1
|
Chen F, Tang H, Li C, Kang R, Tang D, Liu J. CYP51A1 drives resistance to pH-dependent cell death in pancreatic cancer. Nat Commun 2025; 16:2278. [PMID: 40055353 PMCID: PMC11889236 DOI: 10.1038/s41467-025-57583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/26/2025] [Indexed: 04/06/2025] Open
Abstract
Disrupted pH homeostasis can precipitate cell death and represents a viable therapeutic target in oncological interventions. Here, we utilize mass spectrometry-based drug analysis, transcriptomic screens, and lipid metabolomics to explore the metabolic mechanisms underlying pH-dependent cell death. We reveal CYP51A1, a gene involved in cholesterol synthesis, as a key suppressor of alkalization-induced cell death in pancreatic cancer cells. Inducing intracellular alkalization by the small molecule JTC801 leads to a decrease in endoplasmic reticulum cholesterol levels, subsequently activating SREBF2, a transcription factor responsible for controlling the expression of genes involved in cholesterol biosynthesis. Specifically, SREBF2-driven upregulation of CYP51A1 prevents cholesterol accumulation within lysosomes, leading to TMEM175-dependent lysosomal proton efflux, ultimately resulting in the inhibition of cell death. In animal models, including xenografts, syngeneic orthotopic, and patient-derived models, the genetic or pharmacological inhibition of CYP51A1 enhances the effectiveness of JTC801 in suppressing pancreatic tumors. These findings demonstrate a role of the CYP51A1-dependent lysosomal pathway in inhibiting alkalization-induced cell death and highlight its potential as a targetable vulnerability in pancreatic cancer.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Cen Y, Li XX, Wang M, Chen Y, Ou XC, Yu BX, Chen XY, Wang YQ, Guo N, Li SY. Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7539-7552. [PMID: 39853093 DOI: 10.1021/acsami.4c22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG8 linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG8-GFTATPPAPDSPQEP. This chimeric peptide could self-assemble into nanomicelles capable of encapsulating the CD47 inhibitor RRx-001, generating the multifunctional photodynamic immunostimulant aGlyR. In vitro and in vivo results indicate that the photodynamic therapy (PDT) of aGlyR could disrupt breast cancer cells and trigger immunogenic cell death (ICD), leading to the release of tumor-associated antigens (TAAs) and the activation of immunological cascades. Additionally, the chimeric peptide component of aGlyR results in the deglycosylation and degradation of PD-L1, which restores T cell-mediated immune activity. Concurrently, the release of RRx-001 blocks the CD47 pathway, disrupting the antiphagocytic signaling of breast cancer cells and activating innate immune responses. This synergistic immunomodulatory approach effectively reverses the complex immunosuppressive factors, significantly enhancing the immunotherapeutic effects of conventional treatments.
Collapse
Affiliation(s)
- Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xin-Xuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Min Wang
- Scientific Research Center of Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiao-Cheng Ou
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Bai-Xue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xia-Yun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
3
|
Sergejevs N, Avci D, van de Weijer ML, Corey RA, Lemberg MK, Carvalho P. Topology surveillance of the lanosterol demethylase CYP51A1 by signal peptide peptidase. J Cell Sci 2024; 137:jcs262333. [PMID: 39513424 PMCID: PMC11827857 DOI: 10.1242/jcs.262333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP, encoded by HM13) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here, we identify the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalysed cleavage triggers CYP51A1 clearance by endoplasmic reticulum-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules, and we identify an amphipathic helix in the CYP51A1 N terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain potentially non-functional conformers.
Collapse
Affiliation(s)
- Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Dönem Avci
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Michael L. van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robin A. Corey
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Marius K. Lemberg
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
4
|
Xu S, Donnelly L, Kober DL, Mak M, Radhakrishnan A. Development of a monoclonal antibody to study MARCH6, an E3 ligase that regulates proteins that control lipid homeostasis. J Lipid Res 2024; 65:100650. [PMID: 39306038 PMCID: PMC11539575 DOI: 10.1016/j.jlr.2024.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Membrane-associated ring-CH-type finger 6 (MARCH6), also designated as TEB4 or RNF176, is an E3 ligase that is embedded in membranes of the endoplasmic reticulum where it ubiquitinates many substrate proteins to consign them to proteasome-mediated degradation. In recent years, MARCH6 has been identified as a key regulator of several metabolic pathways, including cholesterol and lipid droplet homeostasis, protein quality control, ferroptosis, and tumorigenesis. Despite its importance, there are currently no specific antibodies to detect and monitor MARCH6 levels in cultured cells and animals. Here, we address this deficiency by generating a monoclonal antibody that specifically detects MARCH6 in cultured cells of insect, mouse, hamster, and human origin, as well as in mouse tissues, with minimal cross-reactivity against other proteins. We then used this antibody to assess two properties of MARCH6. First, analysis of mouse tissues with this antibody revealed that the liver contained the highest levels of March6. Second, analysis of five different cell lines with this antibody showed that endogenous levels of MARCH6 are unchanged as the cellular content of cholesterol is varied. This reagent promises to be a useful tool in interrogating additional signaling roles of MARCH6.
