1
|
Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J. Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic. Cell 2025; 188:2465-2479.e14. [PMID: 40168993 DOI: 10.1016/j.cell.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Ring-like structural maintenance of chromosome (SMC) complexes are crucial for genome organization and operate through mechanisms of DNA entrapment and loop extrusion. Here, we explore the DNA loading process of the bacterial SMC complex MukBEF. Using cryoelectron microscopy (cryo-EM), we demonstrate that ATP binding opens one of MukBEF's three potential DNA entry gates, exposing a DNA capture site that positions DNA at the open neck gate. We discover that the gp5.9 protein of bacteriophage T7 blocks this capture site by DNA mimicry, thereby preventing DNA loading and inactivating MukBEF. We propose a comprehensive and unidirectional loading mechanism in which DNA is first captured at the complex's periphery and then ingested through the DNA entry gate, powered by a single cycle of ATP hydrolysis. These findings illuminate a fundamental aspect of how ubiquitous DNA organizers are primed for genome maintenance and demonstrate how this process can be disrupted by viruses.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | - Bryony Clifton
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Sophie Koekemoer
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Oliver J Wilkinson
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Mark S Dillingham
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
2
|
Yamaura K, Takemata N, Kariya M, Osaka A, Ishino S, Yamauchi M, Tamura T, Hamachi I, Takada S, Ishino Y, Atomi H. Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure. Nat Commun 2025; 16:1312. [PMID: 39971902 PMCID: PMC11840125 DOI: 10.1038/s41467-025-56197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
In eukaryotes, structural maintenance of chromosomes (SMC) complexes form topologically associating domains (TADs) by extruding DNA loops and being stalled by roadblock proteins. It remains unclear whether a similar mechanism of domain formation exists in prokaryotes. Using high-resolution chromosome conformation capture sequencing, we show that an archaeal homolog of the bacterial Smc-ScpAB complex organizes the genome of Thermococcus kodakarensis into TAD-like domains. We find that TrmBL2, a nucleoid-associated protein that forms a stiff nucleoprotein filament, stalls the T. kodakarensis SMC complex and establishes a boundary at the site-specific recombination site dif. TrmBL2 stalls the SMC complex at tens of additional non-boundary loci with lower efficiency. Intriguingly, the stalling efficiency is correlated with structural properties of underlying DNA sequences. Our study illuminates a eukaryotic-like mechanism of domain formation in archaea and a role of intrinsic DNA structure in large-scale genome organization.
Collapse
Affiliation(s)
- Kodai Yamaura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Naomichi Takemata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Masashi Kariya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayami Osaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Masataka Yamauchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Cell Biology Center, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Harju J, Broedersz CP. Physical models of bacterial chromosomes. Mol Microbiol 2025; 123:143-153. [PMID: 38578226 PMCID: PMC11841833 DOI: 10.1111/mmi.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The interplay between bacterial chromosome organization and functions such as transcription and replication can be studied in increasing detail using novel experimental techniques. Interpreting the resulting quantitative data, however, can be theoretically challenging. In this minireview, we discuss how connecting experimental observations to biophysical theory and modeling can give rise to new insights on bacterial chromosome organization. We consider three flavors of models of increasing complexity: simple polymer models that explore how physical constraints, such as confinement or plectoneme branching, can affect bacterial chromosome organization; bottom-up mechanistic models that connect these constraints to their underlying causes, for instance, chromosome compaction to macromolecular crowding, or supercoiling to transcription; and finally, data-driven methods for inferring interpretable and quantitative models directly from complex experimental data. Using recent examples, we discuss how biophysical models can both deepen our understanding of how bacterial chromosomes are structured and give rise to novel predictions about bacterial chromosome organization.
Collapse
Affiliation(s)
- Janni Harju
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScienceLudwig‐Maximilian‐University MunichMunichGermany
| |
Collapse
|
4
|
Abbondanzieri EA, Badrinarayanan AB, Barillà D, Bell SD, Blombach F, Bouet JY, Bulgheresi S, Cao QAD, Dame RT, Dekker C, Demuysere M, Espéli O, Fogg PCM, Freddolino PL, Ganji M, Gerson TM, Grainger DC, Hamoen LW, Harju J, Hocher A, Hustmyer CM, Kaljevic JK, Karney MK, Kleckner N, Laloux G, Landick R, Lioy VS, Liu WL, Liu CL, Mäkelä J, Meyer AS, Noy A, Pineau MP, Premrajka K, Racki LR, Rashid FZM, Schnetz K, Schwab S, Tišma M, van der Sijs AI, van Heesch T, van Raaphorst R, Vreede J, Walker AW, Walter JC, Weber SC, Wiggins PA, Wing HJ, Xiao J, Zhang Z. Future Directions of the Prokaryotic Chromosome Field. Mol Microbiol 2025; 123:89-100. [PMID: 39977301 DOI: 10.1111/mmi.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
In September 2023, the Biology and Physics of Prokaryotic Chromosomes meeting ran at the Lorentz Center in Leiden, The Netherlands. As part of the workshop, those in attendance developed a series of discussion points centered around current challenges for the field, how these might be addressed, and how the field is likely to develop over the next 10 years. The Lorentz Center staff facilitated these discussions via tools aimed at optimizing productive interactions. This Perspective article is a summary of these discussions and reflects the state-of-the-art of the field. It is expected to be of help to colleagues in advancing their own research related to prokaryotic chromosomes and inspiring novel interdisciplinary collaborations. This forward-looking perspective highlights the open questions driving current research and builds on the impressive recent progress in these areas as represented by the accompanying reviews, perspectives, and research articles in this issue. These articles underline the multi-disciplinary nature of the field, the multiple length scales at which chromatin is studied in vitro and in and highlight the differences and similarities of bacterial and archaeal chromatin and chromatin-associated processes.
