1
|
Zhou W, Xu C, Yang S, Li H, Pan C, Jiang Z, Xie L, Li X, Qiao H, Mi D, Tang Y, Zhang L, Xi Q. An oncohistone-driven H3.3K27M/CREB5/ID1 axis maintains the stemness and malignancy of diffuse intrinsic pontine glioma. Nat Commun 2025; 16:3675. [PMID: 40246858 PMCID: PMC12006333 DOI: 10.1038/s41467-025-58795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a lethal pediatric cancer driven by H3K27M oncohistones, exhibits aberrant epigenetic regulation and stem-like cell states. Here, we uncover an axis involving H3.3K27M oncohistones, CREB5/ID1, which sustains the stem-like state of DIPG cells, promoting malignancy. We demonstrate that CREB5 mediates elevated ID1 levels in the H3.3K27M/ACVR1WT subtype, promoting tumor growth; while BMP signaling regulates this process in the H3.1K27M/ACVR1MUT subtype. Furthermore, we reveal that H3.3K27M directly enhances CREB5 expression by reshaping the H3K27me3 landscape at the CREB5 locus, particularly at super-enhancer regions. Additionally, we elucidate the collaboration between CREB5 and BRG1, the SWI/SNF chromatin remodeling complex catalytic subunit, in driving oncogenic transcriptional changes in H3.3K27M DIPG. Intriguingly, disrupting CREB5 super-enhancers with ABBV-075 significantly reduces its expression and inhibits H3.3K27M DIPG tumor growth. Combined treatment with ABBV-075 and a BRG1 inhibitor presents a promising therapeutic strategy for clinical translation in H3.3K27M DIPG treatment.
Collapse
Affiliation(s)
- Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuangrui Yang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Qiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Pandey DP, Somyajit K. Oncohistone-sculpted epigenetic mechanisms in pediatric brain cancer. Curr Opin Pharmacol 2025; 81:102505. [PMID: 39874681 DOI: 10.1016/j.coph.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP. Notably, H3K27M and EZHIP-driven cancers exhibit low mutation burdens, highlighting the enigmatic role of non-mutational epigenetic reprogramming in oncogenesis beyond traditional paradigms of oncogene activation and tumor suppressor loss. Here, we review the impact of H3K27M and EZHIP-driven cancer mechanisms on chromatin and transcriptional dysregulation leading to aberrant cell fate determination, and their potential influence beyond gene activity, affecting broader cellular pathways. Illuminating these mechanisms is crucial for advancing treatment options for pediatric brain cancers, where therapeutic regimens are poorly defined.
Collapse
Affiliation(s)
- Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Kumar Somyajit
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
3
|
Barron T, Yalçın B, Su M, Byun YG, Gavish A, Shamardani K, Xu H, Ni L, Soni N, Mehta V, Maleki Jahan S, Kim YS, Taylor KR, Keough MB, Quezada MA, Geraghty AC, Mancusi R, Vo LT, Castañeda EH, Woo PJ, Petritsch CK, Vogel H, Kaila K, Monje M. GABAergic neuron-to-glioma synapses in diffuse midline gliomas. Nature 2025; 639:1060-1068. [PMID: 39972132 PMCID: PMC11946904 DOI: 10.1038/s41586-024-08579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling1,2 and neuron-to-glioma synapses3-6. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatric3 and adult4 high-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses7. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABAA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation3,6, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.
Collapse
Affiliation(s)
- Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Minhui Su
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Neeraj Soni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Vilina Mehta
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin Maleki Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Linh Thuy Vo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kai Kaila
- Faculty of Bio- and Environmental Sciences (MIBS), University of Helsinki, Helsinki, Finland
- Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Huang M, Long X, Xu S, Zhan X, Gong G, Gao W, Li M, Yao M, Liu Q, Wu M, Zhao W, Long W. Single-Nucleus RNA-Sequencing Reveals a MET+ Oligodendrocyte Subpopulation That Promotes Proliferation of Radiation-Induced Gliomas. Int J Radiat Oncol Biol Phys 2025; 121:520-533. [PMID: 39265740 DOI: 10.1016/j.ijrobp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Radiation-induced gliomas (RIGs) are fatal late complications of radiation therapy, with a median survival time of 6 to 11 months. RIGs demonstrate a unique molecular landscape and may originate from a glial lineage distinct from that of primary malignancies or diffuse midline gliomas (DMGs). This study aimed to explore the intratumoral diversity within RIGs to uncover their cellular origin and characteristics and enhance our understanding of this uncommon tumor type. METHODS AND MATERIALS Formalin-fixed, paraffin-embedded samples were collected from 2 RIGs and 2 DMGs for single-nucleus RNA sequencing. A detailed analysis was conducted to assess intratumoral heterogeneity and cellular interactions, including gene set enrichment, pseudotime trajectory, and cell communication analyses. Immunofluorescence staining, proliferation assay, and RNA-seq analysis were also applied to validate our findings. RESULTS Our analysis revealed distinct heterogeneity in oligodendrocytes (ODs) between the DMG and RIG samples. A unique subpopulation of ODs in RIGs, which was characterized by gene encoding mesenchymal-epithelial transition factor (MET), and therefore termed MET+ ODs, exhibited characteristics typical of cancer cells, such as increased mitotic activity, cancer-related gene expression, and extensive copy number variations. Cell communication studies indicated that MET+ ODs interact vigorously with G1/S and G2/M cycling cells via the neural cell adhesion molecule signaling pathway, potentially enhancing the proliferation of cycling malignant cells. Integrating our results with existing RNA-seq data further supported our hypothesis. The presence of MET+ ODs in RIGs was confirmed by immunostaining, and activation of the neural cell adhesion molecule signaling pathway in vitro significantly promoted the proliferation of RIG tumor cells. Moreover, in vitro radiation induced the transformation of ODs to be more similar to MET+ ODs. CONCLUSIONS RIGs are characterized by an OD composition distinct from that of DMGs. A specific subpopulation of MET+ ODs in RIGs may be crucial in tumorigenesis and promote the growth of malignant cells. Identifying MET+ ODs offers a valuable target for future clinical surveillance and therapeutic strategies.
Collapse
Affiliation(s)
- Meng Huang
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinmiao Long
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; FuRong Laboratory, Changsha, China
| | - Shao Xu
- Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Xiudan Zhan
- Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Gu Gong
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; FuRong Laboratory, Changsha, China
| | - Mingrui Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yao
- Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; FuRong Laboratory, Changsha, China
| | - Wei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Cassim A, Dun MD, Gallego-Ortega D, Valdes-Mora F. EZHIP's role in diffuse midline glioma: echoes of oncohistones? Trends Cancer 2024; 10:1095-1105. [PMID: 39343635 DOI: 10.1016/j.trecan.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
The enhancer of zeste inhibitory protein (EZHIP) is typically expressed during germ cell development and has been classified as a cancer-testis antigen (CTA) in various cancers. In 2020, 4% of diffuse midline gliomas (DMGs) were shown to aberrantly express EZHIP, mirroring the DMG hallmark histone H3 K27M (H3K27M) oncohistone mutation. Similar to H3K27M, EZHIP is a negative regulator of polycomb repressive complex 2 (PRC2), leading to global epigenomic remodeling. In this opinion, we explore the similarities and disparities between H3K27M- and EZHIP-DMGs with a focus on their shared functional hallmark of PRC2 inhibition, their genetic and epigenomic landscapes, plausible differences in the cell of origin, and therapeutic avenues. Upcoming research on EZHIP will help better understand its role in gliomagenesis and DMG therapy.
Collapse
Affiliation(s)
- Afraah Cassim
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
6
|
Jiao AL, Sendinc E, Zee BM, Wallner F, Shi Y. An E2 ubiquitin-conjugating enzyme links diubiquitinated H2B to H3K27M oncohistone function. Proc Natl Acad Sci U S A 2024; 121:e2416614121. [PMID: 39560642 PMCID: PMC11621828 DOI: 10.1073/pnas.2416614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The H3K27M oncogenic histone (oncohistone) mutation drives ~80% of incurable childhood brain tumors known as diffuse midline gliomas (DMGs). The major molecular feature of H3K27M mutant DMGs is a global loss of H3K27 trimethylation (H3K27me3), a phenotype conserved in Caenorhabditis elegans (C. elegans). Here, we perform unbiased genome-wide suppressor screens in C. elegans expressing H3K27M and isolate 20 suppressors, all of which at least partially restore H3K27me3. 19/20 suppressor mutations map to the same histone H3.3 gene in which the K27M mutation was originally introduced. Most of these create single amino acid substitutions between residues R26-Y54, which do not disrupt oncohistone expression. Rather, they are predicted to impair interactions with the Polycomb Repressive Complex 2 (PRC2) and are functionally conserved in human cells. Further, we mapped a single extragenic H3K27M suppressor to ubc-20, an E2 ubiquitin-conjugating enzyme, whose loss rescued H3K27me3 to nearly 50% wild-type levels despite continued oncohistone expression and chromatin incorporation. We demonstrate that ubc-20 is the major enzyme responsible for generating diubiquitinated histone H2B. Our study provides in vivo support for existing models of PRC2 inhibition via direct oncohistone contact and suggests that the effects of H3K27M may be modulated by H2B ubiquitination.
