1
|
Yang ZH, Wu P, Zhang BX, Yang CR, Huang J, Wu L, Guo SH, Zhou Y, Mao Y, Yin Y, Wu X, Cheng P, Li B, Zhou R, Shen HM, Nie S, Cai ZY, Mo W. ZBP1 senses splicing aberration through Z-RNA to promote cell death. Mol Cell 2025; 85:1775-1789.e5. [PMID: 40267920 DOI: 10.1016/j.molcel.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/29/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
RNA splicing, a highly regulated process performed by the spliceosome, is essential for eukaryotic gene expression and cellular function. Numerous cellular stresses, including oncogenic insults, dysregulate RNA splicing, often provoking inflammatory responses and cell death. However, the molecular signals generated by splicing aberrations and the mechanism by which cells sense and respond to these signals remain poorly understood. Here, we demonstrate that spliceosome inhibition induces the widespread formation of left-handed Z-form double-stranded RNA (Z-RNA), predominantly derived from mis-spliced exonic and intronic RNA transcripts in the nucleus. These Z-RNAs are exported to the cytoplasm in a RanGTP-dependent manner. Cytosolic sensing of accumulated Z-RNA by the host sensor Z-DNA-binding protein 1 (ZBP1) initiates cell death, primarily through RIPK3-MLKL-dependent necroptosis. Together, these findings reveal a previously uncharacterized mechanism in which ZBP1-mediated detection of Z-RNA serves as a critical response to global RNA splicing perturbations, ultimately triggering inflammatory cell death.
Collapse
Affiliation(s)
- Zhang-Hua Yang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| | - Puqi Wu
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bo-Xin Zhang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Cong-Rong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Huang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Lei Wu
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Shuang-Hui Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuenan Zhou
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Yuanhui Mao
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Yafei Yin
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Xiurong Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310012, China
| | - Pu Cheng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baizhou Li
- Department of Pathology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Sheng Nie
- Neurosurgery Department, the First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Zhi-Yu Cai
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| | - Wei Mo
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Lin ZP, Gan G, Xu X, Wen C, Ding X, Chen XY, Zhang K, Guo WY, Lin M, Wang YY, Chen X, Xie C, Wang J, Li M, Zhong CQ. Comprehensive PTM profiling with SCASP-PTM uncovers mechanisms of p62 degradation and ALDOA-mediated tumor progression. Cell Rep 2025; 44:115500. [PMID: 40186868 DOI: 10.1016/j.celrep.2025.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Multiple post-translational modification (PTM) proteomics typically combines PTM enrichment with multiplex isobaric labeling and peptide fractionation. However, effective methods for sequentially enriching multiple PTMs from a single sample for data-independent acquisition mass spectrometry (DIA-MS) remain lacking. We present SDS-cyclodextrin-assisted sample preparation (SCASP)-PTM, an approach that enables desalting-free enrichment of diverse PTMs, including phosphopeptides, ubiquitinated peptides, acetylated peptides, glycopeptides, and biotinylated peptides. SCASP-PTM uses SDS for protein denaturation, which is sequestered by cyclodextrins before trypsin digestion, facilitating sequential PTM enrichment without additional purification steps. Combined with DIA-MS, SCASP-PTM quantifies the proteome, ubiquitinome, phosphoproteome, and glycoproteome in HeLa-S3 cell samples, identifying serine 28 phosphorylation as a key driver of poly(I:C)-induced p62 degradation. This method also quantifies PTMs in clinical tissue samples, revealing the critical role of ALDOA K330 ubiquitination/acetylation in tumor progression. SCASP-PTM offers a streamlined workflow for comprehensive PTM analysis in both basic research and clinical applications.
Collapse
Affiliation(s)
- Zhan-Peng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guohong Gan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengwen Wen
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Ding
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361004, China
| | - Xiang-Yu Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kaijie Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Yu Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mingxin Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu-Yang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd., Wuhan, Hubei 430074, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No. 12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, China.
| | - Minjie Li
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
4
|
Wang S, Zhang Y, Wang M, Zhai Z, Tan Y, Xu W, Ren X, Hu X, Mo J, Liu J, Yang Y, Chen D, Jiang B, Huang H, Huang J, Xiong K. Noncanonical feedback loop between "RIP3-MLKL" and "4EBP1-eIF4E" promotes neuronal necroptosis. MedComm (Beijing) 2025; 6:e70107. [PMID: 39974664 PMCID: PMC11836343 DOI: 10.1002/mco2.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/22/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Stroke is a leading risk factor for disability and death. Necroptosis is involved in stroke pathogenesis. However, the molecular mechanisms underlying necroptosis in stroke remain unclear. The mammalian target of rapamycin complex 1 (mTORC1) modulates necroptosis in the gut epithelium. Eukaryotic translation initiation factor 4E (eIF4E)-binding protein-1 (4EPB1) is one of the main downstream molecules of mTORC1. This study addresses the role of the 4EBP1-eIF4E pathway in necroptosis. The 4EBP1-eIF4E pathway was found to be activated in both necroptotic HT-22 and mouse middle cerebral artery occlusion (MCAO) models. Functionally, 4EBP1 overexpression, eIF4E knockdown, and eIF4E inhibition suppressed necroptosis, respectively. Furthermore, a positive feedback circuit was observed between the 4EBP1-eIF4E and receptor-interacting protein-3 (RIP3)-mixed lineage kinase domain-like protein (MLKL) pathways, in which RIP3-MLKL activates the 4EBP1-eIF4E pathway by degrading 4EBP1 and activating eIF4E. This in turn enhanced RIP3-MLKL pathway activation. The eIF4E activation derived from this loop may stimulate cytokine production, which is a key factor associated with necroptosis. Finally, using a mouse MCAO model, the application of eIF4E, RIP3, and MLKL inhibitors was found to have a regulatory mechanism similar to that in the in vitro study, reducing the infarct volume and improving neurological function in MCAO mice.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of OphthalmologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yun Zhang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of AnesthesiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Meijuan Wang