Collapse
Affiliation(s)
- Shimeng Xu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel L Kober
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Myra Mak
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
5
|
Weyer Y, Teis D. The Dsc complex and its role in Golgi quality control. Biochem Soc Trans 2024; 52:2023-2034. [PMID: 39324639 PMCID: PMC11555709 DOI: 10.1042/bst20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
Membrane proteins play crucial roles in cellular functions. However, processes such as the insertion of membrane proteins into the endoplasmic reticulum (ER), their folding into native structures, the assembly of multi-subunit membrane protein complexes, and their targeting from the ER to specific organelles are prone to errors and have a relatively high failure rate. To prevent the accumulation of defective or orphaned membrane proteins, quality control mechanisms assess folding, quantity, and localization of these proteins. This quality control is vital for preserving organelle integrity and maintaining cellular health. In this mini-review, we will focus on how selective membrane protein quality control at the Golgi apparatus, particularly through the defective for SREBP cleavage (Dsc) ubiquitin ligase complex, detects orphaned proteins and prevents their mis-localization to other organelles.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
van de Weijer ML, Samanta K, Sergejevs N, Jiang L, Dueñas ME, Heunis T, Huang TY, Kaufman RJ, Trost M, Sanyal S, Cowley SA, Carvalho P. Tapasin assembly surveillance by the RNF185/Membralin ubiquitin ligase complex regulates MHC-I surface expression. Nat Commun 2024; 15:8508. [PMID: 39353943 PMCID: PMC11445256 DOI: 10.1038/s41467-024-52772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Krishna Samanta
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - LuLin Jiang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Altos Labs-Bay Institute of Science, Redwood City, CA, USA
| | - Maria Emilia Dueñas
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Telethon Kids Institute, Perth, Nedlands, WA, 6009, Australia
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Immunocore Ltd, 92 Park Drive, Abingdon, OX14 4RY, UK
| | - Timothy Y Huang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
7
|
Bansod S, Dodhiawala PB, Geng Y, Bulle A, Liu P, Li L, Townsend R, Grierson PM, Held JM, Adhikari H, Lim KH. The TRIM4 E3 ubiquitin ligase degrades TPL2 and is modulated by oncogenic KRAS. Cell Rep 2024; 43:114667. [PMID: 39178114 PMCID: PMC11472288 DOI: 10.1016/j.celrep.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Loss-of-function mutations in the C terminus of TPL2 kinase promote oncogenesis by impeding its proteasomal degradation, leading to sustained protein expression. However, the degradation mechanism for TPL2 has remained elusive. Through proximity-dependent biotin identification (BioID), we uncovered tripartite motif-containing 4 (TRIM4) as the E3 ligase that binds and degrades TPL2 by polyubiquitination of lysines 415 and 439. The naturally occurring TPL2 mutants R442H and E188K exhibit impaired TRIM4 binding, enhancing their stability. We further discovered that TRIM4 itself is stabilized by another E3 ligase, TRIM21, which in turn is regulated by KRAS. Mutant KRAS recruits RNF185 to degrade TRIM21 and subsequently TRIM4, thereby stabilizing TPL2. In the presence of mutant KRAS, TPL2 phosphorylates and degrades GSK3β, resulting in β-catenin stabilization and activation of the Wnt pathway. These findings elucidate the physiological mechanisms regulating TPL2 and its exploitation by mutant KRAS, underscoring the need to develop TPL2 inhibitors for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Reid Townsend
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hema Adhikari
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Veronese M, Kallabis S, Kaczmarek AT, Das A, Robers L, Schumacher S, Lofrano A, Brodesser S, Müller S, Hofmann K, Krüger M, Rugarli EI. ERLIN1/2 scaffolds bridge TMUB1 and RNF170 and restrict cholesterol esterification to regulate the secretory pathway. Life Sci Alliance 2024; 7:e202402620. [PMID: 38782601 PMCID: PMC11116810 DOI: 10.26508/lsa.202402620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Complexes of ERLIN1 and ERLIN2 (ER lipid raft-associated 1 and 2) form large ring-like cup-shaped structures on the endoplasmic reticulum (ER) membrane and serve as platforms to bind cholesterol and E3 ubiquitin ligases, potentially defining functional nanodomains. Here, we show that ERLIN scaffolds mediate the interaction between the full-length isoform of TMUB1 (transmembrane and ubiquitin-like domain-containing 1) and RNF170 (RING finger protein 170). We identify a luminal N-terminal conserved region in TMUB1 and RNF170, which is required for this interaction. Three-dimensional modelling shows that this conserved motif binds the stomatin/prohibitin/flotillin/HflKC domain of two adjacent ERLIN subunits at different interfaces. Protein variants that preclude these interactions have been previously linked to hereditary spastic paraplegia. Using omics-based approaches in combination with phenotypic characterization of HeLa cells lacking both ERLINs, we demonstrate a role of ERLIN scaffolds in limiting cholesterol esterification, thereby favouring cholesterol transport from the ER to the Golgi apparatus and regulating Golgi morphology and the secretory pathway.