Collapse
Affiliation(s)
- Alan L. Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barry M. Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
7
|
Caeiro LD, Verdun RE, Morey L. Histone H3 mutations and their impact on genome stability maintenance. Biochem Soc Trans 2024; 52:2179-2191. [PMID: 39248209 PMCID: PMC11580799 DOI: 10.1042/bst20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Histones are essential for maintaining chromatin structure and function. Histone mutations lead to changes in chromatin compaction, gene expression, and the recruitment of DNA repair proteins to the DNA lesion. These disruptions can impair critical DNA repair pathways, such as homologous recombination and non-homologous end joining, resulting in increased genomic instability, which promotes an environment favorable to tumor development and progression. Understanding these mechanisms underscores the potential of targeting DNA repair pathways in cancers harboring mutated histones, offering novel therapeutic strategies to exploit their inherent genomic instability for better treatment outcomes. Here, we examine how mutations in histone H3 disrupt normal chromatin function and DNA damage repair processes and how these mechanisms can be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, U.S.A
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
8
|
Mbah NE, Myers AL, Sajjakulnukit P, Chung C, Thompson JK, Hong HS, Giza H, Dang D, Nwosu ZC, Shan M, Sweha SR, Maydan DD, Chen B, Zhang L, Magnuson B, Zhu Z, Radyk M, Lavoie B, Yadav VN, Koo I, Patterson AD, Wahl DR, Franchi L, Agnihotri S, Koschmann CJ, Venneti S, Lyssiotis CA. Therapeutic targeting of differentiation-state dependent metabolic vulnerabilities in diffuse midline glioma. Nat Commun 2024; 15:8983. [PMID: 39419964 PMCID: PMC11487135 DOI: 10.1038/s41467-024-52973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
Collapse
Affiliation(s)
- Nneka E Mbah
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Amy L Myers
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Peter Sajjakulnukit
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Chan Chung
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, USA
| | - Heather Giza
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, USA
| | - Derek Dang
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Graduate Program in Molecular & Cellular Pathology, University of Michigan, Ann Arbor, USA
| | - Zeribe C Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Stefan R Sweha
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, USA
| | - Daniella D Maydan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Zirui Zhu
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, USA
| | - Megan Radyk
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Brooke Lavoie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Viveka Nand Yadav
- The Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, USA
| | - Imhoi Koo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology and Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, USA
| | - Daniel R Wahl
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, USA
| | - Luigi Franchi
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | | | - Carl J Koschmann
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA
| | - Sriram Venneti
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, USA.
| | - Costas A Lyssiotis
- Chad Carr Pediatric Brain Tumor Center, University of Michigan, Ann Arbor, USA.
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA.
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
9
|
Huchede P, Meyer S, Berthelot C, Hamadou M, Bertrand-Chapel A, Rakotomalala A, Manceau L, Tomine J, Lespinasse N, Lewandowski P, Cordier-Bussat M, Broutier L, Dutour A, Rochet I, Blay JY, Degletagne C, Attignon V, Montero-Carcaboso A, Le Grand M, Pasquier E, Vasiljevic A, Gilardi-Hebenstreit P, Meignan S, Leblond P, Ribes V, Cosset E, Castets M. BMP2 and BMP7 cooperate with H3.3K27M to promote quiescence and invasiveness in pediatric diffuse midline gliomas. eLife 2024; 12:RP91313. [PMID: 39373720 PMCID: PMC11458179 DOI: 10.7554/elife.91313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pediatric diffuse midline gliomas (pDMG) are an aggressive type of childhood cancer with a fatal outcome. Their major epigenetic determinism has become clear, notably with the identification of K27M mutations in histone H3. However, the synergistic oncogenic mechanisms that induce and maintain tumor cell phenotype have yet to be deciphered. In 20 to 30% of cases, these tumors have an altered BMP signaling pathway with an oncogenic mutation on the BMP type I receptor ALK2, encoded by ACVR1. However, the potential impact of the BMP pathway in tumors non-mutated for ACVR1 is less clear. By integrating bulk, single-cell, and spatial transcriptomic data, we show here that the BMP signaling pathway is activated at similar levels between ACVR1 wild-type and mutant tumors and identify BMP2 and BMP7 as putative activators of the pathway in a specific subpopulation of cells. By using both pediatric isogenic glioma lines genetically modified to overexpress H3.3K27M and patients-derived DIPG cell lines, we demonstrate that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. These data suggest a generic oncogenic role for the BMP pathway in gliomagenesis of pDMG and pave the way for specific targeting of downstream effectors mediating the K27M/BMP crosstalk.
Collapse
Affiliation(s)
- Paul Huchede
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Swann Meyer
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Clement Berthelot
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Maud Hamadou
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Adrien Bertrand-Chapel
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Andria Rakotomalala
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Line Manceau
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Julia Tomine
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Nicolas Lespinasse
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Paul Lewandowski
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Martine Cordier-Bussat
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Aurelie Dutour
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Isabelle Rochet
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | - Jean-Yves Blay
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | | | | | - Angel Montero-Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de DéuBarcelonaSpain
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Alexandre Vasiljevic
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | | | - Samuel Meignan
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Pierre Leblond
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
- Department of Pediatric Oncology, Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon BérardLyonFrance
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Erika Cosset
- GLIMMER Of lIght (GLIoblastoma MetabolisM, HetERogeneity, and OrganoIds) team, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Marie Castets
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| |
Collapse
|
10
|
Pang B, An S, Liu Y, Jiang T, Jia W, Chai R, Wang Y. Understanding spinal cord astrocytoma: Molecular mechanism, therapy, and comprehensive management. Cancer Lett 2024; 601:217154. [PMID: 39121902 DOI: 10.1016/j.canlet.2024.217154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord astrocytoma is a rare and highly debilitating tumor, yet our knowledge of its clinical characteristics, molecular features, and pathogenesis remains limited compared to that of its counterparts in the brain. Current diagnostic and therapeutic approaches for spinal cord astrocytomas are primarily based on established guidelines for brain astrocytomas. However, recent studies have revealed unique clinical and pathological attributes that distinguish spinal cord astrocytomas from their corresponding brain counterparts. These findings underscore the inadequacy of directly applying the clinical guidelines developed for brain astrocytomas to spinal astrocytomas. In this review, we provided an up-to-date overview of the advancements in understanding spinal cord astrocytomas. We also discussed the challenges and future research prospects in this field with the aim of improving the precision of diagnosis and therapy for these tumors. Specifically, we emphasized the importance of enhancing our understanding of the molecular heterogeneity, immune characteristics, and clinical trials of spinal cord astrocytomas.
Collapse
Affiliation(s)
- Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Songyuan An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
11
|
Drexler R, Drinnenberg A, Gavish A, Yalcin B, Shamardani K, Rogers A, Mancusi R, Taylor KR, Kim YS, Woo PJ, Ravel A, Tatlock E, Ramakrishnan C, Ayala-Sarmiento AE, Pacheco DRF, Siverts L, Daigle TL, Tasic B, Zeng H, Breunig JJ, Deisseroth K, Monje M. Cholinergic Neuronal Activity Promotes Diffuse Midline Glioma Growth through Muscarinic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614235. [PMID: 39386427 PMCID: PMC11463519 DOI: 10.1101/2024.09.21.614235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- These authors contributed equally
| | - Antonia Drinnenberg
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- These authors contributed equally
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Belgin Yalcin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Abigail Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Alexandre Ravel
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eva Tatlock
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alberto E Ayala-Sarmiento
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Zhang X, Duan S, Apostolou PE, Wu X, Watanabe J, Gallitto M, Barron T, Taylor KR, Woo PJ, Hua X, Zhou H, Wei HJ, McQuillan N, Kang KD, Friedman GK, Canoll PD, Chang K, Wu CC, Hashizume R, Vakoc CR, Monje M, McKhann GM, Gogos JA, Zhang Z. CHD2 Regulates Neuron-Glioma Interactions in Pediatric Glioma. Cancer Discov 2024; 14:1732-1754. [PMID: 38767413 PMCID: PMC11456263 DOI: 10.1158/2159-8290.cd-23-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Panagiota E. Apostolou
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Watanabe
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kathryn R. Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pamelyn J. Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nicholas McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyung-Don Kang
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Pediatrics, Neuro-Oncology Section, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gregory K. Friedman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Pediatrics, Neuro-Oncology Section, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rintaro Hashizume
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joseph A. Gogos
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
13
|
Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, Rogers RF, Grabovska Y, Beck A, Mackay A, Barron T, Hack OA, Quezada MA, Molinari V, Shaw ML, Perez-Somarriba M, Temelso S, Raynaud F, Ruddle R, Panditharatna E, Englinger B, Mire HM, Jiang L, Nascimento A, LaBelle J, Haase R, Rozowsky J, Neyazi S, Baumgartner AC, Castellani S, Hoffman SE, Cameron A, Morrow M, Nguyen QD, Pericoli G, Madlener S, Mayr L, Dorfer C, Geyeregger R, Rota C, Ricken G, Ligon KL, Alexandrescu S, Cartaxo RT, Lau B, Uphadhyaya S, Koschmann C, Braun E, Danan-Gotthold M, Hu L, Siletti K, Sundström E, Hodge R, Lein E, Agnihotri S, Eisenstat DD, Stapleton S, King A, Bleil C, Mastronuzzi A, Cole KA, Waanders AJ, Montero Carcaboso A, Schüller U, Hargrave D, Vinci M, Carceller F, Haberler C, Slavc I, Linnarsson S, Gojo J, Monje M, Jones C, Filbin MG. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024; 42:S1535-6108(24)00305-2. [PMID: 39232581 PMCID: PMC11865364 DOI: 10.1016/j.ccell.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.