- Medical Imaging CenterQingdao West Coast New District People's HospitalQingdaoShandongChina
| | - Zhihao Zhai
- Department of NeurosurgeryThe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Yating Tan
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Weiye Xu
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Xiaozhen Ren
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Ximin Hu
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
| | - Jinyou Mo
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jia Liu
- Center for Medical ResearchThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunfeng Yang
- Department of NeurosurgeryThe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Dan Chen
- Department of AnesthesiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
| | - Bing Jiang
- Department of OphthalmologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Hunan Clinical Research Center of Ophthalmic DiseaseChangshaHunanChina
| | - Hualin Huang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Reproductive Medicine Center, Department of Obstetrics and GynecologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jufang Huang
- National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- National Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
- Department of RadiologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Biobank of the Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medical SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of OphthalmologyChangshaHunanChina
| |
Collapse
|
5
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
6
|
Hong M, Wu X, He P, Peng R, Li L, Wu SQ, Zhao J, Han A, Zhang Y, Han J, Yang ZH. Residue Y362 is crucial for FLIP L to impart catalytic activity to pro-caspase-8 to suppress necroptosis. Cell Rep 2024; 43:114966. [PMID: 39520684 DOI: 10.1016/j.celrep.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The pro-form of caspase-8 prevents necroptosis by functioning in a proteolytically active complex with its catalytic-dead homolog, FLICE (FADD [Fas-associated death domain]-like interleukin 1β-converting enzyme)-like inhibitory protein long-form (FLIPL). However, how FLIPL imparts caspase-8 the catalytic activity to suppress necroptosis remains elusive. Here, we show that the protease-like domain of FLIPL is essential for the activity of the caspase-8-FLIPL heterodimer in blocking necroptosis. While substitution of two amino acids whose difference may contribute to the pseudo-caspase property of FLIPL with the corresponding amino acids in caspase-8 does not restore the protease activity of FLIPL, one of the amino acid replacements, tyrosine (Y) 362 to cysteine (C), is sufficient to completely abolish the activity of the caspase-8-FLIPL heterodimer in cleaving receptor-interacting protein 1 (RIP1), thus releasing the necroptosis blockade. Unconstrained necroptosis is observed in embryonic day (E)10.5-E11.5 embryos of FLIPL-Y362C knockin mice. Collectively, these results reveal that the protease-like domain of FLIPL has a special structure that imparts the pro-caspase-8-FLIPL heterodimer a unique catalytic activity toward RIP1 to prevent necroptosis.
Collapse
Affiliation(s)
- Mao Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiurong Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rangxin Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Su-Qin Wu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianbang Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Center, Xiamen University, Xiamen, Fujian 361102, China.
| | - Zhang-Hua Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
7
|
Jiang X, Fu T, Huang L. PANoptosis: a new insight for oral diseases. Mol Biol Rep 2024; 51:960. [PMID: 39235684 DOI: 10.1007/s11033-024-09901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Tingting Fu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
| |
Collapse
|
8
|
Garnish SE, Horne CR, Meng Y, Young SN, Jacobsen AV, Hildebrand JM, Murphy JM. Inhibitors identify an auxiliary role for mTOR signalling in necroptosis execution downstream of MLKL activation. Biochem J 2024; 481:1125-1142. [PMID: 39136677 PMCID: PMC11555701 DOI: 10.1042/bcj20240255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death. Here, we screened a library of 429 kinase inhibitors for their capacity to block R30E MLKL-mediated cell death, to identify co-effectors in the terminal steps of necroptotic signalling. We identified 13 compounds - ABT-578, AR-A014418, AZD1480, AZD5363, Idelalisib, Ipatasertib, LJI308, PHA-793887, Rapamycin, Ridaforolimus, SMI-4a, Temsirolimus and Tideglusib - each of which inhibits mammalian target of rapamycin (mTOR) signalling or regulators thereof, and blocked constitutive cell death executed by R30E MLKL. Our study implicates mTOR signalling as an auxiliary factor in promoting the transport of activated MLKL oligomers to the plasma membrane, where they accumulate into hotspots that permeabilise the lipid bilayer to cause cell death.
Collapse
Affiliation(s)
- Sarah E. Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel N. Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Annette V. Jacobsen
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joanne M. Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Qiao M, Huang Q, Wang X, Han J. ZBTB21 suppresses CRE-mediated transcription to impair synaptic function in Down syndrome. SCIENCE ADVANCES 2024; 10:eadm7373. [PMID: 38959316 PMCID: PMC11221507 DOI: 10.1126/sciadv.adm7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
Collapse
Affiliation(s)
- Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
10
|
Cai ZY, Wu P, Liang H, Xie YZ, Zhang BX, He CL, Yang CR, Li H, Mo W, Yang ZH. A ZBP1 isoform blocks ZBP1-mediated cell death. Cell Rep 2024; 43:114221. [PMID: 38748877 DOI: 10.1016/j.celrep.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
ZBP1 is an interferon (IFN)-induced nucleic acid (NA) sensor that senses unusual Z-form NA (Z-NA) to promote cell death and inflammation. However, the mechanisms that dampen ZBP1 activation to fine-tune inflammatory responses are unclear. Here, we characterize a short isoform of ZBP1 (referred to as ZBP1-S) as an intrinsic suppressor of the inflammatory signaling mediated by full-length ZBP1. Mechanistically, ZBP1-S depresses ZBP1-mediated cell death by competitive binding with Z-NA for Zα domains of ZBP1. Cells from mice (Ripk1D325A/D325A) with cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome are alive but sensitive to IFN-induced and ZBP1-dependent cell death. Intriguingly, Ripk1D325A/D325A cells die spontaneously when ZBP1-S is deleted, indicating that cell death driven by ZBP1 is under the control of ZBP1-S. Thus, our findings reveal that alternative splicing of Zbp1 represents autogenic inhibition for regulating ZBP1 signaling and indicate that uncoupling of Z-NA with ZBP1 could be an effective strategy against autoinflammations.