Collapse
Affiliation(s)
- Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Sebastian Kallabis
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Tobias Kaczmarek
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anushka Das
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lennart Robers
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Simon Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alessia Lofrano
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
10
|
Liu B, Xu C, He Q, Zhang K, Qi S, Jin Z, Cheng W, Ding Z, Chen D, Zhao X, Zhang W, Zhang K, Li K. Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants. Proc Natl Acad Sci U S A 2024; 121:e2406090121. [PMID: 38865274 PMCID: PMC11194580 DOI: 10.1073/pnas.2406090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of β-hydroxy β-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.
Collapse
Affiliation(s)
- Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Qiuxia He
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan250103, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Shoumei Qi
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Zhe Jin
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Donghua Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| |
Collapse
|
11
|
Jiang M, Han J, Ma Q, Chen X, Xu R, Wang Q, Zheng J, Wang W, Song J, Huang Y, Chen Y. Nicotine-derived NNK promotes CRC progression through activating TMUB1/AKT pathway in METTL14/YTHDF2-mediated m6A manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133692. [PMID: 38341886 DOI: 10.1016/j.jhazmat.2024.133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cigarette smoking substantially promotes tumorigenesis and progression of colorectal cancer; however, the underlying molecular mechanism remains unclear. Among 662 colorectal cancer patients, our investigation revealed a significant correlation between cigarette smoking and factors, such as large tumor size, poor differentiation, and high degree of invasion. Among the nicotine-derived nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) emerged as the most critical carcinogen, which significantly promoted the malignant progression of colorectal cancer both in vivo and in vitro. The results of methylated RNA immunoprecipitation and transcriptome sequencing indicated that NNK upregulated transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) via N6-adenosine methylation, which was regulated by methyltransferase-like 14 (METTL14) and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Elevated TMUB1 levels were associated with a higher risk of cancer invasion and metastasis, leading to a high mortality risk in patients with colorectal cancer. Additionally, TMUB1 promoted lysine63-linked ubiquitination of AKT by interacting with AMFR, which led to the induction of malignant proliferation and metastasis in colorectal cancer cells exposed to NNK. In summary, this study provides a new insight, indicating that targeting TMUB1 expression via METTL14/YTHDF2 mediated N6-adenosine methylation may be a potential therapeutic and prognostic target for patients with colorectal cancer who smoke.
Collapse
Affiliation(s)
- Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingyi Han
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qun Ma
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xue Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Renjie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qing Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jia Zheng
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, PR China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
12
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. Mol Biol Cell 2024; 35:ar15. [PMID: 38019608 PMCID: PMC10881158 DOI: 10.1091/mbc.e23-08-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub Network, San Francisco, CA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
13
|
Botsch JJ, Junker R, Sorgenfrei M, Ogger PP, Stier L, von Gronau S, Murray PJ, Seeger MA, Schulman BA, Bräuning B. Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE. Nat Commun 2024; 15:410. [PMID: 38195637 PMCID: PMC10776854 DOI: 10.1038/s41467-023-44670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.
Collapse
Affiliation(s)
- J Josephine Botsch
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Roswitha Junker
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Patricia P Ogger
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Peter J Murray
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
14
|
Van Espen B, Oo HZ, Collins C, Fazli L, Molinolo A, Yip K, Murad R, Gleave M, Ronai ZA. RNF185 Control of COL3A1 Expression Limits Prostate Cancer Migration and Metastatic Potential. Mol Cancer Res 2024; 22:41-54. [PMID: 37831068 PMCID: PMC10841372 DOI: 10.1158/1541-7786.mcr-23-0512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
RNF185 is a RING finger domain-containing ubiquitin ligase implicated in ER-associated degradation. Prostate tumor patient data analysis revealed a negative correlation between RNF185 expression and prostate cancer progression and metastasis. Likewise, several prostate cancer cell lines exhibited greater migration and invasion capabilities in culture upon RNF185 depletion. Subcutaneous inoculation of mouse prostate cancer MPC3 cells stably expressing short hairpin RNA against RNF185 into mice resulted in larger tumors and more frequent lung metastases. RNA-sequencing and Ingenuity Pathway Analysis identified wound-healing and cellular movement among the most significant pathways upregulated in RNF185-depleted lines, compared with control prostate cancer cells. Gene Set Enrichment Analyses performed in samples from patients harboring low RNF185 expression and in RNF185-depleted lines confirmed the deregulation of genes implicated in epithelial-to-mesenchymal transition. Among those, COL3A1 was identified as the primary mediator of RNF185's ability to impact migration phenotypes. Correspondingly, enhanced migration and metastasis of RNF185 knockdown (KD) prostate cancer cells were attenuated upon co-inhibition of COL3A1. Our results identify RNF185 as a gatekeeper of prostate cancer metastasis, partly via its control of COL3A1 availability. IMPLICATIONS RNF185 is identified as an important regulator of prostate cancer migration and metastasis, in part due to its regulation of COL3A1. Both RNF185 and COL3A1 may serve as novel markers for prostate tumors.