Collapse
Affiliation(s)
- Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, 10117 Berlin, Germany
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lynn Bjerke
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Rebecca F Rogers
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Molinari
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marta Perez-Somarriba
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Hafsa M Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jenna LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jacob Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alicia-Christina Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Giulia Pericoli
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rene Geyeregger
- Clinical Cell Biology, Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Christopher Rota
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rodrigo T Cartaxo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benison Lau
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sameer Agnihotri
- Departments of Neurosurgery and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David D Eisenstat
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon Stapleton
- Department of Neurosurgery, St George's Hospital NHS Trust, London SW17 0QT, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J Waanders
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Darren Hargrave
- University College London Great Ormond Street Institute for Child Health, London WC1N 1EH, UK
| | - Maria Vinci
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK; Division of Clinical Studies, The Institute of Cancer Research, London SW7 3RK, UK
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Ryba A, Özdemir Z, Nissimov N, Hönikl L, Neidert N, Jakobs M, Kalasauskas D, Krigers A, Thomé C, Freyschlag C, Ringel F, Unterberg A, Dao Trong P, Beck J, Heiland D, Meyer B, Vajkoczy P, Onken J, Stummer W, Suero Molina E, Gempt J, Westphal M, Schüller U, Mohme M. Insights from a multicenter study on adult H3 K27M-mutated glioma: Surgical resection's limited influence on overall survival, ATRX as molecular prognosticator. Neuro Oncol 2024; 26:1479-1493. [PMID: 38507506 PMCID: PMC11300017 DOI: 10.1093/neuonc/noae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND H3 K27M-mutated gliomas were first described as a new grade 4 entity in the 2016 World Health Organization classification. Current studies have focused on its typical appearance in children and young adults, increasing the need to better understand the prognostic factors and impact of surgery on adults. Here, we report a multicentric study of this entity in adults. METHODS We included molecularly confirmed H3 K27M-mutated glioma cases in patients ≥ 18 years diagnosed between 2016 and 2022. Clinical, radiological, and surgical features were analyzed. Univariate and multivariate analyses were performed to identify prognostic factors. RESULTS Among 70 patients with a mean age of 36.1 years, the median overall survival (OS) was 13.6 ± 14 months. Gross-total resection was achieved in 14.3% of patients, whereas 30% had a subtotal resection and 54.3% a biopsy. Tumors located in telencephalon/diencephalon/myelencephalon were associated with a poorer OS, while a location in the mesencephalon/metencephalon showed a significantly longer OS (8.7 vs. 25.0 months, P = .007). Preoperative Karnofsky-Performance Score (KPS) ≤ 80 showed a reduced OS (4.2 vs. 18 months, P = .02). Furthermore, ATRX loss, found in 25.7%, was independently associated with an increased OS (31 vs. 8.3 months, P = .0029). Notably, patients undergoing resection showed no survival benefit over biopsy (12 vs. 11 months, P = .4006). CONCLUSIONS The present study describes surgical features of H3 K27M-mutated glioma in adulthood in a large multicentric study. Our data reveal that ATRX status, location and KPS significantly impact OS in H3 K27M-mutated glioma. Importantly, our dataset indicates that resection does not offer a survival advantage over biopsy.
Collapse
Affiliation(s)
- Alice Ryba
- Department of Neurosurgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zeynep Özdemir
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Nitzan Nissimov
- Department of Neurosurgery, Charité University Hospital Berlin, Berlin, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lisa Hönikl
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Nicolas Neidert
- Department of Neurosurgery, Charité University Hospital Berlin, Berlin, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Stereotactic Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Darius Kalasauskas
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité University Hospital Berlin, Berlin, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Jens Gempt
- Department of Neurosurgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
16
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
17
|
Mandorino M, Maitra A, Armenise D, Baldelli OM, Miciaccia M, Ferorelli S, Perrone MG, Scilimati A. Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges. Cancers (Basel) 2024; 16:1814. [PMID: 38791893 PMCID: PMC11120159 DOI: 10.3390/cancers16101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma (DMG), is a highly aggressive pediatric cancer primarily affecting children aged 4 to 9 years old. Despite the research and clinical trials conducted to identify a possible treatment for DIPG, no effective drug is currently available. These tumors often affect deep midline brain structures in young children, suggesting a connection to early brain development's epigenetic regulation targets, possibly affecting neural progenitor functions and differentiation. The H3K27M mutation is a known DIPG trigger, but the exact mechanisms beyond epigenetic regulation remain unclear. After thoroughly examining the available literature, we found that over 85% of DIPG tumors contain a somatic missense mutation, K27M, in genes encoding histone H3.3 and H3.1, leading to abnormal gene expression that drives tumor growth and spread. This mutation impacts crucial brain development processes, including the epithelial-mesenchymal transition (EMT) pathway, and may explain differences between H3K27M and non-K27M pediatric gliomas. Effects on stem cells show increased proliferation and disrupted differentiation. The genomic organization of H3 gene family members in the developing brain has revealed variations in their expression patterns. All these observations suggest a need for global efforts to understand developmental origins and potential treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.M.); (D.A.); (O.M.B.); (M.M.); (S.F.); (M.G.P.)
| |
Collapse
|
18
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
19
|
Donev K, Sundararajan V, Johnson D, Balan J, Chambers M, Paulson VA, Scherpelz KP, Abdullaev Z, Quezado M, Cimino PJ, Pratt D, Valerio E, Alves de Castro JV, Carraro DM, Torrezan GT, Wolff BM, Kulikowski LD, Costa FD, Aldape K, Ida CM. Diffuse hemispheric glioma with H3 p.K28M (K27M) mutation: Unusual non-midline presentation of diffuse midline glioma, H3 K27M-altered? J Neuropathol Exp Neurol 2024; 83:357-364. [PMID: 38447592 PMCID: PMC11029465 DOI: 10.1093/jnen/nlae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Diffuse midline glioma, H3 K27-altered (DMG-H3 K27) is an aggressive group of diffuse gliomas that predominantly occurs in pediatric patients, involves midline structures, and displays loss of H3 p.K28me3 (K27me3) expression by immunohistochemistry and characteristic genetic/epigenetic profile. Rare examples of a diffuse glioma with an H3 p.K28M (K27M) mutation and without involvement of the midline structures, so-called "diffuse hemispheric glioma with H3 p.K28M (K27M) mutation" (DHG-H3 K27), have been reported. Herein, we describe 2 additional cases of radiologically confirmed DHG-H3 K27 and summarize previously reported cases. We performed histological, immunohistochemical, molecular, and DNA methylation analysis and provided clinical follow-up in both cases. Overall, DHG-H3 K27 is an unusual group of diffuse gliomas that shows similar clinical, histopathological, genomic, and epigenetic features to DMG-H3 K27 as well as enrichment for activating alterations in MAPK pathway genes. These findings suggest that DHG-H3 K27 is closely related to DMG-H3 K27 and may represent an unusual presentation of DMG-H3 K27 without apparent midline involvement and with frequent MAPK pathway activation. Detailed reports of additional cases with clinical follow-up will be important to expand our understanding of this unusual group of diffuse gliomas and to better define the clinical outcome and how to classify DHG-H3 K27.