Collapse
Affiliation(s)
- Zhi-Yu Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Puqi Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yu-Ze Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bo-Xin Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Cai-Ling He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cong-Rong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hongda Li
- Institute for Brain Science and Disease, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China; Department of Immunology, School of Basic Medical Science, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310012, China; Institute for Brain Science and Disease, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Zhang-Hua Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China.
| |
Collapse
|
11
|
He P, Ai T, Qiao M, Yang ZH, Han J. Phosphorylation of caspase-8 by RSKs via organ-constrained effects controls the sensitivity to TNF-induced death. Cell Death Discov 2024; 10:255. [PMID: 38789425 PMCID: PMC11126741 DOI: 10.1038/s41420-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Caspase-8 (Casp8) serves as an initiator of apoptosis or a suppressor of necroptosis in context-dependent manner. Members of the p90 RSK family can phosphorylate caspase-8 at threonine-265 (T265), which can inactivate caspase-8 for bypassing caspase-8-mediated blockade of necroptosis and can also decrease caspase-8 level by promoting its degradation. Mutating T265 in caspase-8 to alanine (A) in mice blocked TNF-induced necroptotic cecum damage but resulted in unexpectedly massive injury in the small intestine. Here, we show RSK1, RSK2, and RSK3 redundantly function in caspase-8 phosphorylation, and the duodenum is the most severely affected part of the small intestine when T265 phosphorylation of caspase-8 was prevented. Eliminating caspase-8 phosphorylation resulted in a duodenum-specific increase in basal caspase-8 protein level, which shall be responsible for the increased sensitivity to TNF-induced damage. Apoptosis of intestinal epithelial cells (IECs) was predominant in the duodenum of TNF-treated Rsk1-/-Rsk2-/-Rsk3-/- and Casp8T265A/T265A mice, though necroptosis was also observed. The heightened duodenal injury amplified systemic inflammatory responses, as evidenced by the contribution of hematopoietic cells to the sensitization of TNF-induced animal death. Further analysis revealed that hematopoietic and non-hematopoietic cells contributed differentially to cytokine production in response to the increased cell death. Collectively, RSKs emerges as a previously overlooked regulator that, via tissue/organ-constrained inactivating caspase-8 and/or downregulating caspase-8 protein level, controls the sensitivity to TNF-induced organ injury and animal death.
Collapse
Affiliation(s)
- Peng He
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhang-Hua Yang
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Jiahuai Han
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Oltean T, Maelfait J, Saelens X, Vandenabeele P. Need for standardization of Influenza A virus-induced cell death in vivo to improve consistency of inter-laboratory research findings. Cell Death Discov 2024; 10:247. [PMID: 38778049 PMCID: PMC11111761 DOI: 10.1038/s41420-024-01981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The involvement of necroptosis in the control of influenza A virus (IAV) infection has been reported in multiple studies. Downstream of the nucleic acid sensor ZBP1, RIPK3 kinase activity is critically involved in the induction of necroptotic cell death by phosphorylating MLKL, while RIPK3 as a scaffold can induce apoptosis. Paradoxically, RIPK3-deficiency of mice may result in increased or decreased susceptibility to IAV infection. Here, we critically review the published reports on the involvement of RIPK3 in IAV infection susceptibility and try to identify differences in experimental settings that could explain seemingly conflicting outcomes. Analysis of the experimental reports revealed differences in the IAV challenge dose, the IAV inoculum preparation, IAV titer assessment, as well as the route of inoculation between studies. Furthermore, differences were noticed in the inclusion of littermate controls, which show high variance in viral sensitivity. Our evaluation argues for a standardized setup for IAV infection experiments including the preparation of the IAV virus, the use of different IAV infectious doses description and the proper experimental genetic controls of the mouse strains to increase inter-laboratory consistency in this field. Workflow for IAV infection studies in vivo: Viral preparation and titer assessment should be as standardized as possible with the use of a universal repository (such as BEI resources). Infection studies in genetically modified mice and littermate controls should include dose-response experimentation, following a defined infection route and inoculation volume. Data are generated by consistent analysis methods.
Collapse
Affiliation(s)
- Teodora Oltean
- VIB Center for Inflammation Research, Cell Death and Inflammation Unit, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB Center for Inflammation Research, Cell Death and Inflammation Unit, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, Cell Death and Inflammation Unit, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Shi Y, Wu C, Shi J, Gao T, Ma H, Li L, Zhao Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur J Pharmacol 2024; 970:176508. [PMID: 38493913 DOI: 10.1016/j.ejphar.2024.176508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.
Collapse
Affiliation(s)
- Yihui Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Taotao Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
14
|
Lawlor KE, Murphy JM, Vince JE. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases. Immunity 2024; 57:429-445. [PMID: 38479360 DOI: 10.1016/j.immuni.2024.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 02/14/2024] [Indexed: 01/22/2025]
Abstract
Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.
Collapse
Affiliation(s)
- Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
Hou S, Zhang J, Jiang X, Yang Y, Shan B, Zhang M, Liu C, Yuan J, Xu D. PARP5A and RNF146 phase separation restrains RIPK1-dependent necroptosis. Mol Cell 2024; 84:938-954.e8. [PMID: 38272024 DOI: 10.1016/j.molcel.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.