Collapse
Affiliation(s)
- Benjamin Van Espen
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Htoo Zarni Oo
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Colin Collins
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Alfredo Molinolo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Kevin Yip
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Rabi Murad
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Martin Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
15
|
Liu Y, Cai C, Wu K, Hu L. Transmembrane and Ubiquitin-Like Domain-Containing 1 Promotes Glioma Growth and Indicates Unfavorable Prognosis. Int J Genomics 2023; 2023:3318171. [PMID: 38148953 PMCID: PMC10751162 DOI: 10.1155/2023/3318171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023] Open
Abstract
Background Ubiquitin-related proteins have garnered increasing attention for their roles in tumorigenesis. Transmembrane and ubiquitin-like domain-containing 1 (TMUB1) is a recently discovered protein in the ubiquitin-like domain family, yet its involvement in glioma remains poorly understood. This study is aimed at investigating the functional significance and clinical relevance of TMUB1 in glioma. Methods We conducted a comprehensive analysis using two cohorts: a retrospective glioma cohort from our hospital and The Cancer Genome Atlas (TCGA) cohort. The mRNA levels of TMUB1 were assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Clinical associations of TMUB1 in these cohorts were evaluated using correlation tests, chi-square tests, and survival analyses. Additionally, we performed TMUB1 knockdown in U87 and LN-229 human glioma cell lines, and cellular growth was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Our results revealed that TMUB1 expression was elevated in glioma tissues compared to normal brain tissues. Notably, lower TMUB1 expression correlated with favorable characteristics such as lower World Health Organization (WHO) grade and 1p/19q codeletion. Moreover, patients with higher TMUB1 levels in glioma tissues exhibited worse prognosis in both TCGA cohort and our retrospective cohort, underscoring its prognostic significance in gliomas. Cellular experiments demonstrated that TMUB1 silencing suppressed the growth of glioma cells. Conclusions TMUB1 emerges as a novel and clinically relevant prognostic biomarker for gliomas. Targeting TMUB1 holds promise as a potential strategy for glioma treatment. This study contributes valuable insights into the multifaceted role of TMUB1 in glioma pathogenesis and its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Yinggang Liu
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| | - Changcheng Cai
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| | - Ke Wu
- Department of Neurosurgery, Xichang People's Hospital, Xichang 615000, Sichuan, China
| | - Libo Hu
- Department of Neurosurgery, Suining Central Hospital, Suining 629000, Sichuan, China
| |
Collapse
|
16
|
Kamada Y, Tateishi H, Nakayamada U, Hinata D, Iwasaki A, Zhu J, Fukuda R, Okiyoneda T. UBE3C Facilitates the ER-Associated and Peripheral Degradation of Misfolded CFTR. Cells 2023; 12:2741. [PMID: 38067172 PMCID: PMC10706245 DOI: 10.3390/cells12232741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The ubiquitin E3 ligase UBE3C promotes the proteasomal degradation of cytosolic proteins and endoplasmic reticulum (ER) membrane proteins. UBE3C is proposed to function downstream of the RNF185/MBRL ER-associated degradation (ERAD) branch, contributing to the ERAD of select membrane proteins. Here, we report that UBE3C facilitates the ERAD of misfolded CFTR, even in the absence of both RNF185 and its functional ortholog RNF5 (RNF5/185). Unlike RNF5/185, UBE3C had a limited impact on the ubiquitination of misfolded CFTR. UBE3C knockdown (KD) resulted in an additional increase in the functional ∆F508-CFTR channels on the plasma membrane when combined with the RNF5/185 ablation, particularly in the presence of clinically used CFTR modulators. Interestingly, although UBE3C KD failed to attenuate the ERAD of insig-1, it reduced the ERAD of misfolded ∆Y490-ABCB1 and increased cell surface expression. UBE3C KD also stabilized the mature form of ∆F508-CFTR and increased the cell surface level of T70-CFTR, a class VI CFTR mutant. These results suggest that UBE3C plays a vital role in the ERAD of misfolded CFTR and ABCB1, even within the RNF5/185-independent ERAD pathway, and it may also be involved in maintaining the peripheral quality control of CFTR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan; (Y.K.); (H.T.); (U.N.); (D.H.); (A.I.); (J.Z.); (R.F.)