Collapse
Affiliation(s)
- E A Abbondanzieri
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - D Barillà
- Department of Biology, University of York, York, UK
| | - S D Bell
- Indiana University, Bloomington, Indiana, USA
| | | | - J Y Bouet
- LMGM-CBI, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| | - S Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Q A D Cao
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - R T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - C Dekker
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | - M Demuysere
- Molecular Microbiology and Structural Biochemistry, CNRS/University of Lyon 1, Lyon, France
| | - O Espéli
- Collége de France, Paris, France
| | | | | | - M Ganji
- Indian Institute of Science, Bangalore, India
| | - T M Gerson
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | | | - L W Hamoen
- University of Amsterdam, Amsterdam, the Netherlands
| | - J Harju
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - A Hocher
- Medical Research Council London Institute of Medical Sciences, London, UK
| | - C M Hustmyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J K Kaljevic
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - M K Karney
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - N Kleckner
- Harvard University, Cambridge, Massachusetts, USA
| | - G Laloux
- de Duve Institute, UCLouvain, Brussels, Brussels, Belgium
| | - R Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - V S Lioy
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, France
| | - W L Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - C L Liu
- Chinese Academy of Sciences, China
| | - J Mäkelä
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - A S Meyer
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - A Noy
- University of York, York, UK
| | - M P Pineau
- Microbiology, Adaptation and Pathogenesis, UMR5240, INSA, Lyon, France
| | | | | | | | - K Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - S Schwab
- Leiden University, Leiden, the Netherlands
| | - M Tišma
- Kavli Institute of Nanoscience Delft, Delft, the Netherlands
| | | | - T van Heesch
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | | | - J Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands
| | - A W Walker
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - J-C Walter
- Laboratory Charles Coulomb (L2C), CNRS & Montpellier Université, Montpellier, France
| | - S C Weber
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - P A Wiggins
- University of Washington, Seattle, Washington, USA
| | - H J Wing
- University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - J Xiao
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Z Zhang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| |
Collapse
|
5
|
Mäkelä J, Papagiannakis A, Lin WH, Lanz MC, Glenn S, Swaffer M, Marinov GK, Skotheim JM, Jacobs-Wagner C. Genome concentration limits cell growth and modulates proteome composition in Escherichia coli. eLife 2024; 13:RP97465. [PMID: 39714909 DOI: 10.7554/elife.97465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Michael Charles Lanz
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Skye Glenn
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, United States
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
6
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Espinosa E, Challita J, Desfontaines JM, Possoz C, Val ME, Mazel D, Marbouty M, Koszul R, Galli E, Barre FX. MatP local enrichment delays segregation independently of tetramer formation and septal anchoring in Vibrio cholerae. Nat Commun 2024; 15:9893. [PMID: 39543102 PMCID: PMC11564523 DOI: 10.1038/s41467-024-54195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Vibrio cholerae harbours a primary chromosome derived from the monochromosomal ancestor of the Vibrionales (ChrI) and a secondary chromosome derived from a megaplasmid (ChrII). The coordinated segregation of the replication terminus of both chromosomes (TerI and TerII) determines when and where cell division occurs. ChrI encodes a homologue of Escherichia coli MatP, a protein that binds to a DNA motif (matS) that is overrepresented in replication termini. Here, we use a combination of deep sequencing and fluorescence microscopy techniques to show that V. cholerae MatP structures TerI and TerII into macrodomains, targets them to mid-cell during replication, and delays their segregation, thus supporting that ChrII behaves as a bona fide chromosome. We further show that the extent of the segregation delay mediated by MatP depends on the number and local density of matS sites, and is independent of its assembly into tetramers and any interaction with the divisome, in contrast to what has been previously observed in E. coli.
Collapse
Affiliation(s)
- Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jihane Challita
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Jean-Michel Desfontaines
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Spatial Regulation of Genomes, Paris, France
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Spatial Regulation of Genomes, Paris, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France.
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Prevo B, Earnshaw WC. DNA packaging by molecular motors: from bacteriophage to human chromosomes. Nat Rev Genet 2024; 25:785-802. [PMID: 38886215 DOI: 10.1038/s41576-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes.
Collapse
Affiliation(s)
- Bram Prevo
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Pande S, Mitra D, Chatterji A. Topology-mediated organization of Escherichia coli chromosome in fast-growth conditions. Phys Rev E 2024; 110:054401. [PMID: 39690584 DOI: 10.1103/physreve.110.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/16/2024] [Indexed: 12/19/2024]
Abstract
The mechanism underlying the spatiotemporal chromosome organization in Escherichia coli cells remains an open question, though experiments have been able to visually see the evolving chromosome organization in fast- and slow-growing cells. We had proposed [D. Mitra et al., Soft Matter 18, 5615 (2022)1744-683X10.1039/D2SM00734G] that the DNA ring polymer adopts a specific polymer topology as it goes through its cell cycle, which in turn self-organizes the chromosome by entropic forces during slow growth. The fast-growing E. coli cells have four (or more) copies of the replicating DNA, with overlapping rounds of replication going on simultaneously. This makes the spatial segregation and the subsequent organization of the multiple generations of DNA a complex task. Here, we establish that the same simple principles of entropic repulsion between polymer segments which provided an understanding of self-organization of DNA in slow-growth conditions also explains the organization of chromosomes in the much more complex scenario of fast-growth conditions. Repulsion between DNA-polymer segments through entropic mechanisms is harnessed by modifying polymer topology. The ring-polymer topology is modified by introducing crosslinks (emulating the effects of linker proteins) between specific segments. Our simulation reproduces the emergent evolution of the organization of chromosomes as seen in vivo in fluorescent in situ hybridization experiments. Furthermore, we reconcile the mechanism of longitudinal organization of the chromosomes arms in fast-growth conditions by a suitable adaptation of the model. Thus, polymer physics principles, previously used to understand chromosome organization in slow-growing E. coli cells also resolve DNA organization in more complex scenarios with multiple rounds of replication occurring in parallel.
Collapse
|
10
|
Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Appl Environ Microbiol 2024; 90:e0143824. [PMID: 39162566 PMCID: PMC11409669 DOI: 10.1128/aem.01438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.
Collapse
Affiliation(s)
| | - Wei Bai
- LifeFoundry, San Jose, California, USA
| | | | - Hope Steele
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Miriam Silberman
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Olabode
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric Conners
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Gallagher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Bułacz H, Hołówka J, Wójcik W, Zakrzewska-Czerwińska J. MksB is a novel mycobacterial condensin that orchestrates spatiotemporal positioning of replication machinery. Sci Rep 2024; 14:19026. [PMID: 39152186 PMCID: PMC11329512 DOI: 10.1038/s41598-024-70054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.