Collapse
Affiliation(s)
- Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Xiaoyan Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
16
|
Wu Y, Zhang M, Ke H, Xu J, Li H, Ni X. Neuroprotective effect of ketamine and sevoflurane against TNF-α induced cognitive impairment. ENVIRONMENTAL TOXICOLOGY 2024; 39:1802-1810. [PMID: 38064277 DOI: 10.1002/tox.24071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024]
Abstract
In the present study, neuroprotective effect of sevoflurane in combination with ketamine was investigated on TNF-α induced necroptosis of neurons and cognitive impairment in the rat model. The results demonstrated that exposure to TNF-α/z-VAD led to a significant decrease in viability of HT-22 neuronal cells. However, incubation of HT-22 cells with ketamine plus sevoflurane inhibited decrease in viability induced by TNF-α/z-VAD exposure. The increase in production of ROS by TNF-α/z-VAD exposure in HT-22 cells was effectively suppressed on pre-treatment with ketamine plus sevoflurane. Moreover, suppression of TNF-α/z-VAD induced ROS production in HT-22 cells by ketamine plus sevoflurane pretreatment was higher in comparison to ketamine or sevoflurane treatment alone. Treatment of HT-22 cells with ketamine plus sevoflurane suppressed TNF-α/z-VAD induced increase in RIP1 and p-MLKL protein expression. Ketamine plus sevoflurane treatment effectively reversed decrease in movement speed as well as total distance traveled in TNF-α injected rats. The number of neurons in rat hippocampus injected with TNF-α showed a significant decrease more specifically in carbonic anhydrase-3 region. However, no significant change in the density of neurons was observed in the hippocampus of rats pretreated with ketamine plus sevoflurane by TNF-α injection. The increase in expression of p-MLKL and p-RIP3 by TNF-α injection was effectively reversed in rats on treatment with ketamine plus sevoflurane. In silico studies revealed that ketamine interacts with p-MLKL protein in different confirmations with the binding affinities ranging from -9.7 to -8.4 kcal/mol. It was found that ketamine binds to p-MLKL protein by interacting with alanine (ALA A:295), proline (PRO A:306), glutamine (GLN A: 307) and isoleucine (ILE A:293) amino acid residues. In summary, ketamine plus sevoflurane combination alleviates TNF-α/z-VAD induced decrease in viability of HT-22 cells in vitro and rat hippocampus neurons in vivo. Moreover, ketamine plus sevoflurane combination prevented TNF-α injection induced cognitive impairment in rats. Therefore, sevoflurane plus ketamine combination can be developed as a potential therapeutic regimen for treatment of isoflurone induced cognitive impairment.
Collapse
Affiliation(s)
- Yuanshui Wu
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, JiangXi, China
| | - Meilan Zhang
- Department of Anesthesiology, Shangrao People's Hospital, Shangrao, JiangXi, China
| | - Hongyan Ke
- Internal Medicine-Neurology, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| | - Juanjuan Xu
- Internal Medicine-Cardiovascular Department, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| | - Huanhuan Li
- ECG Room, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| | - Xiaohong Ni
- Internal Medicine-Neurology, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| |
Collapse
|
17
|
Zhong H, Chang L, Pei S, Kang Y, Yang L, Wu Y, Chen N, Luo Y, Zhou Y, Xie J, Xia Y. Senescence-related genes analysis in breast cancer reveals the immune microenvironment and implications for immunotherapy. Aging (Albany NY) 2024; 16:3531-3553. [PMID: 38358910 PMCID: PMC10929821 DOI: 10.18632/aging.205544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Despite the advent of precision therapy for breast cancer (BRCA) treatment, some individuals are still unable to benefit from it and have poor survival prospects as a result of the disease's high heterogeneity. Cell senescence plays a crucial role in the tumorigenesis, progression, and immune regulation of cancer and has a major impact on the tumor microenvironment. To find new treatment strategies, we aimed to investigate the potential significance of cell senescence in BRCA prognosis and immunotherapy. We created a 9-gene senescence-related signature. We evaluated the predictive power and the role of signatures in the immune microenvironment and infiltration. In vitro tests were used to validate the expression and function of the distinctive critical gene ACTC1. Our risk signature allows BRCA patients to receive a Predictive Risk Signature (PRS), which may be used to further categorize a patient's response to immunotherapy. Compared to conventional clinicopathological characteristics, PRS showed strong predictive efficacy and precise survival prediction. Moreover, PRS subgroups were examined for altered pathways, mutational patterns, and possibly useful medicines. Our research offers suggestions for incorporating senescence-based molecular classification into risk assessment and ICI therapy decision-making.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijie Chang
- Department of Neonatal Intensive Care Unit, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yifan Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Nuo Chen
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yicheng Luo
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yixiao Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
18
|
Kang L, You J, Li Y, Huang R, Wu S. Effects and mechanisms of Salmonella plasmid virulence gene spv on host-regulated cell death. Curr Microbiol 2024; 81:86. [PMID: 38305917 DOI: 10.1007/s00284-024-03612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
Salmonella is responsible for the majority of food poisoning outbreaks around the world. Pathogenic Salmonella mostly carries a virulence plasmid that contains the Salmonella plasmid virulence gene (spv), a highly conserved sequence encoding effector proteins that can manipulate host cells. Intestinal epithelial cells are crucial components of the innate immune system, acting as the first barrier of defense against infection. When the barrier is breached, Salmonella encounters the underlying macrophages in lamina propria, triggering inflammation and engaging in combat with immune cells recruited by inflammatory factors. Host regulated cell death (RCD) provides a variety of means to fight against or favour Salmonella infection. However, Salmonella releases effector proteins to regulate RCD, evading host immune killing and neutralizing host antimicrobial effects. This review provides an overview of pathogen-host interactions in terms of (1) pathogenicity of Salmonella spv on intestinal epithelial cells and macrophages, (2) mechanisms of host RCD to limit or promote pathogenic Salmonella expansion, and (3) effects and mechanisms of Salmonella spv gene on host RCD.
Collapse
Affiliation(s)
- Li Kang
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Yuanyuan Li
- Experimental Center, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Rui Huang
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
19
|
Zhang HR, Li YP, Shi ZJ, Liang QQ, Chen SY, You YP, Yuan T, Xu R, Xu LH, Ouyang DY, Zha QB, He XH. Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis 2023; 28:1646-1665. [PMID: 37702860 DOI: 10.1007/s10495-023-01886-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|
20
|
Wang K, Zhao A, Tayier D, Tan K, Song W, Cheng Q, Li X, Chen Z, Wei Q, Yuan Y, Yang Z. Activation of AMPK ameliorates acute severe pancreatitis by suppressing pancreatic acinar cell necroptosis in obese mice models. Cell Death Discov 2023; 9:363. [PMID: 37777514 PMCID: PMC10542799 DOI: 10.1038/s41420-023-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Obese people with acute pancreatitis (AP) have an increased risk of developing severe acute pancreatitis (SAP), which prolongs the length of hospital stay and increases mortality. Thus, elucidation of the mechanisms through which SAP occurs in obese individuals will provide clues for possible treatment targets. Differences in early events in obese or lean patients with AP have not been conclusively reported. We selected C57BL/6 mice as lean mice models, ob/ob mice or diet induced obese (DIO) mice as obese mice models and then induced experimental AP in mice via injections of caerulein. There were suppressed p-AMPK expressions in the pancreas of obese mice, compared with same-age lean C57BL/6 mice, which were further reduced in AP mice models. Obese AP mice were treated using AICAR, a direct AMPK agonist, which prevented pancreatic damage and cell death, suppressed pancreatic enzyme levels in serum, reduced the areas of fat saponification in the peritoneal cavity, prevented injury in other organs and decreased mice mortality rate. Further assays showed that AICAR activates p-AMPK to stabilize pro-caspase-8. Pro-caspase-8 enhances RIPK3 degradation, inhibits pancreatic acinar cell necroptosis, and downregulates the release of pancreatic enzymes. Thus, activation of AMPK by AICAR alleviates pancreatic acinar cell necroptosis and converts SAP to mild acute pancreatitis in obese mice.