| |
Collapse
|
17
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
19
|
Riepe C, Wąchalska M, Deol KK, Amaya AK, Porteus MH, Olzmann JA, Kopito RR. Small molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.556420. [PMID: 37745470 PMCID: PMC10515913 DOI: 10.1101/2023.09.15.556420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase, demonstrating that CFTR-F508del ERAD is highly buffered. Gene-drug interaction experiments demonstrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.
Collapse
Affiliation(s)
- Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| | - Kirandeep K. Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Anais K. Amaya
- Department of Pediatrics, Stanford University, Stanford, CA, USA 94305
| | | | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA 94720
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA, USA 94305
| |
Collapse
|
20
|
Sui X, Cheng X, Li Z, Wang Y, Zhang Z, Yan R, Chang L, Li Y, Xu P, Duan C. Quantitative proteomics revealed the transition of ergosterol biosynthesis and drug transporters processes during the development of fungal fluconazole resistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194953. [PMID: 37307946 DOI: 10.1016/j.bbagrm.2023.194953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Fungal infections and antifungal resistance are the increasing global public health concerns. Mechanisms of fungal resistance include alterations in drug-target interactions, detoxification by high expression of drug efflux transporters, and permeability barriers associated with biofilms. However, the systematic panorama and dynamic changes of the relevant biological processes of fungal drug resistance acquisition remain limited. In this study, we developed a yeast model of resistance to prolonged fluconazole treatment and utilized the isobaric labels TMT (tandem mass tag)-based quantitative proteomics to analyze the proteome composition and changes in native, short-time fluconazole stimulated and drug-resistant strains. The proteome exhibited significant dynamic range at the beginning of treatment but returned to normal condition upon acquisition drug resistance. The sterol pathway responded strongly under a short time of fluconazole treatment, with increased transcript levels of most enzymes facilitating greater protein expression. With the drug resistance acquisition, the sterol pathway returned to normal state, while the expression of efflux pump proteins increased obviously on the transcription level. Finally, multiple efflux pump proteins showed high expression in drug-resistant strain. Thus, families of sterol pathway and efflux pump proteins, which are closely associated with drug resistance mechanisms, may play different roles at different nodes in the process of drug resistance acquisition. Our findings uncover the relatively important role of efflux pump proteins in the acquisition of fluconazole resistance and highlight its potential as the vital antifungal targets.
Collapse
Affiliation(s)
- Xinying Sui
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Xinyu Cheng
- Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China
| | - Zhaodi Li
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yonghong Wang
- Department of Biomedicine, School of Medicine, Guizhou University, Guiyang 550025, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Ruyue Yan
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Reesearch Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Anhui Medical University School of Basic Medicine, Hefei 230032, Anhui, China; Department of Biomedicine, School of Medicine, Guizhou University, Guiyang 550025, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525086. [PMID: 36711738 PMCID: PMC9882262 DOI: 10.1101/2023.01.22.525086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA,02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023; 24:312-333. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
24
|
Zou C, Yoon H, Park PMC, Patten JJ, Pellman J, Carreiro J, Tsai JM, Li YD, Roy Burman SS, Donovan KA, Gasser J, Sperling AS, Nowak RP, Fischer ES, Davey RA, Ebert BL, Słabicki M. The human E3 ligase RNF185 is a regulator of the SARS-CoV-2 envelope protein. iScience 2023; 26:106601. [PMID: 37095859 PMCID: PMC10082641 DOI: 10.1016/j.isci.2023.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks multiple human proteins during infection and viral replication. To examine whether any viral proteins employ human E3 ubiquitin ligases, we evaluated the stability of SARS-CoV-2 proteins with inhibition of the ubiquitin proteasome pathway. Using genetic screens to dissect the molecular machinery involved in the degradation of candidate viral proteins, we identified human E3 ligase RNF185 as a regulator of protein stability for the SARS-CoV-2 envelope protein. We found that RNF185 and the SARS-CoV-2 envelope co-localize to the endoplasmic reticulum (ER). Finally, we demonstrate that the depletion of RNF185 significantly increases SARS-CoV-2 viral titer in a cellular model. Modulation of this interaction could provide opportunities for novel antiviral therapies.