Collapse
Affiliation(s)
- Kliment Donev
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Vanitha Sundararajan
- OhioHealth Riverside Methodist Hospital, Columbus, Ohio, USA
- CORPath Pathology Services, Columbus, Ohio, USA
| | - Derek Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jagadheshwar Balan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Meagan Chambers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, Genetics and Solid Tumor Laboratory, University of Washington, Seattle, Washington, USA
| | - Kathryn P Scherpelz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick J Cimino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ediel Valerio
- Department of Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | | | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics (INCITO), Sao Paulo, Brazil
| | - Beatriz Martins Wolff
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomic Laboratory, Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Felipe D’Almeida Costa
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Dasa Laboratories, Sao Paulo, Brazil
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
DeSisto J, Donson AM, Griesinger AM, Fu R, Riemondy K, Mulcahy Levy J, Siegenthaler JA, Foreman NK, Vibhakar R, Green AL. Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma. Neuro Oncol 2024; 26:538-552. [PMID: 37934854 PMCID: PMC10912009 DOI: 10.1093/neuonc/noad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (PHGG) are aggressive brain tumors with 5-year survival rates ranging from <2% to 20% depending upon subtype. PHGG presents differently from patient to patient and is intratumorally heterogeneous, posing challenges in designing therapies. We hypothesized that heterogeneity occurs because PHGG comprises multiple distinct tumor and immune cell types in varying proportions, each of which may influence tumor characteristics. METHODS We obtained 19 PHGG samples from our institution's pediatric brain tumor bank. We constructed a comprehensive transcriptomic dataset at the single-cell level using single-cell RNA-Seq (scRNA-Seq), identified known glial and immune cell types, and performed differential gene expression and gene set enrichment analysis. We conducted multi-channel immunofluorescence (IF) staining to confirm the transcriptomic results. RESULTS Our PHGG samples included 3 principal predicted tumor cell types: astrocytes, oligodendrocyte progenitors (OPCs), and mesenchymal-like cells (Mes). These cell types differed in their gene expression profiles, pathway enrichment, and mesenchymal character. We identified a macrophage population enriched in mesenchymal and inflammatory gene expression as a possible source of mesenchymal tumor characteristics. We found evidence of T-cell exhaustion and suppression. CONCLUSIONS PHGG comprises multiple distinct proliferating tumor cell types. Microglia-derived macrophages may drive mesenchymal gene expression in PHGG. The predicted Mes tumor cell population likely derives from OPCs. The variable tumor cell populations rely on different oncogenic pathways and are thus likely to vary in their responses to therapy.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jean Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
21
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Koschmann C, Al-Holou WN, Alonso MM, Anastas J, Bandopadhayay P, Barron T, Becher O, Cartaxo R, Castro MG, Chung C, Clausen M, Dang D, Doherty R, Duchatel R, Dun M, Filbin M, Franson A, Galban S, Garcia Moure M, Garton H, Gowda P, Marques JG, Hawkins C, Heath A, Hulleman E, Ji S, Jones C, Kilburn L, Kline C, Koldobskiy MA, Lim D, Lowenstein PR, Lu QR, Lum J, Mack S, Magge S, Marini B, Martin D, Marupudi N, Messinger D, Mody R, Morgan M, Mota M, Muraszko K, Mueller S, Natarajan SK, Nazarian J, Niculcea M, Nuechterlein N, Okada H, Opipari V, Pai MP, Pal S, Peterson E, Phoenix T, Prensner JR, Pun M, Raju GP, Reitman ZJ, Resnick A, Rogawski D, Saratsis A, Sbergio SG, Souweidane M, Stafford JM, Tzaridis T, Venkataraman S, Vittorio O, Wadden J, Wahl D, Wechsler-Reya RJ, Yadav VN, Zhang X, Zhang Q, Venneti S. A road map for the treatment of pediatric diffuse midline glioma. Cancer Cell 2024; 42:1-5. [PMID: 38039965 PMCID: PMC11067690 DOI: 10.1016/j.ccell.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.
Collapse
Affiliation(s)
| | | | | | | | | | - Tara Barron
- Stanford University, Stanford, CA 94305, USA
| | - Oren Becher
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Chan Chung
- Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | | | - Derek Dang
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ryan Duchatel
- University of Newcastle, Callaghan, NSW 2308, Australia
| | - Matthew Dun
- University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | - Hugh Garton
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Allison Heath
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Sunjong Ji
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Chris Jones
- Division of Molecular Pathology, Institute for Cancer Research, London SM2 5NG, UK
| | | | - Cassie Kline
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Daniel Lim
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Q Richard Lu
- Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Joanna Lum
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Suresh Magge
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Donna Martin
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Rajen Mody
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mateus Mota
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sabine Mueller
- University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of Zurich, Zurich, Switzerland
| | | | - Javad Nazarian
- Children's National, Washington, DC 20010, USA; University of Zurich, Zurich, Switzerland
| | | | - Nicholas Nuechterlein
- University of Michigan, Ann Arbor, MI 48109, USA; National Institutes of Health, Bethesda, MD, USA
| | - Hideho Okada
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | - Timothy Phoenix
- Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH 45229, USA
| | | | - Matthew Pun
- University of Michigan, Ann Arbor, MI 48109, USA
| | - G Praveen Raju
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Adam Resnick
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | - Mark Souweidane
- Weill Cornell Medicine, New York Presbyterian and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Stafford
- Weill Cornell Medicine, New York Presbyterian and Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Theophilos Tzaridis
- Herbert Irving Comprehensive Cancer Center and Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jack Wadden
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Wahl
- University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Xu Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qiang Zhang
- University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Li J, Wang Y, Weng J, Qu L, Wu M, Guo M, Sun J, Hu G, Gong X, Liu X, Duan Y, Zhuo Z, Jia W, Liu Y. Automated Determination of the H3 K27-Altered Status in Spinal Cord Diffuse Midline Glioma by Radiomics Based on T2-Weighted MR Images. AJNR Am J Neuroradiol 2023; 44:1464-1470. [PMID: 38081676 PMCID: PMC10714849 DOI: 10.3174/ajnr.a8056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND AND PURPOSE Conventional MR imaging is not sufficient to discern the H3 K27-altered status of spinal cord diffuse midline glioma. This study aimed to develop a radiomics-based model based on preoperative T2WI to determine the H3 K27-altered status of spinal cord diffuse midline glioma. MATERIALS AND METHODS Ninety-seven patients with confirmed spinal cord diffuse midline gliomas were retrospectively recruited and randomly assigned to the training (n = 67) and test (n = 30) sets. One hundred seven radiomics features were initially extracted from automatically-segmented tumors on T2WI, then 11 features selected by the Pearson correlation coefficient and the Kruskal-Wallis test were used to train and test a logistic regression model for predicting the H3 K27-altered status. Sensitivity analysis was performed using additional random splits of the training and test sets, as well as applying other classifiers for comparison. The performance of the model was evaluated through its accuracy, sensitivity, specificity, and area under the curve. Finally, a prospective set including 28 patients with spinal cord diffuse midline gliomas was used to validate the logistic regression model independently. RESULTS The logistic regression model accurately predicted the H3 K27-altered status with accuracies of 0.833 and 0.786, sensitivities of 0.813 and 0.750, specificities of 0.857 and 0.833, and areas under the curve of 0.839 and 0.818 in the test and prospective sets, respectively. Sensitivity analysis confirmed the robustness of the model, with predictive accuracies of 0.767-0.833. CONCLUSIONS Radiomics signatures based on preoperative T2WI could accurately predict the H3 K27-altered status of spinal cord diffuse midline glioma, providing potential benefits for clinical management.