Collapse
Affiliation(s)
- Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Dilinigeer Tayier
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Qifeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
21
|
Cai H, Qin D, Liu Y, Guo X, Liu Y, Ma B, Hua J, Peng S. Remodeling of Gut Microbiota by Probiotics Alleviated Heat Stroke-Induced Necroptosis in Male Germ Cells. Mol Nutr Food Res 2023; 67:e2300291. [PMID: 37454346 DOI: 10.1002/mnfr.202300291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
SCOPE Systemic heat stress (or heatstroke; HS) induces germ cell death and spermatogenesis disorders in men and male mammals. Also, it affects the immune environment of the circulatory system promoting gut inflammation and intestinal permeability, leading to pathogenic infection. In this study, the crosstalk between the gut and testis (gut-testis axis) under HS is explored, by examining the effects of intestinal immune status on the health of the male reproductive system in mice. METHODS AND RESULTS A mouse model of systemic heat stress is established to investigate the effect of probiotics on testis health. The results reveal that pro-inflammatory factor receptor activation pathway and pathogen infection response pathway are significantly upregulated in HS testes, leading to necroptosis, while pro-inflammatory factor and endotoxin are detected locally in the intestine and then entered the blood. The study then uses probiotics to intervene in gut microbiota, which results in milder gut microbial changes, lower inflammatory responses in the HS gut, and less necroptosis in the HS testes. CONCLUSION Probiotics-based remodeling of gut microbiota (GM) reduces the proliferation of abnormal bacteria and decreases the spread of gut-derived inflammatory mediators into the blood circulation under long-term systemic heat stress, which relieves inflammation on germ cells.
Collapse
Affiliation(s)
- Hui Cai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundie Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinrui Guo
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yang Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Sun M, Ma X, Mu W, Li H, Zhao X, Zhu T, Li J, Yang Y, Zhang H, Ba Q, Wang H. Vemurafenib inhibits necroptosis in normal and pathological conditions as a RIPK1 antagonist. Cell Death Dis 2023; 14:555. [PMID: 37620300 PMCID: PMC10449909 DOI: 10.1038/s41419-023-06065-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Necroptosis, a programmed cell death with necrotic-like morphology, has been recognized as an important driver in various inflammatory diseases. Inhibition of necroptosis has shown potential promise in the therapy of multiple human diseases. However, very few necroptosis inhibitors are available for clinical use as yet. Here, we identified an FDA-approved anti-cancer drug, Vemurafenib, as a potent inhibitor of necroptosis. Through direct binding, Vemurafenib blocked the kinase activity of receptor-interacting protein kinases 1 (RIPK1), impeded the downstream signaling and necrosome complex assembly, and inhibited necroptosis. Compared with Necrostain-1, Vemurafenib stabilized RIPK1 in an inactive DLG-out conformation by occupying a distinct allosteric hydrophobic pocket. Furthermore, pretreatment with Vemurafenib provided strong protection against necroptosis-associated diseases in vivo. Altogether, our results demonstrate that Vemurafenib is an effective RIPK1 antagonist and provide rationale and preclinical evidence for the potential application of approved drug in necroptosis-related diseases.
Collapse
Affiliation(s)
- Mayu Sun
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wei Mu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tengfei Zhu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongliang Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Qian Ba
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Patankar JV, Bubeck M, Acera MG, Becker C. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Front Immunol 2023; 14:1203903. [PMID: 37409125 PMCID: PMC10318896 DOI: 10.3389/fimmu.2023.1203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.
Collapse
Affiliation(s)
- Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
24
|
Wang C, Lin R, Qi X, Xu Q, Sun X, Zhao Y, Jiang T, Jiang J, Sun Y, Deng Y, Wen J. Alternative glucose uptake mediated by β-catenin/RSK1 axis under stress stimuli in mammalian cells. Biochem Pharmacol 2023:115645. [PMID: 37321415 DOI: 10.1016/j.bcp.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Cells adapt to stress conditions by increasing glucose uptake as cytoprotective strategy. The efficiency of glucose uptake is determined by the translocation of glucose transporters (GLUTs) from cytosolic vesicles to cellular membranes in many tissues and cells. GLUT translocation is tightly controlled by the activation of Tre-2/BUB2/CDC16 1 domain family 4 (TBC1D4) via its phosphorylation. The mechanisms of glucose uptake under stress conditions remain to be clarified. In this study, we surprisingly found that glucose uptake is apparently increased for the early response to three stress stimuli, glucose starvation and the exposure to lipopolysaccharide (LPS) or deoxynivalenol (DON). The stress-induced glucose uptake was mainly controlled by the increment of β-catenin level and the activation of RSK1. Mechanistically, β-catenin directly interacted with RSK1 and TBC1D4, acting as the scaffold protein to recruit activated RSK1 to promote the phosphorylation of TBC1D4. In addition, β-catenin was further stabilized due to the inhibition of GSK3β kinase activity which is caused by activated RSK1 phosphorylating GSK3β at Ser9. In general, this triple protein complex consisting of β-catenin, phosphorylated RSK1, and TBC1D4 were increased in the early response to these stress signals, and consequently, further promoted the phosphorylation of TBC1D4 to facilitate the translocation of GLUT4 to the cell membrane. Our study revealed that the β-catenin/RSK1 axis contributed to the increment of glucose uptake for cellular adaption to these stress conditions, shedding new insights into cellular energy utilization under stress.