Collapse
Affiliation(s)
- Charles Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hojong Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul M C Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J J Patten
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Jesse Pellman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeannie Carreiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan M Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yen-Der Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shourya S Roy Burman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Gasser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
25
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
26
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Kandel R, Jung J, Syau D, Kuo T, Songster L, Horn C, Chapman C, Aguayo A, Duttke S, Benner C, Neal SE. Yeast derlin Dfm1 employs a chaperone-like function to resolve misfolded membrane protein stress. PLoS Biol 2023; 21:e3001950. [PMID: 36689475 PMCID: PMC9894555 DOI: 10.1371/journal.pbio.3001950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/02/2023] [Accepted: 12/07/2022] [Indexed: 01/24/2023] Open
Abstract
Protein aggregates are a common feature of diseased and aged cells. Membrane proteins comprise a quarter of the proteome, and yet, it is not well understood how aggregation of membrane proteins is regulated and what effects these aggregates can have on cellular health. We have determined in yeast that the derlin Dfm1 has a chaperone-like activity that influences misfolded membrane protein aggregation. We establish that this function of Dfm1 does not require recruitment of the ATPase Cdc48 and it is distinct from Dfm1's previously identified function in dislocating misfolded membrane proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Additionally, we assess the cellular impacts of misfolded membrane proteins in the absence of Dfm1 and determine that misfolded membrane proteins are toxic to cells in the absence of Dfm1 and cause disruptions to proteasomal and ubiquitin homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jasmine Jung
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Della Syau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Tiffany Kuo
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Livia Songster
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Casey Horn
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Claire Chapman
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Analine Aguayo
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Sascha Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Christopher Benner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Sonya E. Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
28
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
29
|
McKenna MJ, Adams BM, Chu V, Paulo JA, Shao S. ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins. Mol Cell 2022; 82:4277-4289.e10. [PMID: 36283413 PMCID: PMC9675726 DOI: 10.1016/j.molcel.2022.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Vincent Chu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
30
|
Shi C, Wang Y, Wu M, Chen Y, Liu F, Shen Z, Wang Y, Xie S, Shen Y, Sang L, Zhang Z, Gao Z, Yang L, Qu L, Yang Z, He X, Guo Y, Pan C, Che J, Ju H, Liu J, Cai Z, Yan Q, Yu L, Wang L, Dong X, Xu P, Shao J, Liu Y, Li X, Wang W, Zhou R, Zhou T, Lin A. Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nat Commun 2022; 13:6951. [PMID: 36376293 PMCID: PMC9663433 DOI: 10.1038/s41467-022-34346-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.
Collapse
Affiliation(s)
- Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Minjie Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zheyuan Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yiran Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luojia Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chenghao Pan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huaiqiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luyang Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA, 92697, USA.
| | - Ruhong Zhou
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Shanghai Institute for Advanced Study, Zhejiang University, 201203, Shanghai, China.
- Department of Chemistry, Colombia University, New York City, NY, 10027, USA.
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
31
|
RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy. Nat Commun 2022; 13:6007. [PMID: 36224200 PMCID: PMC9554868 DOI: 10.1038/s41467-022-33805-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Virus infection affects cellular proteostasis and provides an opportunity to study this cellular process under perturbation. The proteostasis network in the endoplasmic reticulum (ER) is composed of the calnexin cycle, and the two protein degradation pathways ER-associated protein degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD/ER-phagy/reticulophagy). Here we show that calnexin and calreticulin trigger Zaire Ebolavirus (EBOV) glycoprotein GP1,2 misfolding. Misfolded EBOV-GP1,2 is targeted by ERAD machinery, but this results in lysosomal instead of proteasomal degradation. Moreover, the ER Ub ligase RNF185, usually associated with ERAD, polyubiquitinates EBOV-GP1,2 on lysine 673 via ubiquitin K27-linkage. Polyubiquinated GP1,2 is subsequently recruited into autophagosomes by the soluble autophagy receptor sequestosome 1 (SQSTM1/p62), in an ATG3- and ATG5-dependent manner. We conclude that EBOV hijacks all three proteostasis mechanisms in the ER to downregulate GP1,2 via polyubiquitination and show that this increases viral fitness. This study identifies linkages among proteostasis network components previously thought to function independently. Little is known about how proteostasis is maintained during viral infection. Here, the authors identify unexpected crosstalk between the calnexin cycle, ERAD, and reticulophagy, resulting in suppression of ebolavirus glycoprotein expression.
