang Q, Zhang Q, Tian Y, Yan G, Zhu J, Zhu G, Zhang Y. Decoding the genomic landscape of chromatin-associated biomolecular condensates. Nat Commun 2024; 15:6952. [PMID: 39138204 PMCID: PMC11322608 DOI: 10.1038/s41467-024-51426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Biomolecular condensates play a significant role in chromatin activities, primarily by concentrating and compartmentalizing proteins and/or nucleic acids. However, their genomic landscapes and compositions remain largely unexplored due to a lack of dedicated computational tools for systematic identification in vivo. To address this, we develop CondSigDetector, a computational framework designed to detect condensate-like chromatin-associated protein co-occupancy signatures (CondSigs), to predict genomic loci and component proteins of distinct chromatin-associated biomolecular condensates. Applying this framework to mouse embryonic stem cells (mESC) and human K562 cells enable us to depict the high-resolution genomic landscape of chromatin-associated biomolecular condensates, and uncover both known and potentially unknown biomolecular condensates. Multi-omics analysis and experimental validation further verify the condensation properties of CondSigs. Additionally, our investigation sheds light on the impact of chromatin-associated biomolecular condensates on chromatin activities. Collectively, CondSigDetector provides an approach to decode the genomic landscape of chromatin-associated condensates, facilitating a deeper understanding of their biological functions and underlying mechanisms in cells.
Collapse
Affiliation(s)
- Zhaowei Yu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qi Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qichen Zhang
- Pancreatic Intensive Care Unit, Changhai hospital, Naval Medical University, Shanghai, 200433, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Yawen Tian
- Lingang Laboratory, Shanghai, 200031, China
| | - Guo Yan
- Lingang Laboratory, Shanghai, 200031, China
| | - Jidong Zhu
- Etern Biopharma, Shanghai, 201203, China
| | - Guangya Zhu
- Lingang Laboratory, Shanghai, 200031, China.
| | - Yong Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
34
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
35
|
Nie Y, Wang M. Dynamic Changes in Histone Modifications Are Associated with Differential Chromatin Interactions. Genes (Basel) 2024; 15:988. [PMID: 39202349 PMCID: PMC11353334 DOI: 10.3390/genes15080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Eukaryotic genomes are organized into chromatin domains through long-range chromatin interactions which are mediated by the binding of architectural proteins, such as CTCF and cohesin, and histone modifications. Based on the published Hi-C and ChIP-seq datasets in human monocyte-derived macrophages, we identified 206 and 127 differential chromatin interactions (DCIs) that were not located within transcription readthrough regions in influenza A virus- and interferon β-treated cells, respectively, and found that the binding positions of CTCF and RAD21 within more than half of the DCI sites did not change. However, five histone modifications, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3, showed significantly more dramatic changes than CTCF and RAD21 within the DCI sites. For H3K4me3, H3K27ac, H3K36me3, and H3K27me3, significantly more dramatic changes were observed outside than within the DCI sites. We further applied a motif scanning approach to discover proteins that might correlate with changes in histone modifications and chromatin interactions and found that PRDM9, ZNF384, and STAT2 frequently bound to DNA sequences corresponding to 1 kb genomic intervals with gains or losses of a histone modification within the DCI sites. This study explores the dynamic regulation of chromatin interactions and extends the current knowledge of the relationship between histone modifications and chromatin interactions.
Collapse
Affiliation(s)
- Yumin Nie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | | |
Collapse
|
36
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
37
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. Biophys J 2024; 123:1815-1826. [PMID: 38824391 PMCID: PMC11267431 DOI: 10.1016/j.bpj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
38
|
Salari H, Fourel G, Jost D. Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization. Nat Commun 2024; 15:5393. [PMID: 38918438 PMCID: PMC11199603 DOI: 10.1038/s41467-024-49727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.
Collapse
Affiliation(s)
- Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France.
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007, Lyon, France.
| | - Geneviève Fourel
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
39
|
Deshpande P, Prentice E, Vidal Ceballos A, Casaccia P, Elbaum-Garfinkle S. Epigenetic marks uniquely tune the material properties of HP1α condensates. Biophys J 2024; 123:1508-1518. [PMID: 38664966 PMCID: PMC11163287 DOI: 10.1016/j.bpj.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates remains to be understood. Here, we leverage a reductionist system, composed of modified and unmodified histone H3 peptides, HP1α, and DNA, to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, whereas peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. Using fluorescence microscopy and rheological approaches, we further demonstrate that H3K9me3 histone peptides modulate the dynamics and viscoelastic network properties of HP1α condensates in a concentration-dependent manner. Additionally, in cells exposed to uniaxial strain, we find there to be a decreased ratio of nuclear H3K9me3 to HP1α. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells and in response to mechanostimulation.