Collapse
Affiliation(s)
- Junjie Li
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - YongZhi Wang
- Department of Neurosurgery (Y.W., W.J.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jinyuan Weng
- Department of Medical Imaging Products (J.W., X.G.), Neusoft, Group Ltd., Shenyang, People's Republic of China
| | - Liying Qu
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Minghao Wu
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Min Guo
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Sun
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Geli Hu
- Clinical and Technical Support (G.H.), Philips Healthcare, Beijing, People's Republic of China
| | - Xiaodong Gong
- Department of Medical Imaging Products (J.W., X.G.), Neusoft, Group Ltd., Shenyang, People's Republic of China
| | - Xing Liu
- Department of Pathology (X.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunyun Duan
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhizheng Zhuo
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenqing Jia
- Department of Neurosurgery (Y.W., W.J.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yaou Liu
- From the Department of Radiology (J.L., L.Q., M.W., M.G., J.S., Y.D., Z.Z., Y.L.), Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
25
|
Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, Ramage S, Chi A, Wen PY, Arrillaga-Romany I, Batchelor TT, Butowski NA, Sumrall A, Shonka N, Harrison RA, de Groot J, Mehta M, Hall MD, Daghistani D, Cloughesy TF, Ellingson BM, Beccaria K, Varlet P, Kim MM, Umemura Y, Garton H, Franson A, Schwartz J, Jain R, Kachman M, Baum H, Burant CF, Mottl SL, Cartaxo RT, John V, Messinger D, Qin T, Peterson E, Sajjakulnukit P, Ravi K, Waugh A, Walling D, Ding Y, Xia Z, Schwendeman A, Hawes D, Yang F, Judkins AR, Wahl D, Lyssiotis CA, de la Nava D, Alonso MM, Eze A, Spitzer J, Schmidt SV, Duchatel RJ, Dun MD, Cain JE, Jiang L, Stopka SA, Baquer G, Regan MS, Filbin MG, Agar NY, Zhao L, Kumar-Sinha C, Mody R, Chinnaiyan A, Kurokawa R, Pratt D, Yadav VN, Grill J, Kline C, Mueller S, Resnick A, Nazarian J, Allen JE, Odia Y, Gardner SL, Koschmann C. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov 2023; 13:2370-2393. [PMID: 37584601 PMCID: PMC10618742 DOI: 10.1158/2159-8290.cd-23-0131] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | | | - Sunjong Ji
- University of Michigan, Ann Arbor, Michigan
| | - Sebastian M. Waszak
- University of California, San Francisco, San Francisco, California
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan R. Sweha
- University of Michigan, Ann Arbor, Michigan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Chan Chung
- University of Michigan, Ann Arbor, Michigan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | | | | | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | | | | | | | | | | | | | - John de Groot
- University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | - Kevin Beccaria
- Department of Neurosurgery, Necker Sick Children's University Hospital and Paris Descartes University, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital and Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | - Heidi Baum
- University of Michigan, Ann Arbor, Michigan
| | | | - Sophie L. Mottl
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | - Yujie Ding
- University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- University of Michigan, Ann Arbor, Michigan
| | | | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Augustine Eze
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Jasper Spitzer
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Jason E. Cain
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y.R. Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lili Zhao
- University of Michigan, Ann Arbor, Michigan
| | | | - Rajen Mody
- University of Michigan, Ann Arbor, Michigan
| | | | - Ryo Kurokawa
- University of Michigan, Ann Arbor, Michigan
- The University of Tokyo, Tokyo, Japan
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Viveka N. Yadav
- Department of Pediatrics at Children's Mercy Research Institute, Kansas City, Missouri
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Cassie Kline
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabine Mueller
- University of California, San Francisco, San Francisco, California
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Adam Resnick
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Javad Nazarian
- Department of Pediatrics, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | |
Collapse
|
26
|
Chen Y, Zhao B, Zhu C, Bie C, He X, Zheng Z, Song X. Assessing the predictability of the H3K27M status in diffuse glioma patients using frequency importance analysis on chemical exchange saturation transfer MRI. Magn Reson Imaging 2023; 103:54-60. [PMID: 37442303 DOI: 10.1016/j.mri.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND AND OBJECTIVES In diffuse glioma patients, Lys-27-Met mutations in histone 3 genes (H3K27M) are associated with an aggravated prognosis and further decreased overall survival. By using frequency importance analysis on chemical exchange saturation transfer (CEST) MRI, this study aimed to assess the predictability of the H3K27M status in diffuse glioma patients. METHODS Twenty-two patients diagnosed with diffuse glioma, with a known H3K27M status, were included in the present study. All patients underwent CEST MRI scans. The previously proposed frequency importance analysis was performed to determine the relative contribution of the amide and aliphatic protons for the differentiation between normal tissues and tumors. For this comparison, the conventional MTRasym analysis of amide protons at 3.5 ppm, i.e., the amide proton transfer-weighted (APTw) signal, was employed. Statistical analysis was performed using the Mann-Whitney U test, and the receiver operating characteristic (ROC) and area under the curve (AUC) analyses. RESULTS The mean and 90th percentile of the ΔAPTw intensities, amide and aliphatic frequency importance values revealed statistically significant differences between the wildtype and the H3K27M-altered patient groups (p < 0.05). For the prediction of the H3K27M status, amide frequency importance achieved highest AUCs of 0.97, with a specificity of 0.93. In contrast, the ΔAPTw intensities and aliphatic frequency importance showed relatively lower AUCs (<0.35) in predicting the H3K27M status. CONCLUSIONS Amide frequency importance exhibited satisfactory performance in the prediction of the H3K27M status. As such, it may be considered as a non-invasive MRI biomarker for the diagnosis of diffuse gliomas.
Collapse
Affiliation(s)
- Yibing Chen
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an 710069, China
| | - Benqi Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Changhao Zhu
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an 710069, China
| | - Chongxue Bie
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an 710069, China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an 710069, China; Xi'an Key Laboratory of Radiomics and Intelligent Perception, Northwest University, Xi'an 710069, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing 102218, China.
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Thomas BC, Staudt DE, Douglas AM, Monje M, Vitanza NA, Dun MD. CAR T cell therapies for diffuse midline glioma. Trends Cancer 2023; 9:791-804. [PMID: 37541803 DOI: 10.1016/j.trecan.2023.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Diffuse midline glioma (DMG) is a fatal pediatric cancer of the central nervous system (CNS). The location and infiltrative nature of DMG prevents surgical resection and the benefits of palliative radiotherapy are temporary; median overall survival (OS) is 9-11 months. The tumor immune microenvironment (TIME) is 'cold', and has a dominant immunosuppressive myeloid compartment with low levels of infiltrating lymphocytes and proinflammatory molecules. Because survival statistics have been stagnant for many decades, and therapies targeting the unique biology of DMG are urgently needed, this has prompted the clinical assessment of chimeric antigen receptor (CAR) T cell therapies in this setting. We highlight the current landscape of CAR T cell therapy for DMG, the role the TIME may play in the response, and strategies to overcome treatment obstacles.
Collapse
Affiliation(s)
- Bryce C Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana E Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michelle Monje
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Theme, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia.
| |
Collapse
|
28
|
Pandey K, Wang SS, Mifsud NA, Faridi P, Davenport AJ, Webb AI, Sandow JJ, Ayala R, Monje M, Cross RS, Ramarathinam SH, Jenkins MR, Purcell AW. A combined immunopeptidomics, proteomics, and cell surface proteomics approach to identify immunotherapy targets for diffuse intrinsic pontine glioma. Front Oncol 2023; 13:1192448. [PMID: 37637064 PMCID: PMC10455951 DOI: 10.3389/fonc.2023.1192448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.
Collapse
Affiliation(s)
- Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stacie S. Wang
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Nicole A. Mifsud
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pouya Faridi
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- School of Clinical Sciences, Department of Medicine, Monash University, Clayton, VIC, Australia
- Department of Medicine, Sub-Faculty of Clinical and Molecular Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander J. Davenport
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Andrew I. Webb
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jarrod J. Sandow
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Ryan S. Cross
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- LaTrobe Institute for Molecular Science, LaTrobe University, Bundoora, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Garrett MC, Albano R, Carnwath T, Elahi L, Behrmann CA, Pemberton M, Woo D, O'Brien E, VanCauwenbergh B, Perentesis J, Shah S, Hagan M, Kendler A, Zhao C, Paranjpe A, Roskin K, Kornblum H, Plas DR, Lu QR. HDAC1 and HDAC6 are essential for driving growth in IDH1 mutant glioma. Sci Rep 2023; 13:12433. [PMID: 37528157 PMCID: PMC10394035 DOI: 10.1038/s41598-023-33889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/20/2023] [Indexed: 08/03/2023] Open
Abstract
Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Matthew C Garrett
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Rebecca Albano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Troy Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lubayna Elahi
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine A Behrmann
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Merissa Pemberton
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Daniel Woo
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Eric O'Brien
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brett VanCauwenbergh
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Perentesis
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Hagan
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Krishna Roskin
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Harley Kornblum
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
30
|
Tanrıkulu B, Yaşar AH, Canpolat C, Çorapçıoğlu F, Tezcanli E, Abacioglu U, Danyeli AE, Özek MM. Preliminary findings of German-sourced ONC201 treatment in H3K27 altered pediatric pontine diffuse midline gliomas. J Neurooncol 2023; 163:565-575. [PMID: 37402093 DOI: 10.1007/s11060-023-04347-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE H3K27 altered pediatric pontine diffuse midline gliomas (pDMG) have a poor prognosis, and conventional treatments offer limited benefits. However, recent advancements in molecular evaluations and targeted therapies have shown promise. The aim of this retrospective analysis was to evaluate the effectiveness of German-sourced ONC201, a selective antagonist of dopamine receptor DRD2, for the treatment of pediatric H3K27 altered pDMGs. METHODS Pediatric patients with H3K27 altered pDMG treated between January 2016 and July 2022 were included in this retrospective analysis. Tissue samples were acquired from all patients via stereotactic biopsy for immunohistochemistry and molecular profiling. All patients received radiation treatment with concurrent temozolomide, and those who could acquire GsONC201 received it as a single agent until progression. Patients who could not obtain GsONC201 received other chemotherapy protocols. RESULTS Among 27 patients with a median age of 5.6 years old (range 3.4-17.9), 18 received GsONC201. During the follow-up period, 16 patients (59.3%) had progression, although not statistically significant, the incidence of progression tended to be lower in the GsONC201 group. The median overall survival (OS) of the GsONC201 group was considerably longer than of the non-GsONC201 group (19.9 vs. 10.9 months). Only two patients receiving GsONC201 experienced fatigue as a side effect. 4 out of 18 patients in the GsONC201 group underwent reirradiation after progression. CONCLUSION In conclusion, this study suggests that GsONC201 may improve OS in pediatric H3K27-altered pDMG patients without significant side effects. However, caution is warranted due to retrospective design and biases, highlighting the need for further randomized clinical studies to validate these findings.
Collapse
Affiliation(s)
- Bahattin Tanrıkulu
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Acibadem University School of Medicine, Istanbul, Turkey.