Collapse
|
32
|
Wang L, Li J, Wang Q, Ge MX, Ji J, Liu D, Wang Z, Cao Y, Zhang Y, Zhang ZR. TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation. Mol Cell 2022; 82:3453-3467.e14. [PMID: 35961308 DOI: 10.1016/j.molcel.2022.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/15/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Membrane protein clients of endoplasmic reticulum (ER)-associated degradation must be retrotranslocated from the ER membrane by the AAA-ATPase p97 for proteasomal degradation. Before direct engagement with p97, client transmembrane domains (TMDs) that have partially or fully crossed the membrane must be constantly shielded to avoid non-native interactions. How client TMDs are seamlessly escorted from the membrane to p97 is unknown. Here, we identified ER-anchored TMUB1 as a TMD-specific escortase. TMUB1 interacts with the TMD of clients within the membrane and holds ∼10-14 residues of a hydrophobic sequence that is exposed out of membrane, using its transmembrane and cytosolic regions, respectively. The ubiquitin-like domain of TMUB1 recruits p97, which can pull client TMDs from bound TMUB1 into the cytosol. The disruption of TMUB1 escortase activity impairs retrotranslocation and stabilizes retrotranslocating intermediates of client proteins within the ER membrane. Thus, TMUB1 promotes TMD segregation by safeguarding the TMD movement from the membrane to p97.
Collapse
Affiliation(s)
- Linhan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qingchen Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Cao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
34
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Smith CE, Tsai YC, Liang YH, Khago D, Mariano J, Li J, Tarasov SG, Gergel E, Tsai B, Villaneuva M, Clapp ME, Magidson V, Chari R, Byrd RA, Ji X, Weissman AM. A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation. PLoS Biol 2021; 19:e3001474. [PMID: 34879065 PMCID: PMC8699718 DOI: 10.1371/journal.pbio.3001474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/23/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway of fundamental importance to cellular homeostasis. Although multiple ERAD pathways exist for targeting topologically distinct substrates, all pathways require substrate ubiquitination. Here, we characterize a key role for the UBE2G2 Binding Region (G2BR) of the ERAD accessory protein ancient ubiquitous protein 1 (AUP1) in ERAD pathways. This 27-amino acid (aa) region of AUP1 binds with high specificity and low nanomolar affinity to the backside of the ERAD ubiquitin-conjugating enzyme (E2) UBE2G2. The structure of the AUP1 G2BR (G2BRAUP1) in complex with UBE2G2 reveals an interface that includes a network of salt bridges, hydrogen bonds, and hydrophobic interactions essential for AUP1 function in cells. The G2BRAUP1 shares significant structural conservation with the G2BR found in the E3 ubiquitin ligase gp78 and in vitro can similarly allosterically activate ubiquitination in conjunction with ERAD E3s. In cells, AUP1 is uniquely required to maintain normal levels of UBE2G2; this is due to G2BRAUP1 binding to the E2 and preventing its rapid degradation. In addition, the G2BRAUP1 is required for both ER membrane recruitment of UBE2G2 and for its activation at the ER membrane. Thus, by binding to the backside of a critical ERAD E2, G2BRAUP1 plays multiple critical roles in ERAD.
Collapse
Affiliation(s)
- Christopher E. Smith
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yu-He Liang
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Domarin Khago
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jennifer Mariano
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Sergey G. Tarasov
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Emma Gergel
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Borong Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Matthew Villaneuva
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - R. Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Xinhua Ji
- Center for Structural Biology, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland, United States of America
| |
Collapse
|
36
|
Song T, Zou Q, Yan Y, Lv S, Li N, Zhao X, Ma X, Liu H, Tang B, Sun L. DOT1L O-GlcNAcylation promotes its protein stability and MLL-fusion leukemia cell proliferation. Cell Rep 2021; 36:109739. [PMID: 34551297 DOI: 10.1016/j.celrep.2021.109739] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Histone lysine methylation functions at the interface of the extracellular environment and intracellular gene expression. DOT1L is a versatile histone H3K79 methyltransferase with a prominent role in MLL-fusion leukemia, yet little is known about how DOT1L responds to extracellular stimuli. Here, we report that DOT1L protein stability is regulated by the extracellular glucose level through the hexosamine biosynthetic pathway (HBP). Mechanistically, DOT1L is O-GlcNAcylated at evolutionarily conserved S1511 in its C terminus. We identify UBE3C as a DOT1L E3 ubiquitin ligase promoting DOT1L degradation whose interaction with DOT1L is susceptible to O-GlcNAcylation. Consequently, HBP enhances H3K79 methylation and expression of critical DOT1L target genes such as HOXA9/MEIS1, promoting cell proliferation in MLL-fusion leukemia. Inhibiting HBP or O-GlcNAc transferase (OGT) increases cellular sensitivity to DOT1L inhibitor. Overall, our work uncovers O-GlcNAcylation and UBE3C as critical determinants of DOT1L protein abundance, revealing a mechanism by which glucose metabolism affects malignancy progression through histone methylation.