Collapse
Affiliation(s)
- Caizhu Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xueying Qi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qiang Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xingsheng Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
25
|
Bozonet SM, Magon NJ, Schwartfeger AJ, Konigstorfer A, Heath SG, Vissers MCM, Morris VK, Göbl C, Murphy JM, Salvesen GS, Hampton MB. Oxidation of caspase-8 by hypothiocyanous acid enables TNF-mediated necroptosis. J Biol Chem 2023; 299:104792. [PMID: 37150321 PMCID: PMC10267563 DOI: 10.1016/j.jbc.2023.104792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.
Collapse
Affiliation(s)
- Stephanie M Bozonet
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Andreas Konigstorfer
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet C M Vissers
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James M Murphy
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Mark B Hampton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
26
|
Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers protection against acute pancreatitis in mice. Int Immunopharmacol 2023; 117:109974. [PMID: 37012867 DOI: 10.1016/j.intimp.2023.109974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Necroptosis is a necrotic form of regulated cell death, which is primarily mediated by the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) pathway in a caspase-independent manner. Necroptosis has been found to occur in virtually all tissues and diseases evaluated, including pancreatitis. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii (thunder god vine), possesses potent anti-inflammatory and anti-oxidative activities. Yet, it is unclear whether celastrol has any effects on necroptosis and necroptotic-related diseases. Here we showed that celastrol significantly suppressed necroptosis induced by lipopolysaccharide (LPS) plus pan-caspase inhibitor (IDN-6556) or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). In these in vitro cellular models, celastrol inhibited the phosphorylation of RIPK1, RIPK3, and MLKL and the formation of necrosome during necroptotic induction, suggesting its possible action on upstream signaling of the necroptotic pathway. Consistent with the known role of mitochondrial dysfunction in necroptosis, we found that celastrol significantly rescued TSI-induced loss of mitochondrial membrane potential. TSI-induced intracellular and mitochondrial reactive oxygen species (mtROS), which are involved in the autophosphorylation of RIPK1 and recruitment of RIPK3, were significantly attenuated by celastrol. Moreover, in a mouse model of acute pancreatitis that is associated with necroptosis, celastrol administration significantly reduced the severity of caerulein-induced acute pancreatitis accompanied by decreased phosphorylation of MLKL in pancreatic tissues. Collectively, celastrol can attenuate the activation of RIPK1/RIPK3/MLKL signaling likely by attenuating mtROS production, thereby inhibiting necroptosis and conferring protection against caerulein-induced pancreatitis in mice.
Collapse
|
27
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
28
|
Horne CR, Samson AL, Murphy JM. The web of death: the expanding complexity of necroptotic signaling. Trends Cell Biol 2023; 33:162-174. [PMID: 35750616 DOI: 10.1016/j.tcb.2022.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
The past decade has seen the emergence of the necroptosis programmed cell death pathway as an important contributor to the pathophysiology of myriad diseases. The receptor interacting protein kinase (RIPK)1 and RIPK3, and the pseudokinase executioner protein, mixed lineage kinase domain-like (MLKL), have grown to prominence as the core pathway components. Depending on cellular context, these proteins also serve as integrators of signals, such as post-translational modifications and protein or metabolite interactions, adding layers of complexity to pathway regulation. Here, we describe the emerging picture of the web of proteins that tune necroptotic signal transduction and how these events have diverged across species, presumably owing to selective pressures of pathogens upon the RIPK3-MLKL protein pair.
Collapse
Affiliation(s)
- Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
29
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
30
|
Li X, Zhang Y, Wang J, Li Y, Wang Y, Shi F, Hong L, Li L, Diao H. zVAD alleviates experimental autoimmune hepatitis in mice by increasing the sensitivity of macrophage to TNFR1-dependent necroptosis. J Autoimmun 2022; 133:102904. [PMID: 36108506 DOI: 10.1016/j.jaut.2022.102904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is characterized by hepatocyte destruction, leading to lymphocyte and macrophage accumulation in the liver. Macrophages are key drivers of AIH. A membrane-permeable pan-caspase inhibitor, Z-Val-Ala-DL-Asp-fluoromethylketone (zVAD), induces macrophage necroptosis in response to certain stimuli. However, the function of zVAD in the pathogenesis of autoimmune hepatitis remains elusive. In this study, we aimed to evaluate the effect and explore the underlying mechanisms of zVAD against AIH. METHODS Murine acute autoimmune liver injury was established by concanavalin A (ConA) injection. Bone marrow-derived macrophages (BMDMs) were used in adoptive cell transfer experiments. The mechanism of action of zVAD was examined using macrophage cell lines and BMDMs. Phosphorylation of mixed lineage kinase domain-like proteins was used as a marker of necroptosis. RESULTS Treatment with zVAD increased necroptosis, reduced inflammatory cytokine production, and alleviated liver injury in a ConA-induced liver injury mouse model. Regardless of zVAD treatment, macrophage deletion resulted in reduced neutrophil accumulation and relieved ConA-induced liver injury. In vitro studies have shown that zVAD pretreatment promotes lipopolysaccharide-induced macrophage necroptosis and leads to reduced pro-inflammatory cytokine and chemokine secretion. Transferring zVAD-pretreated BMDMs in mice notably reduced ConA-associated liver inflammation and injury, resulting in lower mortality than that observed after transferring normal BMDMs. Mechanistically, zVAD treatment increased the expression of tumour necrosis factor receptor (TNFR)-1 and interleukin (IL)-10 in macrophages. TNFR1 expression decreased upon transfection with IL-10-specific small interfering RNAs and blocking of TNFR1 decreased macrophage necroptosis. CONCLUSIONS We found that zVAD alleviated ConA-induced liver injury by increasing the sensitivity of macrophages to necroptosis via IL-10-induced TNFR1 expression. This study provides new insights into the treatment of autoimmune hepatitis via zVAD-induced macrophage necroptosis.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinping Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
32
|
Wan S, Moure UAE, Liu R, Liu C, Wang K, Deng L, Liang P, Cui H. Combined bulk RNA-seq and single-cell RNA-seq identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Front Immunol 2022; 13:1013094. [PMID: 36466844 PMCID: PMC9713702 DOI: 10.3389/fimmu.2022.1013094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 08/20/2023] Open
Abstract
Necroptosis is a programmed cell death playing a significant role in cancer. Although necroptosis has been related to tumor immune environment (TIME) remodeling and cancer prognosis, however, the role of necroptosis-related genes (NRGs) in glioma is still elusive. In this study, a total of 159 NRGs were obtained, and parameters such as mutation rate, copy number variation (CNV), and relative expression level were assessed. Then, we constructed an 18-NRGs-based necroptosis-related signature (NRS) in the TCGA dataset, which could predict the patient's prognosis and was validated in two external CGGA datasets. We also explored the correlation between NRS and glioma TIME, chemotherapy sensitivity, and certain immunotherapy-related factors. The two necroptosis-related subtypes were discovered and could also distinguish the patients' prognosis. Through the glioblastoma (GBM) scRNA-seq data analysis, NRGs' expression levels in different GBM patient tissue cell subsets were investigated and the relative necroptosis status of different cell subsets was assessed, with the microglia score culminating among all. Moreover, we found a high infiltration level of immunosuppressive cells in glioma TIME, which was associated with poor prognosis in the high-NRS glioma patient group. Finally, the necroptosis suppressor CASP8 exhibited a high expression in glioma and was associated with poor prognosis. Subsequent experiments were performed in human glioma cell lines and patients' tissue specimens to verify the bioinformatic analytic findings about CASP8. Altogether, this study provides comprehensive evidence revealing a prognostic value of NRGs in glioma, which is associated with TIME regulation.