Collapse
Affiliation(s)
- Hanna Bułacz
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland.
| | - Wiktoria Wójcik
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
12
|
Gras K, Fange D, Elf J. The Escherichia coli chromosome moves to the replisome. Nat Commun 2024; 15:6018. [PMID: 39019870 PMCID: PMC11255300 DOI: 10.1038/s41467-024-50047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
In Escherichia coli, it is debated whether the two replisomes move independently along the two chromosome arms during replication or if they remain spatially confined. Here, we use high-throughput fluorescence microscopy to simultaneously determine the location and short-time-scale (1 s) movement of the replisome and a chromosomal locus throughout the cell cycle. The assay is performed for several loci. We find that (i) the two replisomes are confined to a region of ~250 nm and ~120 nm along the cell's long and short axis, respectively, (ii) the chromosomal loci move to and through this region sequentially based on their distance from the origin of replication, and (iii) when a locus is being replicated, its short time-scale movement slows down. This behavior is the same at different growth rates. In conclusion, our data supports a model with DNA moving towards spatially confined replisomes at replication.
Collapse
Affiliation(s)
- Konrad Gras
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Fange
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Johan Elf
- Dept. of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Woldringh CL. Compaction and Segregation of DNA in Escherichia coli. Life (Basel) 2024; 14:660. [PMID: 38929644 PMCID: PMC11205073 DOI: 10.3390/life14060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
15
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
16
|
Bignaud A, Cockram C, Borde C, Groseille J, Allemand E, Thierry A, Marbouty M, Mozziconacci J, Espéli O, Koszul R. Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes. Nat Struct Mol Biol 2024; 31:489-497. [PMID: 38177686 PMCID: PMC10948358 DOI: 10.1038/s41594-023-01178-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Transcription generates local topological and mechanical constraints on the DNA fiber, leading to the generation of supercoiled chromosome domains in bacteria. However, the global impact of transcription on chromosome organization remains elusive, as the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~5-10 kb). Here we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units. We show that transcriptional units form discrete three-dimensional transcription-induced domains that impose mechanical and topological constraints on their neighboring sequences at larger scales, modifying their localization and dynamics. These results show that transcriptional domains constitute primary building blocks of bacterial chromosome folding and locally impose structural and dynamic constraints.
Collapse
Affiliation(s)
- Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Céline Borde
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Justine Groseille
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Allemand
- INSERM-U1163, Unité mécanismes cellulaires et moléculaires des désordres hématologiques et implications thérapeutiques, Institut Imagine, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France.
| |
Collapse
|
17
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
18
|
Wasim A, Bera P, Mondal J. Development of a Data-Driven Integrative Model of a Bacterial Chromosome. J Chem Theory Comput 2024; 20:1673-1688. [PMID: 37083406 DOI: 10.1021/acs.jctc.3c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The chromosome of archetypal bacteria E. coli is known for a complex topology with a 4.6 × 106 base pairs (bp) long sequence of nucleotides packed within a micrometer-sized cellular confinement. The inherent organization underlying this chromosome eludes general consensus due to the lack of a high-resolution picture of its conformation. Here we present our development of an integrative model of E. coli at a 500 bp resolution (https://github.com/JMLab-tifrh/ecoli_finer), which optimally combines a set of multiresolution genome-wide experimentally measured data within a framework of polymer based architecture. In particular the model is informed with an intragenome contact probability map at 5000 bp resolution derived via the Hi-C experiment and RNA-sequencing data at 500 bp resolution. Via dynamical simulations, this data-driven polymer based model generates an appropriate conformational ensemble commensurate with chromosome architectures that E. coli adopts. As a key hallmark of the E. coli chromosome the model spontaneously self-organizes into a set of nonoverlapping macrodomains and suitably locates plectonemic loops near the cell membrane. As novel extensions, it predicts a contact probability map simulated at a higher resolution than precedent experiments and can demonstrate segregation of chromosomes in a partially replicating cell. Finally, the modular nature of the model helps us devise control simulations to quantify the individual role of key features in hierarchical organization of the bacterial chromosome.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
19
|
Seba M, Boccard F, Duigou S. Activity of MukBEF for chromosome management in E. coli and its inhibition by MatP. eLife 2024; 12:RP91185. [PMID: 38315099 PMCID: PMC10945525 DOI: 10.7554/elife.91185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes share conserved structures and serve a common role in maintaining chromosome architecture. In the bacterium Escherichia coli, the SMC complex MukBEF is necessary for rapid growth and the accurate segregation and positioning of the chromosome, although the specific molecular mechanisms involved are still unknown. Here, we used a number of in vivo assays to reveal how MukBEF controls chromosome conformation and how the MatP/matS system prevents MukBEF activity. Our results indicate that the loading of MukBEF occurs preferentially on newly replicated DNA, at multiple loci on the chromosome where it can promote long-range contacts in cis even though MukBEF can promote long-range contacts in the absence of replication. Using Hi-C and ChIP-seq analyses in strains with rearranged chromosomes, the prevention of MukBEF activity increases with the number of matS sites and this effect likely results from the unloading of MukBEF by MatP. Altogether, our results reveal how MukBEF operates to control chromosome folding and segregation in E. coli.