- Acibadem Altunizade Hospital, Yurtcan sk No. 1, Üsküdar/Istanbul, Turkey.
| | - Ahmet Harun Yaşar
- Department of Neurosurgery, Acibadem University School of Medicine, Istanbul, Turkey
| | - Cengiz Canpolat
- Division of Hematology and Oncology, Department of Pediatrics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Funda Çorapçıoğlu
- Division of Hematology and Oncology, Department of Pediatrics, Acibadem Maslak Hospital, Istanbul, Turkey
| | - Evrim Tezcanli
- Department of Radiation Oncology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ufuk Abacioglu
- Department of Radiation Oncology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ayça Erşen Danyeli
- Division of Neuropathology, Department of Pathology, Acibadem University School of Medicine, Istanbul, Turkey
| | - M Memet Özek
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Acibadem University School of Medicine, Istanbul, Turkey
| |
Collapse
|
31
|
Bredel M, Espinosa L, Kim H, Scholtens DM, McElroy JP, Rajbhandari R, Meng W, Kollmeyer TM, Malta TM, Quezada MA, Harsh GR, Lobo-Jarne T, Solé L, Merati A, Nagaraja S, Nair S, White JJ, Thudi NK, Fleming JL, Webb A, Natsume A, Ogawa S, Weber RG, Bertran J, Haque SJ, Hentschel B, Miller CR, Furnari FB, Chan TA, Grosu AL, Weller M, Barnholtz-Sloan JS, Monje M, Noushmehr H, Jenkins RB, Rogers CL, MacDonald DR, Pugh SL, Chakravarti A. Haploinsufficiency of NFKBIA reshapes the epigenome antipodal to the IDH mutation and imparts disease fate in diffuse gliomas. Cell Rep Med 2023; 4:101082. [PMID: 37343523 PMCID: PMC10314122 DOI: 10.1016/j.xcrm.2023.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA.
| | - Lluís Espinosa
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise M Scholtens
- Division of Biostatistics-Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph P McElroy
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Wei Meng
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas M Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael A Quezada
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Griffith R Harsh
- Department of Neurological Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Teresa Lobo-Jarne
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Laura Solé
- Cancer Research Program, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Institut Mar d'Investigacions Mèdiques, Hospital del Mar, 08003 Barcelona, Spain
| | - Aran Merati
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Surya Nagaraja
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindhu Nair
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jaclyn J White
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Nanda K Thudi
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amy Webb
- Center for Biostatistics-Department of Biomedical Informatics, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya 464-8601, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Ruthild G Weber
- Institute for Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Joan Bertran
- Biosciences Department, Faculty of Sciences, Technology, and Engineering. University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - S Jaharul Haque
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany
| | - C Ryan Miller
- Division of Neuropathology-Department of Pathology, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Frank B Furnari
- Laboratory of Tumor Biology, Division of Regenerative Medicine-Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics-National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Monje
- Department of Neurology & Neurological Sciences and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David R MacDonald
- London Regional Cancer Program, Western University, London, ON N6A 5W9, Canada
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA 19103, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Diffuse intrinsic pontine glioma: Insights into oncogenesis and opportunities for targeted therapy. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
34
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
35
|
Saunders JT, Kumar S, Benavides-Serrato A, Holmes B, Benavides KE, Bashir MT, Nishimura RN, Gera J. Translation of circHGF RNA encodes an HGF protein variant promoting glioblastoma growth through stimulation of c-MET. J Neurooncol 2023; 163:207-218. [PMID: 37162666 DOI: 10.1007/s11060-023-04331-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION HGF/c-MET signaling is a significant driver of glioblastoma (GBM) growth and disease progression. Unfortunately, c-MET targeted therapies have been found to be largely ineffective suggesting additional redundant mechanisms of c-MET activation. METHODS Utilizing RNA-sequencing (RNA-seq) and ribosome profiling analyses of circular RNAs, circ-HGF (hsa_circ_0080914) was identified as markedly upregulated in primary GBM and found to potentially encode an HGF protein variant (C-HGF) 119 amino acids in length. This candidate HGF variant was characterized and evaluated for its ability to mediate c-MET activation and regulate PDX GBM cell growth, motility and invasive potential in vitro and tumor burden in intracranial xenografts in mice. RESULTS An internal ribosome entry site (IRES) was identified within the circ-HGF RNA which mediated translation of the cross-junctional ORF encoding C-HGF and was observed to be highly expressed in GBM relative to normal brain tissue. C-HGF was also found to be secreted from GBM cells and concentrated cell culture supernatants or recombinant C-HGF activated known signaling cascades downstream of c-MET. C-HGF was shown to interact directly with the c-MET receptor resulting in its autophosphorylation and activation in PDX GBM lines. Knockdown of C-HGF resulted in suppression of c-MET signaling and marked inhibition of cell growth, motility and invasiveness, whereas overexpression of C-HGF displayed the opposite effects. Additionally, modulation of C-HGF expression regulated tumor growth in intracranial xenografted PDX GBM models. CONCLUSIONS These results reveal an alternative mechanism of c-MET activation via a circular RNA encoded HGF protein variant which is relevant in GBM biology. Targeting C-HGF may offer a promising approach for GBM clinical management.
Collapse
Affiliation(s)
- Jacquelyn T Saunders
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Sunil Kumar
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Angelica Benavides-Serrato
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Brent Holmes
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Kennedy E Benavides
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Muhammad T Bashir
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Robert N Nishimura
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA
| | - Joseph Gera
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Jonnson Comprehensive Cancer Center, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Molecular Biology Institute, University of California-Los Angeles, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
- Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA, 91343, USA.
| |
Collapse
|
36
|
Mota M, Sweha S, Pun M, Natarajan S, Ding Y, Chung C, Hawes D, Yang F, Judkins A, Samajdar S, Cao X, Xiao L, Parolia A, Chinnaiyan A, Venneti S. Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas. Proc Natl Acad Sci U S A 2023; 120:e2221175120. [PMID: 37094128 PMCID: PMC10161095 DOI: 10.1073/pnas.2221175120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.
Collapse
Affiliation(s)
- Mateus Mota
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Stefan R. Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Matt Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Yujie Ding
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Chan Chung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Susanta Samajdar
- Aurigene Discovery Technologies, Bengaluru, Karnataka560100, India
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI48109
- HHMI, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
37
|
Lovibond S, Gewirtz AN, Pasquini L, Krebs S, Graham MS. The promise of metabolic imaging in diffuse midline glioma. Neoplasia 2023; 39:100896. [PMID: 36944297 PMCID: PMC10036941 DOI: 10.1016/j.neo.2023.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Recent insights into histopathological and molecular subgroups of glioma have revolutionized the field of neuro-oncology by refining diagnostic categories. An emblematic example in pediatric neuro-oncology is the newly defined diffuse midline glioma (DMG), H3 K27-altered. DMG represents a rare tumor with a dismal prognosis. The diagnosis of DMG is largely based on clinical presentation and characteristic features on conventional magnetic resonance imaging (MRI), with biopsy limited by its delicate neuroanatomic location. Standard MRI remains limited in its ability to characterize tumor biology. Advanced MRI and positron emission tomography (PET) imaging offer additional value as they enable non-invasive evaluation of molecular and metabolic features of brain tumors. These techniques have been widely used for tumor detection, metabolic characterization and treatment response monitoring of brain tumors. However, their role in the realm of pediatric DMG is nascent. By summarizing DMG metabolic pathways in conjunction with their imaging surrogates, we aim to elucidate the untapped potential of such imaging techniques in this devastating disease.