Collapse
Affiliation(s)
- Priyasha Deshpande
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Emily Prentice
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York
| | - Patrizia Casaccia
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, New York.
| | - Shana Elbaum-Garfinkle
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York; Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, New York; Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, New York; Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York.
| |
Collapse
|
40
|
Akilli N, Cheutin T, Cavalli G. Phase separation and inheritance of repressive chromatin domains. Curr Opin Genet Dev 2024; 86:102201. [PMID: 38701672 DOI: 10.1016/j.gde.2024.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Polycomb-associated chromatin and pericentromeric heterochromatin form genomic domains important for the epigenetic regulation of gene expression. Both Polycomb complexes and heterochromatin factors rely on 'read and write' mechanisms, which, on their own, are not sufficient to explain the formation and the maintenance of these epigenetic domains. Microscopy has revealed that they form specific nuclear compartments separated from the rest of the genome. Recently, some subunits of these molecular machineries have been shown to undergo phase separation, both in vitro and in vivo, suggesting that phase separation might play important roles in the formation and the function of these two kinds of repressive chromatin. In this review, we will present the recent advances in the field of facultative and constitutive heterochromatin formation and maintenance through phase separation.
Collapse
Affiliation(s)
- Nazli Akilli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France. https://twitter.com/@sinmerank
| | - Thierry Cheutin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
41
|
Mathias KM, Liu Y, Wan L. Dysregulation of transcriptional condensates in human disease: mechanisms, biological functions, and open questions. Curr Opin Genet Dev 2024; 86:102203. [PMID: 38788489 PMCID: PMC11162900 DOI: 10.1016/j.gde.2024.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Precise gene expression, crucial for normal development and health, depends on the co-ordinated assembly and function of various factors within the crowded nucleus. Recent evidence suggests that this process is in part regulated by mesoscale compartmentalization and concentration of transcriptional components within condensates, offering a new perspective on gene regulation. Dysregulation of transcriptional condensates is increasingly associated with diseases, indicating a potential role in pathogenesis. In this mini-review, we provide a concise overview of the current understanding of the formation and function of transcriptional condensates, with a specific focus on recent advances in their dysregulation and implications in diseases, notably cancer. We also address limitations in the field and highlight open questions for future research.
Collapse
Affiliation(s)
- Kaeli M Mathias
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiman Liu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liling Wan
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Magnitov M, de Wit E. Attraction and disruption: how loop extrusion and compartmentalisation shape the nuclear genome. Curr Opin Genet Dev 2024; 86:102194. [PMID: 38636335 PMCID: PMC11190842 DOI: 10.1016/j.gde.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024]
Abstract
Chromatin loops, which bring two distal loci of the same chromosome into close physical proximity, are the ubiquitous units of the three-dimensional genome. Recent advances in understanding the spatial organisation of chromatin suggest that several distinct mechanisms control chromatin interactions, such as loop extrusion by cohesin complexes, compartmentalisation by phase separation, direct protein-protein interactions and others. Here, we review different types of chromatin loops and highlight the factors and processes involved in their regulation. We discuss how loop extrusion and compartmentalisation shape chromatin interactions and how these two processes can either positively or negatively influence each other.
Collapse
Affiliation(s)
- Mikhail Magnitov
- Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. https://twitter.com/@MMagnitov
| | - Elzo de Wit
- Division of Gene Regulation, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Gu Y, Wei K, Wang J. Phase separation and transcriptional regulation in cancer development. J Biomed Res 2024; 38:307-321. [PMID: 39113127 PMCID: PMC11300516 DOI: 10.7555/jbr.37.20230214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 08/10/2024] Open
Abstract
Liquid-liquid phase separation, a novel biochemical phenomenon, has been increasingly studied for its medical applications. It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes. During transcriptional regulation, dynamic condensates are formed through interactions between transcriptional elements, such as transcription factors, coactivators, and mediators. Cancer is a disease characterized by uncontrolled cell proliferation, but the precise mechanisms underlying tumorigenesis often remain to be elucidated. Emerging evidence has linked abnormal transcriptional condensates to several diseases, especially cancer, implying that phase separation plays an important role in tumorigenesis. Condensates formed by phase separation may have an effect on gene transcription in tumors. In the present review, we focus on the correlation between phase separation and transcriptional regulation, as well as how this phenomenon contributes to cancer development.