Collapse
Affiliation(s)
- Mohammed Seba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphane Duigou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Ho K, Royzenblat SK, Wilkins B, Harshey R, Freddolino L. High-Throughput Mapping of Chromosomal Conformations in E. coli Under Physiological Conditions Using Massively Multiplexed Mu Transposition. Methods Mol Biol 2024; 2819:125-146. [PMID: 39028505 PMCID: PMC11887985 DOI: 10.1007/978-1-0716-3930-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Many approaches for measuring three-dimensional chromosomal conformations rely upon formaldehyde crosslinking followed by subsequent proximity ligation, a family of methods exemplified by 3C, Hi-C, etc. Here we provide an alternative crosslinking-free procedure for high-throughput identification of long-range contacts in the chromosomes of enterobacteria, making use of contact-dependent transposition of phage Mu to identify distant loci in close contact. The procedure described here will suffice to provide a comprehensive map of transposition frequencies between tens of thousands of loci in a bacterial genome, with the resolution limited by the diversity of the insertion site library used and the sequencing depth applied.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Sonya K Royzenblat
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Brady Wilkins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Rasika Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
22
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Das S, Forrest J, Kuzminov A. Synthetic lethal mutants in Escherichia coli define pathways necessary for survival with RNase H deficiency. J Bacteriol 2023; 205:e0028023. [PMID: 37819120 PMCID: PMC10601623 DOI: 10.1128/jb.00280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Ribonucleotides frequently contaminate DNA and, if not removed, cause genomic instability. Consequently, all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids (RDHs). Escherichia coli lacking RNase HI (rnhA) and RNase HII (rnhB) enzymes, the ∆rnhA ∆rnhB double mutant, accumulates RDHs in its DNA. These RDHs can convert into RNA-containing DNA lesions (R-lesions) of unclear nature that compromise genomic stability. The ∆rnhAB double mutant has severe phenotypes, like growth inhibition, replication stress, sensitivity to ultraviolet radiation, SOS induction, increased chromosomal fragmentation, and defects in nucleoid organization. In this study, we found that RNase HI deficiency also alters wild-type levels of DNA supercoiling. Despite these severe chromosomal complications, ∆rnhAB double mutant survives, suggesting that dedicated pathways operate to avoid or repair R-lesions. To identify these pathways, we systematically searched for mutants synthetic lethal (colethal) with the rnhAB defect using an unbiased color screen and a candidate gene approach. We identified both novel and previously reported rnhAB-colethal and -coinhibited mutants, characterized them, and sorted them into avoidance or repair pathways. These mutants operate in various parts of nucleic acid metabolism, including replication fork progression, R-loop prevention and removal, nucleoid organization, tRNA modification, recombinational repair, and chromosome-dimer resolution, demonstrating the pleiotropic nature of RNase H deficiency. IMPORTANCE Ribonucleotides (rNs) are structurally very similar to deoxyribonucleotides. Consequently, rN contamination of DNA is common and pervasive across all domains of life. Failure to remove rNs from DNA has severe consequences, and all organisms are equipped with RNase H enzymes to remove RNA-DNA hybrids. RNase H deficiency leads to complications in bacteria, yeast, and mouse, and diseases like progressive external ophthalmoplegia (mitochondrial defects in RNASEH1) and Aicardi-Goutières syndrome (defects in RNASEH2) in humans. Escherichia coli ∆rnhAB mutant, deficient in RNases H, has severe chromosomal complications. Despite substantial problems, nearly half of the mutant population survives. We have identified novel and previously confirmed pathways in various parts of nucleic acid metabolism that ensure survival with RNase H deficiency.
Collapse
Affiliation(s)
- Sneha Das
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan Forrest
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Yáñez-Cuna FO, Koszul R. Insights in bacterial genome folding. Curr Opin Struct Biol 2023; 82:102679. [PMID: 37604045 DOI: 10.1016/j.sbi.2023.102679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Chromosomes in all domains of life are well-defined structural entities with complex hierarchical organization. The regulation of this hierarchical organization and its functional interplay with gene expression or other chromosome metabolic processes such as repair, replication, or segregation is actively investigated in a variety of species, including prokaryotes. Bacterial chromosomes are typically gene-dense with few non-coding sequences and are organized into the nucleoid, a membrane-less compartment composed of DNA, RNA, and proteins (nucleoid-associated proteins or NAPs). The continuous improvement of imaging and genomic methods has put the organization of these Mb-long molecules at reach, allowing to disambiguate some of their highly dynamic properties and intertwined structural features. Here we review and discuss some of the recent advances in the field of bacterial chromosome organization.
Collapse
Affiliation(s)
- Fares Osam Yáñez-Cuna
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
25
|
Batty P, Langer CCH, Takács Z, Tang W, Blaukopf C, Peters J, Gerlich DW. Cohesin-mediated DNA loop extrusion resolves sister chromatids in G2 phase. EMBO J 2023; 42:e113475. [PMID: 37357575 PMCID: PMC10425840 DOI: 10.15252/embj.2023113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.
Collapse
Affiliation(s)
- Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Christoph CH Langer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Zsuzsanna Takács
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Claudia Blaukopf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Jan‐Michael Peters
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
26
|
Gilbert BR, Thornburg ZR, Brier TA, Stevens JA, Grünewald F, Stone JE, Marrink SJ, Luthey-Schulten Z. Dynamics of chromosome organization in a minimal bacterial cell. Front Cell Dev Biol 2023; 11:1214962. [PMID: 37621774 PMCID: PMC10445541 DOI: 10.3389/fcell.2023.1214962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.
Collapse
Affiliation(s)
- Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - John E. Stone
- NVIDIA Corporation, Santa Clara, CA, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NSF Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
27
|
Ranaivoarisoa TO, Bai W, Rengasamy K, Steele H, Silberman M, Olabode J, Bose A. Improving bioplastic production by Rhodopseudomonas palustris TIE-1 using synthetic biology and metabolic engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541174. [PMID: 37292853 PMCID: PMC10245724 DOI: 10.1101/2023.05.17.541174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for sustainably produced renewable resources, it is important to look towards microorganisms capable of producing bioproducts such as biofuels and bioplastics. Though many systems for bioproduct production are well documented and tested in model organisms, it is essential to look beyond to non-model organisms to expand the field and take advantage of metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple, non-sulfur autotrophic, and anaerobic bacterium capable of producing bioproducts that are comparable to their petroleum-based counterparts. To induce bioplastic overproduction, genes that might have a potential role in the PHB biosynthesis such as the regulator, phaR, and phaZ known for its ability to degrade PHB granules were deleted using markerless deletion. Mutants in pathways that might compete with polyhydroxybutyrate (PHB) production such as glycogen and nitrogen fixation previously created to increase n -butanol production by TIE-1 were also tested. In addition, a phage integration system was developed to insert RuBisCO (RuBisCO form I and II genes) driven by a constitutive promoter P aphII into TIE- 1 genome. Our results show that deletion of the phaR gene of the PHB pathway increases PHB productivity when TIE-1 was grown photoheterotrophically with butyrate and ammonium chloride (NH 4 Cl). Mutants unable to make glycogen or fix dinitrogen gas show an increase in PHB productivity under photoautotrophic growth conditions with hydrogen. In addition, the engineered TIE-1 overexpressing RuBisCO form I and form II produces significantly more polyhydroxybutyrate than the wild type under photoheterotrophy with butyrate and photoautotrophy with hydrogen. Inserting RuBisCO genes into TIE-1 genome is a more effective strategy than deleting competitive pathways to increase PHB production in TIE-1. The phage integration system developed for TIE-1 thus creates numerous opportunities for synthetic biology in TIE-1.