Collapse
Affiliation(s)
- Samantha Lovibond
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra N Gewirtz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pasquini
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Zhang Q, Yang L, Liu YH, Wilkinson JE, Krainer AR. Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma. Sci Transl Med 2023; 15:eadd8280. [PMID: 37043556 PMCID: PMC10263181 DOI: 10.1126/scitranslmed.add8280] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Diffuse midline gliomas (DMGs) are pediatric high-grade brain tumors in the thalamus, midbrain, or pons; the latter subgroup are termed diffuse intrinsic pontine gliomas (DIPG). The brain stem location of these tumors limits the clinical management of DIPG, resulting in poor outcomes for patients. A heterozygous, somatic point mutation in one of two genes coding for the noncanonical histone H3.3 is present in most DIPG tumors. This dominant mutation in the H3-3A gene results in replacement of lysine 27 with methionine (K27M) and causes a global reduction of trimethylation on K27 of all wild-type histone H3 proteins, which is thought to be a driving event in gliomagenesis. In this study, we designed and systematically screened 2'-O-methoxyethyl phosphorothioate antisense oligonucleotides (ASOs) that direct RNase H-mediated knockdown of H3-3A mRNA. We identified a lead ASO that effectively reduced H3-3A mRNA and H3.3K27M protein and restored global H3K27 trimethylation in patient-derived neurospheres. We then tested the lead ASO in two mouse models of DIPG: an immunocompetent mouse model using transduced mutant human H3-3A cDNA and an orthotopic xenograft with patient-derived cells. In both models, ASO treatment restored K27 trimethylation of histone H3 proteins and reduced tumor growth, promoted neural stem cell differentiation into astrocytes, neurons, and oligodendrocytes, and increased survival. These results demonstrate the involvement of the H3.3K27M oncohistone in tumor maintenance, confirm the reversibility of the aberrant epigenetic changes it promotes, and provide preclinical proof of concept for DMG antisense therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
- Stony Brook University, Graduate Program in Molecular and Cell Biology, Stony Brook, NY, 11794
| | - Lucia Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, 11794
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY, 11794
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
| | - John E. Wilkinson
- University of Michigan, Department of Pathology, Ann Arbor, Michigan, 48109
| | | |
Collapse
|
40
|
Ajuyah P, Mayoh C, Lau LMS, Barahona P, Wong M, Chambers H, Valdes-Mora F, Senapati A, Gifford AJ, D'Arcy C, Hansford JR, Manoharan N, Nicholls W, Williams MM, Wood PJ, Cowley MJ, Tyrrell V, Haber M, Ekert PG, Ziegler DS, Khuong-Quang DA. Histone H3-wild type diffuse midline gliomas with H3K27me3 loss are a distinct entity with exclusive EGFR or ACVR1 mutation and differential methylation of homeobox genes. Sci Rep 2023; 13:3775. [PMID: 36882456 PMCID: PMC9992705 DOI: 10.1038/s41598-023-30395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Diffuse midline gliomas (DMG) harbouring H3K27M mutation are paediatric tumours with a dismal outcome. Recently, a new subtype of midline gliomas has been described with similar features to DMG, including loss of H3K27 trimethylation, but lacking the canonical H3K27M mutation (H3-WT). Here, we report a cohort of five H3-WT tumours profiled by whole-genome sequencing, RNA sequencing and DNA methylation profiling and combine their analysis with previously published cases. We show that these tumours have recurrent and mutually exclusive mutations in either ACVR1 or EGFR and are characterised by high expression of EZHIP associated to its promoter hypomethylation. Affected patients share a similar poor prognosis as patients with H3K27M DMG. Global molecular analysis of H3-WT and H3K27M DMG reveal distinct transcriptome and methylome profiles including differential methylation of homeobox genes involved in development and cellular differentiation. Patients have distinct clinical features, with a trend demonstrating ACVR1 mutations occurring in H3-WT tumours at an older age. This in-depth exploration of H3-WT tumours further characterises this novel DMG, H3K27-altered sub-group, characterised by a specific immunohistochemistry profile with H3K27me3 loss, wild-type H3K27M and positive EZHIP. It also gives new insights into the possible mechanism and pathway regulation in these tumours, potentially opening new therapeutic avenues for these tumours which have no known effective treatment. This study has been retrospectively registered on clinicaltrial.gov on 8 November 2017 under the registration number NCT03336931 ( https://clinicaltrials.gov/ct2/show/NCT03336931 ).
Collapse
Affiliation(s)
- Pamela Ajuyah
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Loretta M S Lau
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Paulette Barahona
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia
| | - Marie Wong
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Hazel Chambers
- Department of Anatomical Pathology, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Fatima Valdes-Mora
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Akanksha Senapati
- Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Andrew J Gifford
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Colleen D'Arcy
- Department of Anatomical Pathology, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Michael Rice Cancer Centre, Women's and Children's Hospital, Adelaide, SA, Australia.,South Australia Health and Medical Research Institute, Adelaide, SA, Australia.,South Australia Immunogenomics Cancer Institute, Adelaide, SA, Australia.,University of Adelaide, Adelaide, SA, Australia
| | - Neevika Manoharan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Wayne Nicholls
- Oncology Service, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, Australia
| | - Molly M Williams
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Paul J Wood
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mark J Cowley
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Vanessa Tyrrell
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Paul G Ekert
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - David S Ziegler
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia. .,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia. .,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia. .,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
41
|
Damodharan S, Helgager J, Puccetti D. Indolent presentation of a diffuse midline glioma, H3 K27-altered. Childs Nerv Syst 2023; 39:833-835. [PMID: 36094605 DOI: 10.1007/s00381-022-05668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Diffuse midline glioma (DMG), H3 K27-altered, are aggressive central nervous system tumors which are universally fatal, with a median survival of 8-12 months after diagnosis. Here, we present a patient who was incidentally found to have a lesion, concerning for tumor, within the right thalamus on brain magnetic resonance imaging at 2 years of age. Twelve years later, subsequent imaging showed that the lesion had enlarged, with biopsy consistent with DMG harboring an H3 K27M mutation. This case illustrates an unusual presentation of a DMG, H3 K27-altered, with an indolent course. Such findings highlight the fact that more research is needed to understand what factors may contribute to these tumors' malignant course.
Collapse
Affiliation(s)
- Sudarshawn Damodharan
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Jeffrey Helgager
- Department of Pathology, School of Medicine & Public Health, University of Wisconsin, Madison, WI, USA
| | - Diane Puccetti
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, School of Medicine & Public Health, University of Wisconsin, UW Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53792, USA
| |
Collapse
|
42
|
Cohen LRZ, Kaffe B, Deri E, Leibson C, Nissim-Rafinia M, Maman M, Harpaz N, Ron G, Shema E, Meshorer E. PRC2-independent actions of H3.3K27M in embryonic stem cell differentiation. Nucleic Acids Res 2023; 51:1662-1673. [PMID: 36156096 PMCID: PMC9976889 DOI: 10.1093/nar/gkac800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023] Open
Abstract
The histone H3 variant, H3.3, is localized at specific regions in the genome, especially promoters and active enhancers, and has been shown to play important roles in development. A lysine to methionine substitution in position 27 (H3.3K27M) is a main cause of Diffuse Intrinsic Pontine Glioma (specifically Diffuse Midline Glioma, K27M-mutant), a lethal type of pediatric cancer. H3.3K27M has a dominant-negative effect by inhibiting the Polycomb Repressor Complex 2 (PRC2) activity. Here, we studied the immediate, genome-wide, consequences of the H3.3K27M mutation independent of PRC2 activity. We developed Doxycycline (Dox)-inducible mouse embryonic stem cells (ESCs) carrying a single extra copy of WT-H3.3, H3.3K27M and H3.3K27L, all fused to HA. We performed RNA-Seq and ChIP-Seq at different times following Dox induction in undifferentiated and differentiated ESCs. We find increased binding of H3.3 around transcription start sites in cells expressing both H3.3K27M and H3.3K27L compared with WT, but not in cells treated with PRC2 inhibitors. Differentiated cells carrying either H3.3K27M or H3.3K27L retain expression of ESC-active genes, in expense of expression of genes related to neuronal differentiation. Taken together, our data suggest that a modifiable H3.3K27 is required for proper histone incorporation and cellular maturation, independent of PRC2 activity.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Binyamin Kaffe
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eden Deri
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chen Leibson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Moria Maman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nofar Harpaz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Ron
- The Racah Institute of Physics, The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
43
|
Pun M, Pratt D, Nano PR, Joshi PK, Jiang L, Englinger B, Rao A, Cieslik M, Chinnaiyan AM, Aldape K, Pfister S, Filbin MG, Bhaduri A, Venneti S. Common molecular features of H3K27M DMGs and PFA ependymomas map to hindbrain developmental pathways. Acta Neuropathol Commun 2023; 11:25. [PMID: 36759899 PMCID: PMC9912509 DOI: 10.1186/s40478-023-01514-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Globally decreased histone 3, lysine 27 tri-methylation (H3K27me3) is a hallmark of H3K27-altered diffuse midline gliomas (DMGs) and group-A posterior fossa ependymomas (PFAs). H3K27-altered DMGs are largely characterized by lysine-to-methionine mutations in histone 3 at position 27 (H3K27M). Most PFAs overexpress EZH inhibitory protein (EZHIP), which possesses a region of similarity to the mutant H3K27M. Both H3K27M and EZHIP inhibit the function of the polycomb repressive complex 2 (PRC2) responsible for H3K27me3 deposition. These tumors often arise in neighboring regions of the brainstem and posterior fossa. In rare cases PFAs harbor H3K27M mutations, and DMGs overexpress EZHIP. These findings together raise the possibility that certain cell populations in the developing hindbrain/posterior fossa are especially sensitive to modulation of H3K27me3 states. We identified shared molecular features by comparing genomic, bulk transcriptomic, chromatin-based profiles, and single-cell RNA-sequencing (scRNA-seq) data from the two tumor classes. Our approach demonstrated that 1q gain, a key biomarker in PFAs, is prognostic in H3.1K27M, but not H3.3K27M gliomas. Conversely, Activin A Receptor Type 1 (ACVR1), which is associated with mutations in H3.1K27M gliomas, is overexpressed in a subset of PFAs with poor outcome. Despite diffuse H3K27me3 reduction, previous work shows that both tumors maintain genomic H3K27me3 deposition at select sites. We demonstrate heterogeneity in shared patterns of residual H3K27me3 for both tumors that largely segregated with inferred anatomic tumor origins and progenitor populations of tumor cells. In contrast, analysis of genes linked to H3K27 acetylation (H3K27ac)-marked enhancers showed higher expression in astrocytic-like tumor cells. Finally, common H3K27me3-marked genes mapped closely to expression patterns in the human developing hindbrain. Overall, our data demonstrate developmentally relevant molecular similarities between PFAs and H3K27M DMGs and support the overall hypothesis that deregulated mechanisms of hindbrain development are central to the biology of both tumors.