Collapse
Affiliation(s)
- Sicheng Wan
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- The Ninth People’s Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Ruochen Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaolong Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Kun Wang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Longfei Deng
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Children’s Hospital, Chongqing, China
| | - Hongjuan Cui
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
33
|
He Y, Ying J, Tang J, Zhou R, Qu H, Qu Y, Mu D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr Neuropharmacol 2022; 20:2248-2266. [PMID: 35193484 PMCID: PMC9890291 DOI: 10.2174/1570159x20666220222144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
34
|
Immunostaining of phospho-RIPK3 in L929 cells, murine yolk sacs, ceca, and small intestines. STAR Protoc 2022; 3:101517. [PMID: 35779260 PMCID: PMC9254451 DOI: 10.1016/j.xpro.2022.101517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022] Open
Abstract
Though phospho-receptor-interacting protein 3 (RIP3 or RIPK3) antibodies are used in western blot, immunostaining of murine phospho-RIPK3 is challenging. Here, we verify and describe a detailed protocol for immunofluorescent detection of phospho-RIPK3 in L929 cells and mouse yolk sacs. We also describe in detail the model construction methods, sample preparation steps, and staining procedures for immunohistochemical labeling of RIPK3 activation in mouse ceca and small intestines by utilizing a specific commercially available antibody. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021) and Wang et al. (2020). A detailed protocol for successful immunostaining of phosphorylated murine RIPK3 Specific conditions are provided for staining phospho-mRIPK3 in cells and tissues This protocol is applicable to other murine cell lines and tissues such as livers
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
35
|
Shi JY, Wang CF, Xie MM, Hao YJ, Wang N, Ma H, Yang XW. Brefeldin A from the Deep-Sea-Derived Fungus Fusarium sp. Targets on RIPK3 to Inhibit TNFα-Induced Necroptosis. Chem Biodivers 2022; 19:e202200696. [PMID: 36000162 DOI: 10.1002/cbdv.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
From the deep-sea-derived Fusarium sp. ZEN-48, four known compounds were obtained. Their structures were established by extensive analyses of the NMR, HRESIMS, and the X-ray crystal-lographic data as brefeldin A (BFA, 1), brevianamide F (2), N-acetyltryptamine (3), and (+)-diaporthin (4). Although BFA was extensively investigated for its potent bioactivities, its role on TNFα-induced necroptosis was incompletely understood. In this study, BFA showed significant inhibition on TNFα-induced necroptosis by disrupting the necrosome formation and suppressing the phosphorylation of RIPK3 and MLKL (IC50 = 0.5 μM). While, it had no effect on TNFα-induced NF-κB/MAPKs activation and apoptosis. The finding raised significant implications of BFA for necroptosis-related inflammatory disease therapy and new drug development from marine fungi.
Collapse
Affiliation(s)
- Jia-Yi Shi
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Ningbo, CHINA
| | - Chao-Feng Wang
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, Daxue Road, 361005, Xiamen, CHINA
| | - Ming-Min Xie
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, 361005, Xiamen, CHINA
| | - You-Jia Hao
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, Xiamen, CHINA
| | - Ning Wang
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Xiamen, CHINA
| | - Huabin Ma
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Xiamen, CHINA
| | - Xian-Wen Yang
- Third Institute of Oceanography, Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, 361005, Xiamen, CHINA
| |
Collapse
|
36
|
Deficiency of PPP6C protects TNF-induced necroptosis through activation of TAK1. Cell Death Dis 2022; 13:618. [PMID: 35842423 PMCID: PMC9288536 DOI: 10.1038/s41419-022-05076-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Necroptotic cell death is mediated by a super-molecular complex called necrosome which consists of receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) and mixed-lineage kinase domain-like protein (MLKL). The role of these kinases has been extensively investigated in the regulation of necroptosis. However, whether the protein phosphatase is involved in necroptosis is still largely unknown. Here, we identified protein phosphatase 6 catalytic subunit (PPP6C) promotes TNF-induced necroptosis by genome-wide CRISPR/Cas9 library screening. We found that PPP6C deficiency protects cells from TNF-induced necroptosis in a phosphatase-activity-dependent manner. Mechanistically, PPP6C acts as a TGF-β activated kinase 1 (TAK1) phosphatase to inactivate its kinase activity. Deletion of PPP6C leads to hyperactivation of TAK1 and reduced RIPK1 kinase activity upon TNF stimulation. We further showed that heterozygous deletion of Ppp6c in mouse gastrointestinal tract alleviates necroptosis-related tissue injury and inflammation. Thus, our study identifies PPP6C as an important regulator of necroptosis and highlights a central role of phosphatase in the regulation of necroptosis-related diseases.