Collapse
|
28
|
Leonard AC. Recollections of a Helmstetter Disciple. Life (Basel) 2023; 13:life13051114. [PMID: 37240759 DOI: 10.3390/life13051114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nearly fifty years ago, it became possible to construct E. coli minichromosomes using recombinant DNA technology. These very small replicons, comprising the unique replication origin of the chromosome oriC coupled to a drug resistance marker, provided new opportunities to study the regulation of bacterial chromosome replication, were key to obtaining the nucleotide sequence information encoded into oriC and were essential for the development of a ground-breaking in vitro replication system. However, true authenticity of the minichromosome model system required that they replicate during the cell cycle with chromosome-like timing specificity. I was fortunate enough to have the opportunity to construct E. coli minichromosomes in the laboratory of Charles Helmstetter and, for the first time, measure minichromosome cell cycle regulation. In this review, I discuss the evolution of this project along with some additional studies from that time related to the DNA topology and segregation properties of minichromosomes. Despite the significant passage of time, it is clear that large gaps in our understanding of oriC regulation still remain. I discuss some specific topics that continue to be worthy of further study.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32952, USA
| |
Collapse
|
29
|
Wasim A, Gupta A, Bera P, Mondal J. Interpretation of organizational role of proteins on E. coli nucleoid via Hi-C integrated model. Biophys J 2023; 122:63-81. [PMID: 36435970 PMCID: PMC9822802 DOI: 10.1016/j.bpj.2022.11.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Several proteins in Escherichia coli work together to maintain the complex organization of its chromosome. However, the individual roles of these so-called nucleoid-associated proteins (NAPs) in chromosome architectures are not well characterized. Here, we quantitatively dissect the organizational roles of Heat Unstable (HU), a ubiquitous protein in E. coli and MatP, an NAP specifically binding to the Ter macrodomain of the chromosome. Toward this end, we employ a polymer physics-based computer model of wild-type chromosome and their HU- and MatP-devoid counterparts by incorporating their respective experimentally derived Hi-C contact matrix, cell dimensions, and replication status of the chromosome commensurate with corresponding growth conditions. Specifically, our model for the HU-devoid chromosome corroborates well with the microscopy observation of compaction of chromosome at short genomic range but diminished long-range interactions, justifying precedent hypothesis of segregation defect upon HU removal. Control simulations point out that the change in cell dimension and chromosome content in the process of HU removal holds the key to the observed differences in chromosome architecture between wild-type and HU-devoid cells. On the other hand, simulation of MatP-devoid chromosome led to locally enhanced contacts between Ter and its flanking macrodomains, consistent with previous recombination assay experiments and MatP's role in insulation of the Ter macrodomain from the rest of the chromosome. However, the simulation indicated no change in matS sites' localization. Rather, a set of designed control simulations showed that insulation of Ter is not caused by bridging of distant matS sites, also lending credence to a recent mobility experiment on various loci of the E. coli chromosome. Together, the investigations highlight the ability of an integrative model of the bacterial genome in elucidating the role of NAPs and in reconciling multiple experimental observations.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, India
| | | |
Collapse
|
30
|
Japaridze A, van Wee R, Gogou C, Kerssemakers JWJ, van den Berg DF, Dekker C. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front Microbiol 2023; 14:1107093. [PMID: 36937278 PMCID: PMC10020239 DOI: 10.3389/fmicb.2023.1107093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the Escherichia coli SMC complex MukBEF in chromosome architecture and segregation. Using quantitative live-cell imaging of shape-manipulated cells, we show that MukBEF is crucial to preserve the toroidal topology of the Escherichia coli chromosome and that it is non-uniformly distributed along the chromosome: it prefers locations toward the origin and away from the terminus of replication, and it is unevenly distributed over the origin of replication along the two chromosome arms. Using an ATP hydrolysis-deficient MukB mutant, we confirm that MukBEF translocation along the chromosome is ATP-dependent, in contrast to its loading onto DNA. MukBEF and MatP are furthermore found to be essential for sister chromosome decatenation. We propose a model that explains how MukBEF, MatP, and their interacting partners organize the chromosome and contribute to sister segregation. The combination of bacterial cell-shape modification and quantitative fluorescence microscopy paves way to investigating chromosome-organization factors in vivo.
Collapse
|
31
|
DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol Cell 2022; 82:4727-4740.e6. [PMID: 36525956 DOI: 10.1016/j.molcel.2022.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.
Collapse
|
32
|
Deep A, Gu Y, Gao YQ, Ego KM, Herzik MA, Zhou H, Corbett KD. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol Cell 2022; 82:4145-4159.e7. [PMID: 36206765 PMCID: PMC9637719 DOI: 10.1016/j.molcel.2022.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.
Collapse
Affiliation(s)
- Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yong-Qi Gao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaori M Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Mitra D, Pande S, Chatterji A. Topology-driven spatial organization of ring polymers under confinement. Phys Rev E 2022; 106:054502. [PMID: 36559479 DOI: 10.1103/physreve.106.054502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Entropic repulsion between DNA ring polymers under confinement is a key mechanism governing the spatial segregation of bacterial DNA before cell division. Here we establish that "internal" loops within a modified-ring polymer architecture enhance entropic repulsion between two overlapping polymers confined in a cylinder. Interestingly, they also induce entropy-driven spatial organization of polymer segments as seen in vivo. Here we design polymers of different architectures in our simulations by introducing a minimal number of cross-links between specific monomers along the ring-polymer contour. The cross-links are likely induced by various bridging proteins inside living cells. We investigate the segregation of two polymers with modified topologies confined in a cylinder, which initially had spatially overlapping configurations. This helps us to identify the architectures that lead to higher success rates of segregation. We also establish the mechanism that leads to localization of specific polymer segments. We use the blob model to provide a theoretical understanding of why certain architectures lead to enhanced entropic repulsive forces between the polymers. Lastly, we establish a correspondence between the organizational patterns of the chromosome of the C.crescentus bacterium and our results for a specifically designed polymer architecture. However, the principles outlined here pertaining to the organization of polymeric segments are applicable to both synthetic and biological polymers.