Collapse
Affiliation(s)
- Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Piyush K Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Stefan Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA.
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
Voon HPJ, Wong LH. Chromatin mutations in pediatric high grade gliomas. Front Oncol 2023; 12:1104129. [PMID: 36686810 PMCID: PMC9853562 DOI: 10.3389/fonc.2022.1104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Pediatric high grade gliomas (HGG) are lethal tumors which are currently untreatable. A number of recent studies have provided much needed insights into the mutations and mechanisms which drive oncogenesis in pediatric HGGs. It is now clear that mutations in chromatin proteins, particularly H3.3 and its associated chaperone complex (ATRX), are a hallmark feature of pediatric HGGs. We review the current literature on the normal roles of the ATRX/H3.3 complex and how these functions are disrupted by oncogenic mutations. We discuss the current clinical trials and pre-clinical models that target chromatin and DNA, and how these agents fit into the ATRX/H3.3 mutation model. As chromatin mutations are a relatively new discovery in pediatric HGGs, developing clear mechanistic insights are a key step to improving therapies for these tumors.
Collapse
|
45
|
Skouras P, Markouli M, Strepkos D, Piperi C. Advances on Epigenetic Drugs for Pediatric Brain Tumors. Curr Neuropharmacol 2023; 21:1519-1535. [PMID: 36154607 PMCID: PMC10472812 DOI: 10.2174/1570159x20666220922150456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients' prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
46
|
Panditharatna E, Marques JG, Wang T, Trissal MC, Liu I, Jiang L, Beck A, Groves A, Dharia NV, Li D, Hoffman SE, Kugener G, Shaw ML, Mire HM, Hack OA, Dempster JM, Lareau C, Dai L, Sigua LH, Quezada MA, Stanton ACJ, Wyatt M, Kalani Z, Goodale A, Vazquez F, Piccioni F, Doench JG, Root DE, Anastas JN, Jones KL, Conway AS, Stopka S, Regan MS, Liang Y, Seo HS, Song K, Bashyal P, Jerome WP, Mathewson ND, Dhe-Paganon S, Suvà ML, Carcaboso AM, Lavarino C, Mora J, Nguyen QD, Ligon KL, Shi Y, Agnihotri S, Agar NY, Stegmaier K, Stiles CD, Monje M, Golub TR, Qi J, Filbin MG. BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discov 2022; 12:2880-2905. [PMID: 36305736 PMCID: PMC9716260 DOI: 10.1158/2159-8290.cd-21-1491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Joana G. Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maria C. Trissal
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alexander Beck
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrew Groves
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Samantha E. Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Guillaume Kugener
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - McKenzie L. Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Hafsa M. Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Olivia A. Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Joshua M. Dempster
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caleb Lareau
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Stanford University, Stanford, California
| | - Lingling Dai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Logan H. Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael A. Quezada
- Department of Neurology, Stanford University School of Medicine, Stanford, California
| | - Ann-Catherine J. Stanton
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meghan Wyatt
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Zohra Kalani
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Amy Goodale
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Francisca Vazquez
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Federica Piccioni
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Merck Research Laboratories, Cambridge, Massachusetts
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - David E. Root
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jamie N. Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurosurgery and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Kristen L. Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yu Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - William P. Jerome
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Nathan D. Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Microbiology and Immunobiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Klarman Cell Observatory, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Angel M. Carcaboso
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith L. Ligon
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts
- Ludwig Institute for Cancer Research, Oxford Branch, Oxford University, Oxford, United Kingdom
| | - Sameer Agnihotri
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathalie Y.R. Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Charles D. Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Todd R. Golub
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
47
|
|
48
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
49
|
Liu I, Jiang L, Samuelsson ER, Marco Salas S, Beck A, Hack OA, Jeong D, Shaw ML, Englinger B, LaBelle J, Mire HM, Madlener S, Mayr L, Quezada MA, Trissal M, Panditharatna E, Ernst KJ, Vogelzang J, Gatesman TA, Halbert ME, Palova H, Pokorna P, Sterba J, Slaby O, Geyeregger R, Diaz A, Findlay IJ, Dun MD, Resnick A, Suvà ML, Jones DTW, Agnihotri S, Svedlund J, Koschmann C, Haberler C, Czech T, Slavc I, Cotter JA, Ligon KL, Alexandrescu S, Yung WKA, Arrillaga-Romany I, Gojo J, Monje M, Nilsson M, Filbin MG. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nat Genet 2022; 54:1881-1894. [PMID: 36471067 PMCID: PMC9729116 DOI: 10.1038/s41588-022-01236-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.
Collapse
Affiliation(s)
- Ilon Liu
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Li Jiang
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erik R. Samuelsson
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alexander Beck
- grid.5252.00000 0004 1936 973XCenter for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Olivia A. Hack
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Daeun Jeong
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - McKenzie L. Shaw
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Bernhard Englinger
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.22937.3d0000 0000 9259 8492Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jenna LaBelle
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Hafsa M. Mire
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Sibylle Madlener
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michael A. Quezada
- grid.168010.e0000000419368956Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA
| | - Maria Trissal
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Eshini Panditharatna
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Kati J. Ernst
- grid.7497.d0000 0004 0492 0584Hopp Children’s Cancer Center Heidelberg (KiTZ), Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jayne Vogelzang
- grid.65499.370000 0001 2106 9910Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Taylor A. Gatesman
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Matthew E. Halbert
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Hana Palova
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petra Pokorna
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Pediatric Oncology Department, University Hospital Brno, Faculty of Medicine, Masaryk University, ICRC, Brno, Czech Republic
| | - Ondrej Slaby
- grid.10267.320000 0001 2194 0956Central European Institute of Technology, Masaryk University, Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rene Geyeregger
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria ,grid.416346.2Department of Clinical Cell Biology and FACS Core Unit, St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Aaron Diaz
- grid.266102.10000 0001 2297 6811Department of Neurological Surgery, University of California San Francisco, San Francisco, CA USA
| | - Izac J. Findlay
- grid.266842.c0000 0000 8831 109XCancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales Australia ,grid.413648.cPrecision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales Australia
| | - Matthew D. Dun
- grid.266842.c0000 0000 8831 109XCancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales Australia ,grid.413648.cPrecision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales Australia
| | - Adam Resnick
- grid.239552.a0000 0001 0680 8770Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Mario L. Suvà
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Department of Pathology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA USA
| | - David T. W. Jones
- grid.7497.d0000 0004 0492 0584Hopp Children’s Cancer Center Heidelberg (KiTZ), Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sameer Agnihotri
- grid.21925.3d0000 0004 1936 9000Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Jessica Svedlund
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Carl Koschmann
- grid.412590.b0000 0000 9081 2336Division of Pediatric Hematology/Oncology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI USA
| | - Christine Haberler
- grid.22937.3d0000 0000 9259 8492Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- grid.22937.3d0000 0000 9259 8492Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jennifer A. Cotter
- grid.239546.f0000 0001 2153 6013Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
| | - Keith L. Ligon
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.65499.370000 0001 2106 9910Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.62560.370000 0004 0378 8294Department of Pathology, Brigham and Women’s Hospital, Boston, MA USA ,grid.2515.30000 0004 0378 8438Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Sanda Alexandrescu
- grid.2515.30000 0004 0378 8438Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - W. K. Alfred Yung
- grid.240145.60000 0001 2291 4776Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Isabel Arrillaga-Romany
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Cancer Center, Boston, MA USA
| | - Johannes Gojo
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.22937.3d0000 0000 9259 8492Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michelle Monje
- grid.168010.e0000000419368956Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Stanford, CA USA
| | - Mats Nilsson
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mariella G. Filbin
- grid.511177.4Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| |
Collapse
|
50
|
Gonzalez Castro LN, Liu I, Filbin M. Characterizing the biology of primary brain tumors and their microenvironment via single-cell profiling methods. Neuro Oncol 2022; 25:234-247. [PMID: 36197833 PMCID: PMC9925698 DOI: 10.1093/neuonc/noac211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic and transcriptional heterogeneity is prevalent among the most common and aggressive primary brain tumors in children and adults. Over the past 20 years, advances in bioengineering, biochemistry and bioinformatics have enabled the development of an array of techniques to study tumor biology at single-cell resolution. The application of these techniques to study primary brain tumors has helped advance our understanding of their intra-tumoral heterogeneity and uncover new insights regarding their co-option of developmental programs and signaling from their microenvironment to promote tumor proliferation and invasion. These insights are currently being harnessed to develop new therapeutic approaches. Here we provide an overview of current single-cell techniques and discuss relevant biology and therapeutic insights uncovered by their application to primary brain tumors in children and adults.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Corresponding Author: L. Nicolas Gonzalez Castro, MD, PhD, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA ()
| | | | - Mariella Filbin
- Pediatric Neuro-Oncology Program, Dana-Farber/Boston Children’s and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|