Collapse
Affiliation(s)
- Yan Gu
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
44
|
Niekamp S, Marr SK, Oei TA, Subramanian R, Kingston RE. Modularity of PRC1 composition and chromatin interaction define condensate properties. Mol Cell 2024; 84:1651-1666.e12. [PMID: 38521066 PMCID: PMC11234260 DOI: 10.1016/j.molcel.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Polycomb repressive complexes (PRCs) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells that are proposed to contribute to the maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored. Using a reconstitution approach and single-molecule imaging, we demonstrate that nucleosomal arrays and PRC1 act synergistically, reducing the critical concentration required for condensation by more than 20-fold. We find that the exact combination of PHC and CBX subunits determines condensate initiation, morphology, stability, and dynamics. Particularly, PHC2's polymerization activity influences condensate dynamics by promoting the formation of distinct domains that adhere to each other but do not coalesce. Live-cell imaging confirms CBX's role in condensate initiation and highlights PHC's importance for condensate stability. We propose that PRC1 composition can modulate condensate properties, providing crucial regulatory flexibility across developmental stages.
Collapse
Affiliation(s)
- Stefan Niekamp
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Theresa A Oei
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
46
|
He S, Yu Y, Wang L, Zhang J, Bai Z, Li G, Li P, Feng X. Linker histone H1 drives heterochromatin condensation via phase separation in Arabidopsis. THE PLANT CELL 2024; 36:1829-1843. [PMID: 38309957 PMCID: PMC11062459 DOI: 10.1093/plcell/koae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/05/2024]
Abstract
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Liang Wang
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhengyong Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
47
|
Rouches MN, Machta BB. Polymer Collapse & Liquid-Liquid Phase-Separation are Coupled in a Generalized Prewetting Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591767. [PMID: 38746247 PMCID: PMC11092468 DOI: 10.1101/2024.04.29.591767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The three-dimensional organization of chromatin is thought to play an important role in controlling gene expression. Specificity in expression is achieved through the interaction of transcription factors and other nuclear proteins with particular sequences of DNA. At unphysiological concentrations many of these nuclear proteins can phase-separate in the absence of DNA, and it has been hypothesized that, in vivo, the thermodynamic forces driving these phases help determine chromosomal organization. However it is unclear how DNA, itself a long polymer subject to configurational transitions, interacts with three-dimensional protein phases. Here we show that a long compressible polymer can be coupled to interacting protein mixtures, leading to a generalized prewetting transition where polymer collapse is coincident with a locally stabilized liquid droplet. We use lattice Monte-Carlo simulations and a mean-field theory to show that these phases can be stable even in regimes where both polymer collapse and coexisting liquid phases are unstable in isolation, and that these new transitions can be either abrupt or continuous. For polymers with internal linear structure we further show that changes in the concentration of bulk components can lead to changes in three-dimensional polymer structure. In the nucleus there are many distinct proteins that interact with many different regions of chromatin, potentially giving rise to many different Prewet phases. The simple systems we consider here highlight chromatin's role as a lower-dimensional surface whose interactions with proteins are required for these novel phases.
Collapse
Affiliation(s)
- Mason N. Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University and Quantitative Biology Institute, Yale University
| | - Benjamin B. Machta
- Department of Physics, Yale University and Quantitative Biology Institute, Yale University
| |
Collapse
|
48
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 2024; 12:RP90820. [PMID: 38592759 PMCID: PMC11003746 DOI: 10.7554/elife.90820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research LaboratoryWashingtonUnited States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
49
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
50
|
Hou L, Zhao J, Cai L, Jin L, Liu B, Li S, Yang J, Ji T, Li S, Shi L, Shen B, Yu H, Wang Y, Cai X. HBV PreC interacts with SUV39H1 to induce viral replication by blocking the proteasomal degradation of viral polymerase. J Med Virol 2024; 96:e29607. [PMID: 38628076 DOI: 10.1002/jmv.29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Lidan Hou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Songyi Li
- Animal Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, China
| |
Collapse
|