Collapse
|
34
|
Zhou M. DNA sliding and loop formation by E. coli SMC complex: MukBEF. Biochem Biophys Rep 2022; 31:101297. [PMID: 35770038 PMCID: PMC9234588 DOI: 10.1016/j.bbrep.2022.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes share conserved architectures and function in chromosome maintenance via an unknown mechanism. Here we have used single-molecule techniques to study MukBEF, the SMC complex in Escherichia coli. Real-time movies show MukB alone can compact DNA and ATP inhibits DNA compaction by MukB. We observed that DNA unidirectionally slides through MukB, potentially by a ratchet mechanism, and the sliding speed depends on the elastic energy stored in the DNA. MukE, MukF and ATP binding stabilize MukB and DNA interaction, and ATP hydrolysis regulates the loading/unloading of MukBEF from DNA. Our data suggests a new model for how MukBEF organizes the bacterial chromosome in vivo; and this model will be relevant for other SMC proteins.
Collapse
Affiliation(s)
- Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
35
|
Mitra D, Pande S, Chatterji A. Polymer architecture orchestrates the segregation and spatial organization of replicating E. coli chromosomes in slow growth. SOFT MATTER 2022; 18:5615-5631. [PMID: 35861071 DOI: 10.1039/d2sm00734g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism of chromosome segregation and organization in the bacterial cell cycle of E. coli is one of the least understood aspects in its life cycle. The E. coli chromosome is often modelled as a bead spring ring polymer. We introduce cross-links in the DNA-ring polymer, resulting in the formation of loops within each replicating bacterial chromosome. We use simulations to show that the chosen polymer-topology ensures its self-organization along the cell long-axis, such that various chromosomal loci get spatially localized as seen in vivo. The localization of loci arises due to entropic repulsion between polymer loops within each daughter DNA confined in a cylinder. The cellular addresses of the loci in our model are in fair agreement with those seen in experiments as given in J. A. Cass et al., Biophys. J., 2016, 110, 2597-2609. We also show that the adoption of such modified polymer architectures by the daughter DNAs leads to an enhanced propensity of their spatial segregation. Secondly, we match other experimentally reported results, including observation of the cohesion time and the ter-transition. Additionally, the contact map generated from our simulations reproduces the macro-domain like organization as seen in the experimentally obtained Hi-C map. Lastly, we have also proposed a plausible reconciliation of the 'Train Track' and the 'Replication Factory' models which provide conflicting descriptions of the spatial organization of the replication forks. Thus, we reconcile observations from complementary experimental techniques probing bacterial chromosome organization.
Collapse
|
36
|
Mirny L, Dekker J. Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harb Perspect Biol 2022; 14:a040147. [PMID: 34518339 PMCID: PMC9248823 DOI: 10.1101/cshperspect.a040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microscopy and genomic approaches provide detailed descriptions of the three-dimensional folding of chromosomes and nuclear organization. The fundamental question is how activity of molecules at the nanometer scale can lead to complex and orchestrated spatial organization at the scale of chromosomes and the whole nucleus. At least three key mechanisms can bridge across scales: (1) tethering of specific loci to nuclear landmarks leads to massive reorganization of the nucleus; (2) spatial compartmentalization of chromatin, which is driven by molecular affinities, results in spatial isolation of active and inactive chromatin; and (3) loop extrusion activity of SMC (structural maintenance of chromosome) complexes can explain many features of interphase chromatin folding and underlies key phenomena during mitosis. Interestingly, many features of chromosome organization ultimately result from collective action and the interplay between these mechanisms, and are further modulated by transcription and topological constraints. Finally, we highlight some outstanding questions that are critical for our understanding of nuclear organization and function. We believe many of these questions can be answered in the coming years.
Collapse
Affiliation(s)
- Leonid Mirny
- Institute for Medical Engineering and Science, and Department of Physics, MIT, Cambridge, Massachusetts 02139, USA
| | - Job Dekker
- Howard Hughes Medical Institute, and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
37
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
38
|
High Abundance of Transcription Regulators Compacts the Nucleoid in Escherichia coli. J Bacteriol 2022; 204:e0002622. [PMID: 35583339 DOI: 10.1128/jb.00026-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In enteric bacteria organization of the circular chromosomal DNA into a highly dynamic and toroidal-shaped nucleoid involves various factors, such as DNA supercoiling, nucleoid-associated proteins (NAPs), the structural maintenance of chromatin (SMC) complex, and macrodomain organizing proteins. Here, we show that ectopic expression of transcription regulators at high levels leads to nucleoid compaction. This serendipitous result was obtained by fluorescence microscopy upon ectopic expression of the transcription regulator and phosphodiesterase PdeL of Escherichia coli. Nucleoid compaction by PdeL depends on DNA-binding, but not on its enzymatic phosphodiesterase activity. Nucleoid compaction was also observed upon high-level ectopic expression of the transcription regulators LacI, RutR, RcsB, LeuO, and Cra, which range from single-target gene regulators to global regulators. In the case of LacI, its high-level expression in the presence of the gratuitous inducer IPTG (isopropyl-β-d-thiogalactopyranoside) also led to nucleoid compaction, indicating that compaction is caused by unspecific DNA-binding. In all cases nucleoid compaction correlated with misplacement of the FtsZ ring and loss of MukB foci, a subunit of the SMC complex. Thus, high levels of several transcription regulators cause nucleoid compaction with consequences for replication and cell division. IMPORTANCE The bacterial nucleoid is a highly organized and dynamic structure for simultaneous transcription, replication, and segregation of the bacterial genome. Compaction of the nucleoid and disturbance of DNA segregation and cell division by artificially high levels of transcription regulators, as described here, reveals that an excess of DNA-binding protein disturbs nucleoid structuring. The results suggest that ectopic expression levels of DNA-binding proteins for genetic studies of their function but also for their purification should be carefully controlled and adjusted.
Collapse
|
39
|
Possoz C, Yamaichi Y, Galli E, Ferat JL, Barre FX. Vibrio cholerae Chromosome Partitioning without Polar Anchoring by HubP. Genes (Basel) 2022; 13:genes13050877. [PMID: 35627261 PMCID: PMC9140986 DOI: 10.3390/genes13050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.