Collapse
Affiliation(s)
- Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Haigang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Borui Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
37
|
Phillips BP, Miller EA. Membrane protein folding and quality control. Curr Opin Struct Biol 2021; 69:50-54. [PMID: 33857720 PMCID: PMC8422161 DOI: 10.1016/j.sbi.2021.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins account for a quarter of cellular proteins, and most are synthesised at the endoplasmic reticulum (ER). Insertion and folding of polypeptides in the membrane environment is prone to error, necessitating diverse quality control systems. Recent discoveries have demonstrated how forces act on the nascent chain during insertion, and revealed new translocon components and accessories that facilitate the correct biogenesis of substrates. Our understanding of one of the best studied quality control systems-ER-associated degradation-has been advanced through new structural and functional studies of the core Hrd1 complex, and through the discovery of a new branch of this degradative pathway. New data also reveal how cells resolve clogged translocons, which would otherwise be unable to function. Finally, new work elucidates how mitochondrial tail-anchored proteins that have been mistargeted to the ER are identified and destroyed. Overall, we describe an emerging picture of an increasingly complex quality control network.
Collapse
Affiliation(s)
- Ben P Phillips
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Elizabeth A Miller
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
38
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
39
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
40
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
41
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
42
|
Xu J, Zhao H, Wang T. Suppression of retinal degeneration by two novel ERAD ubiquitin E3 ligases SORDD1/2 in Drosophila. PLoS Genet 2020; 16:e1009172. [PMID: 33137101 PMCID: PMC7660902 DOI: 10.1371/journal.pgen.1009172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/12/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the gene rhodopsin are one of the major causes of autosomal dominant retinitis pigmentosa (adRP). Mutant forms of Rhodopsin frequently accumulate in the endoplasmic reticulum (ER), cause ER stress, and trigger photoreceptor cell degeneration. Here, we performed a genome-wide screen to identify suppressors of retinal degeneration in a Drosophila model of adRP, carrying a point mutation in the major rhodopsin, Rh1 (Rh1G69D). We identified two novel E3 ubiquitin ligases SORDD1 and SORDD2 that effectively suppressed Rh1G69D-induced photoreceptor dysfunction and retinal degeneration. SORDD1/2 promoted the ubiquitination and degradation of Rh1G69D through VCP (valosin containing protein) and independent of processes reliant on the HRD1 (HMG-CoA reductase degradation protein 1)/HRD3 complex. We further demonstrate that SORDD1/2 and HRD1 function in parallel and in a redundant fashion to maintain rhodopsin homeostasis and integrity of photoreceptor cells. These findings identify a new ER-associated protein degradation (ERAD) pathway and suggest that facilitating SORDD1/2 function may be a therapeutic strategy to treat adRP. Misfolded rhodopsins accumulated in endoplasmic reticulum (ER) could disrupt the homeostasis of the ER and cause ER stress. Chronic ER stress would finally lead to photoreceptor cell death and retinal degeneration. To diminish the stress and sustain homeostasis cells develop alternative strategies to clear the misfolded rhodopsins. Previous studies have suggested that ubiquitin E3 ligase HRD1 is involved in the degradation of misfolded rhodopsins. In this study, we define novel ubiquitin E3 ligase SORDD1/2 based on a genetic screen and demonstrate that SORDD1/2 promotes the degradation of misfolded rhodopsins through ER-associated degradation (ERAD) pathway. Furthermore, we demonstrate that SORDD1/2 function independently of HRD1 in misfolded rhodopsins degradation. We also show SORDD1/2 and HRD1 play redundant roles in rhodopsin homeostasis. Finally, we demonstrate that SORDD1 works well in a Drosophila disease model. Our studies identify a novel ERAD pathway that acts in parallel to HRD1, and suggest that SORDD1 is a good candidate therapeutic target.
Collapse
Affiliation(s)
- Jaiwei Xu
- College of Biological Sciences, China Agricultural University, China
- National Institute of Biological Sciences, China
| | - Haifang Zhao
- National Institute of Biological Sciences, China
| | - Tao Wang
- National Institute of Biological Sciences, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, China
- * E-mail:
| |
Collapse
|
43
|
Scott NA, Sharpe LJ, Brown AJ. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158837. [PMID: 33049405 DOI: 10.1016/j.bbalip.2020.158837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
MARCHF6 is a large multi-pass E3 ubiquitin ligase embedded in the membranes of the endoplasmic reticulum. It participates in endoplasmic reticulum associated degradation, including autoubiquitination, and many of its identified substrates are involved in sterol and lipid metabolism. Post-translationally, MARCHF6 expression is attuned to cholesterol status, with high cholesterol preventing its degradation and hence boosting MARCHF6 levels. By modulating MARCHF6 activity, cholesterol may regulate other aspects of cell metabolism beyond the known repertoire. Whilst we have learnt much about MARCHF6 in the past decade, there are still many more mysteries to be unravelled to fully understand its regulation, substrates, and role in human health and disease.
Collapse
Affiliation(s)
- Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|