Collapse
|
40
|
Intersubunit and intrasubunit interactions driving the MukBEF ATPase. J Biol Chem 2022; 298:101964. [PMID: 35452680 PMCID: PMC9127220 DOI: 10.1016/j.jbc.2022.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022] Open
Abstract
MukBEF, a structural maintenance of chromosome-like protein complex consisting of an ATPase, MukB, and two interacting subunits, MukE and MukF, functions as the bacterial condensin. It is likely that MukBEF compacts DNA via an ATP hydrolysis-dependent DNA loop-extrusion reaction similar to that demonstrated for the yeast structural maintenance of chromosome proteins condensin and cohesin. MukB also interacts with the ParC subunit of the cellular chromosomal decatenase topoisomerase IV, an interaction that is required for proper chromosome condensation and segregation in Escherichia coli, although it suppresses the MukB ATPase activity. Other structural determinants and interactions that regulate the ATPase activity of MukBEF are not clear. Here, we have investigated the MukBEF ATPase activity, identifying intersubunit and intrasubunit interactions by protein-protein crosslinking and site-specific mutagenesis. We show that interactions between the hinge of MukB and its neck region are essential for the ATPase activity, that the ParC subunit of topoisomerase IV inhibits the MukB ATPase by preventing this interaction, that MukE interaction with DNA is likely essential for viability, and that interactions between MukF and the MukB neck region are necessary for ATPase activity and viability.
Collapse
|
41
|
Conin B, Billault-Chaumartin I, El Sayyed H, Quenech'Du N, Cockram C, Koszul R, Espéli O. Extended sister-chromosome catenation leads to massive reorganization of the E. coli genome. Nucleic Acids Res 2022; 50:2635-2650. [PMID: 35212387 PMCID: PMC8934667 DOI: 10.1093/nar/gkac105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/07/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
In bacteria, chromosome segregation occurs progressively from the origin to terminus within minutes of replication of each locus. Between replication and segregation, sister loci are held in an apparent cohesive state by topological links. The decatenation activity of topoisomerase IV (Topo IV) is required for segregation of replicated loci, yet little is known about the structuring of the chromosome maintained in a cohesive state. In this work, we investigated chromosome folding in cells with altered decatenation activities. Within minutes after Topo IV inactivation, massive chromosome reorganization occurs, associated with increased in contacts between nearby loci, likely trans-contacts between sister chromatids, and in long-range contacts between the terminus and distant loci. We deciphered the respective roles of Topo III, MatP and MukB when TopoIV activity becomes limiting. Topo III reduces short-range inter-sister contacts suggesting its activity near replication forks. MatP, the terminus macrodomain organizing system, and MukB, the Escherichia coli SMC, promote long-range contacts with the terminus. We propose that the large-scale conformational changes observed under these conditions reveal defective decatenation attempts involving the terminus area. Our results support a model of spatial and temporal partitioning of the tasks required for sister chromosome segregation.
Collapse
Affiliation(s)
- Brenna Conin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France.,Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France.,Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Ingrid Billault-Chaumartin
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hafez El Sayyed
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Nicole Quenech'Du
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| | - Charlotte Cockram
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des Génomes, F-75015Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), Collége de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
42
|
Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2022; 119:2115854119. [PMID: 35101983 PMCID: PMC8833148 DOI: 10.1073/pnas.2115854119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
How bacteria with multipartite genomes organize and segregate their DNA is poorly understood. Here, we investigate a prototypical multipartite genome in the plant pathogen Agrobacterium tumefaciens. We identify previously unappreciated interreplicon interactions: the four replicons cluster through interactions at their centromeres, and the two chromosomes, one circular and one linear, interact along their replication arms. Our data suggest that these interreplicon contacts play critical roles in the organization and maintenance of multipartite genomes. Bacterial species from diverse phyla contain multiple replicons, yet how these multipartite genomes are organized and segregated during the cell cycle remains poorly understood. Agrobacterium tumefaciens has a 2.8-Mb circular chromosome (Ch1), a 2.1-Mb linear chromosome (Ch2), and two large plasmids (pAt and pTi). We used this alpha proteobacterium as a model to investigate the global organization and temporal segregation of a multipartite genome. Using chromosome conformation capture assays, we demonstrate that both the circular and the linear chromosomes, but neither of the plasmids, have their left and right arms juxtaposed from their origins to their termini, generating interarm interactions that require the broadly conserved structural maintenance of chromosomes complex. Moreover, our study revealed two types of interreplicon interactions: “ori-ori clustering” in which the replication origins of all four replicons interact, and “Ch1-Ch2 alignment” in which the arms of Ch1 and Ch2 interact linearly along their lengths. We show that the centromeric proteins (ParB1 for Ch1 and RepBCh2 for Ch2) are required for both types of interreplicon contacts. Finally, using fluorescence microscopy, we validated the clustering of the origins and observed their frequent colocalization during segregation. Altogether, our findings provide a high-resolution view of the conformation of a multipartite genome. We hypothesize that intercentromeric contacts promote the organization and maintenance of diverse replicons.
Collapse
|
43
|
Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein. Genes (Basel) 2022; 13:genes13020278. [PMID: 35205323 PMCID: PMC8872289 DOI: 10.3390/genes13020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
In order to survive, bacterial cells rely on precise spatiotemporal organization and coordination of essential processes such as cell growth, chromosome segregation, and cell division. Given the general lack of organelles, most bacteria are forced to depend on alternative localization mechanisms, such as, for example, geometrical cues. DivIVA proteins are widely distributed in mainly Gram-positive bacteria and were shown to bind the membrane, typically in regions of strong negative curvature, such as the cell poles and division septa. Here, they have been shown to be involved in a multitude of processes: from apical cell growth and chromosome segregation in actinobacteria to sporulation and inhibition of division re-initiation in firmicutes. Structural analyses revealed that DivIVA proteins can form oligomeric assemblies that constitute a scaffold for recruitment of other proteins. However, it remained unclear whether interaction with partner proteins influences DivIVA dynamics. Using structured illumination microscopy (SIM), single-particle tracking (SPT) microscopy, and fluorescent recovery after photobleaching (FRAP) experiments, we show that DivIVA from Corynebacterium glutamicum is mobilized by its binding partner ParB. In contrast, we show that the interaction between Bacillus subtilis DivIVA and its partner protein MinJ reduces DivIVA mobility. Furthermore, we show that the loss of the rod-shape leads to an increase in DivIVA dynamics in both organisms. Taken together, our study reveals the modulation of the polar scaffold protein by protein interactors and cell morphology. We reason that this leads to a very simple, yet robust way for actinobacteria to maintain polar growth and their rod-shape. In B. subtilis, however, the DivIVA protein is tailored towards a more dynamic function that allows quick relocalization from poles to septa upon division.
Collapse
|
44
|
Qian JW, Wang XY, Deng K, Li DF, Guo L. Crystal structure of the chromosome partition protein MukE homodimer. Biochem Biophys Res Commun 2021; 589:229-233. [PMID: 34929446 DOI: 10.1016/j.bbrc.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/15/2022]
Abstract
The SMC (structural maintenance of chromosomes) proteins are known to be involved in chromosome pairing or aggregation and play an important role in cell cycle and division. Different from SMC-ScpAB complex maintaining chromosome structure in most bacteria, the MukB-MukE-MukF complex is responsible for chromosome condensation in E. coli and some γ-proteobacter. Though different models were proposed to illustrate the mechanism of how the MukBEF complex worked, the assembly of the MukBEF complex is a key. The MukE dimer interacted with the middle region of one MukF molecule, and was clamped by the N- and C-terminal domain of the latter, and then was involved in the interaction with the head domain of MukB. To reveal the structural basis of MukE involved in the dynamic equilibrium of potential different MukBEF assemblies, we determined the MukE structure at 2.44 Å resolution. We found that the binding cavity for the α10, β4 and β5 of MukF (residues 296-327) in the MukE dimer has been occupied by the α9 and β7 strand of MukE. We proposed that the highly dynamic C-terminal region (173-225) was important for the MukE-F assembly and then involved in the MukBEF complex formation.
Collapse
Affiliation(s)
- Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xiao-Yan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kai Deng
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Bürmann F, Funke LFH, Chin JW, Löwe J. Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites. Mol Cell 2021; 81:4891-4906.e8. [PMID: 34739874 PMCID: PMC8669397 DOI: 10.1016/j.molcel.2021.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
The ring-like structural maintenance of chromosomes (SMC) complex MukBEF folds the genome of Escherichia coli and related bacteria into large loops, presumably by active DNA loop extrusion. MukBEF activity within the replication terminus macrodomain is suppressed by the sequence-specific unloader MatP. Here, we present the complete atomic structure of MukBEF in complex with MatP and DNA as determined by electron cryomicroscopy (cryo-EM). The complex binds two distinct DNA double helices corresponding to the arms of a plectonemic loop. MatP-bound DNA threads through the MukBEF ring, while the second DNA is clamped by the kleisin MukF, MukE, and the MukB ATPase heads. Combinatorial cysteine cross-linking confirms this topology of DNA loop entrapment in vivo. Our findings illuminate how a class of near-ubiquitous DNA organizers with important roles in genome maintenance interacts with the bacterial chromosome.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, UK.
| | - Louise F H Funke
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason W Chin
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
46
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
47
|
Kumar R, Bahng S, Marians KJ. The MukB-topoisomerase IV interaction mutually suppresses their catalytic activities. Nucleic Acids Res 2021; 50:2621-2634. [PMID: 34747485 PMCID: PMC8934648 DOI: 10.1093/nar/gkab1027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
The bacterial condensin MukB and the cellular chromosomal decatenase, topoisomerase IV interact and this interaction is required for proper condensation and topological ordering of the chromosome. Here, we show that Topo IV stimulates MukB DNA condensation by stabilizing loops in DNA: MukB alone can condense nicked plasmid DNA into a protein–DNA complex that has greater electrophoretic mobility than that of the DNA alone, but both MukB and Topo IV are required for a similar condensation of a linear DNA representing long stretches of the chromosome. Remarkably, we show that rather than MukB stimulating the decatenase activity of Topo IV, as has been argued previously, in stoichiometric complexes of the two enzymes each inhibits the activity of the other: the ParC subunit of Topo IV inhibits the MukF-stimulated ATPase activity of MukB and MukB inhibits both DNA crossover trapping and DNA cleavage by Topo IV. These observations suggest that when in complex on the DNA, Topo IV inhibits the motor function of MukB and the two proteins provide a stable scaffold for chromosomal DNA condensation.
Collapse
Affiliation(s)
- Rupesh Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
48
|
Fisher GL, Bolla JR, Rajasekar KV, Mäkelä J, Baker R, Zhou M, Prince JP, Stracy M, Robinson CV, Arciszewska LK, Sherratt DJ. Competitive binding of MatP and topoisomerase IV to the MukB hinge domain. eLife 2021; 10:70444. [PMID: 34585666 PMCID: PMC8523169 DOI: 10.7554/elife.70444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.
Collapse
Affiliation(s)
- Gemma Lm Fisher
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josh P Prince
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.,The Kavli Institute for Nanoscience Discovery, Oxford, United Kingdom
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Mäkelä J, Uphoff S, Sherratt DJ. Nonrandom segregation of sister chromosomes by Escherichia coli MukBEF. Proc Natl Acad Sci U S A 2021; 118:e2022078118. [PMID: 34385314 PMCID: PMC8379921 DOI: 10.1073/pnas.2022078118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (ter) binding protein, MatP, to chromosome organization-segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound β2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older ("immortal") template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
50
|
Anchimiuk A, Lioy VS, Bock FP, Minnen A, Boccard F, Gruber S. A low Smc flux avoids collisions and facilitates chromosome organization in Bacillus subtilis. eLife 2021; 10:65467. [PMID: 34346312 PMCID: PMC8357415 DOI: 10.7554/elife.65467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes. Here, we uncover several factors that influence bacterial chromosome organization by modulating the probability of such clashes. These factors include the number, the strength, and the distribution of Smc loading sites, the residency time on the chromosome, the translocation rate, and the cellular abundance of Smc complexes. By studying various mutants, we show that these parameters are fine-tuned to reduce the frequency of encounters between Smc complexes, presumably as a risk mitigation strategy. Mild perturbations hamper chromosome organization by causing Smc collisions, implying that the cellular capacity to resolve them is limited. Altogether, we identify mechanisms that help to avoid Smc collisions and their resolution by Smc traversal or other potentially risky molecular transactions.
Collapse
Affiliation(s)
- Anna Anchimiuk
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Florian Patrick Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anita Minnen
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frederic Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|