Collapse
|
37
|
Mosaic composition of RIP1–RIP3 signalling hub and its role in regulating cell death. Nat Cell Biol 2022; 24:471-482. [DOI: 10.1038/s41556-022-00854-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
|
38
|
Ketamine inhibits TNF-α-induced cecal damage by enhancing RIP1 ubiquitination to attenuate lethal SIRS. Cell Death Dis 2022; 8:72. [PMID: 35184141 PMCID: PMC8857635 DOI: 10.1038/s41420-022-00869-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 01/02/2023]
Abstract
Systemic inflammatory response syndrome (SIRS) is a sepsis-associated inflammatory state and a self-defense mechanism against specific and nonspecific stimuli. Ketamine influences many key processes that are altered during sepsis. However, the underlying mechanisms remain incompletely understood. In this study, TNF-α-treated mice, as well as HT-29 and L929 cell models, were applied to characterize TNF-α-induced systemic and local cecal tissue inflammatory responses. Behavioral, biochemical, histological, and molecular biological approaches were applied to illustrate the related processes. Mice with TNF-α-induced SIRS showed systemic and local cecal tissue inflammatory responses, as indicated by increased levels of high mobility group box 1 protein (HMGB1), chemokines (C-X-C motif) ligand 10 (CXCL10), interleukin-6 (IL-6), and IL-10, as well as high mortality. Ketamine pretreatment alleviated death rates, symptoms, and the production of inflammatory cytokines induced by TNF-α in mice. Moreover, ketamine also protected the mice from TNF-α-induced cecal damage by suppressing the phosphorylation of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). In addition, our results showed that ketamine efficiently inhibited TNF-α-induced necroptosis in HT-29 and L929 cells. Furthermore, we explored the mechanism using different L929 cell lines. The results displayed that ketamine inhibited TNF-α-induced necroptosis by enhancing RIP1 ubiquitination and reducing the RIP1-RIP3 and RIP3-MLKL interactions, as well as the formation of necrosomes. Thus, our study may provide a new theoretical and experimental basis for treating diseases characterized by SIRS-associated inflammatory factor storms. Moreover, our exploration may provide potential molecular mechanisms and targets for therapeutic intervention and clinical application of ketamine.
Collapse
|
39
|
Salmonella pSLT-encoded effector SpvB promotes RIPK3-dependent necroptosis in intestinal epithelial cells. Cell Death Dis 2022; 8:44. [PMID: 35110556 PMCID: PMC8810775 DOI: 10.1038/s41420-022-00841-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/30/2022]
Abstract
Salmonella is one of the most important worldwide zoonotic pathogens. After invading a host orally, the bacteria break through the intestinal epithelial barrier for further invasion. Intestinal epithelial cells (IECs) play a crucial role in maintaining the integrity of the intestinal epithelial barrier. Necroptosis is considered one of the virulence strategies utilized by invasive Salmonella. Our previous work has shown that SpvB, an effector encoded by S. Typhimurium virulence plasmid (pSLT), promotes bacterial translocation via the paracellular route. However, it is still unknown whether SpvB could promote bacterial invasion through disrupting the integrity of IECs. Here, we demonstrated that SpvB promoted necroptosis of IECs and contributed to the destruction of the intestinal barrier during Salmonella infection. We found that SpvB enhanced the protein level of receptor-interacting protein kinase 3 (RIPK3) through inhibiting K48-linked poly-ubiquitylation of RIPK3 and the degradation of the protein in an autophagy-dependent manner. The abundant accumulation of RIPK3 upregulated the phosphorylation of MLKL, which contributed to necroptosis. The damage to IECs ultimately led to the disruption of the intestinal barrier and aggravated infection. In vivo, SpvB promoted the pathogenesis of Salmonella, favoring intestinal injury and colonic necroptosis. Our findings reveal a novel function of Salmonella effector SpvB, which could facilitate salmonellosis by promoting necroptosis, and broaden our understanding of the molecular mechanisms of bacterial invasion.
Collapse
|
40
|
Caspase-8 auto-cleavage regulates programmed cell death and collaborates with RIPK3/MLKL to prevent lymphopenia. Cell Death Differ 2022; 29:1500-1512. [PMID: 35064213 PMCID: PMC9345959 DOI: 10.1038/s41418-022-00938-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Caspase-8 is an initiator of death receptor-induced apoptosis and an inhibitor of RIPK3-MLKL-dependent necroptosis. In addition, caspase-8 has been implicated in diseases such as lymphoproliferation, immunodeficiency, and autoimmunity in humans. Although auto-cleavage is indispensable for caspase-8 activation, its physiological functions remain poorly understood. Here, we generated a caspase-8 mutant lacking E385 in auto-cleavage site knock-in mouse (Casp8ΔE385/ΔE385). Casp8ΔE385/ΔE385 cells were expectedly resistant to Fas-induced apoptosis, however, Casp8ΔE385/ΔE385 cells could switch TNF-α-induced apoptosis to necroptosis by attenuating RIPK1 cleavage. More importantly, CASP8(ΔE385) sensitized cells to RIPK3-MLKL-dependent necroptosis through promoting complex II formation and RIPK1-RIPK3 activation. Notably, Casp8ΔE385/ΔE385Ripk3-/- mice partially rescued the perinatal death of Ripk1-/- mice by blocking apoptosis and necroptosis. In contrast to the Casp8-/-Ripk3-/- and Casp8-/-Mlkl-/- mice appearing autoimmune lymphoproliferative syndrome (ALPS), both Casp8ΔE385/ΔE385Ripk3-/- and Casp8ΔE385/ΔE385Mlkl-/- mice developed transplantable lymphopenia that could be significantly reversed by RIPK1 heterozygosity, but not by RIPK1 kinase dead mutation. Collectively, these results demonstrate previously unappreciated roles for caspase-8 auto-cleavage in regulating necroptosis and maintaining lymphocytes homeostasis.
Collapse
|
41
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
42
|
Sun E, Zhang P. RNF12 Promotes Glioblastoma Malignant Proliferation via Destructing RB1 and Regulating MAPK Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4711232. [PMID: 34900190 PMCID: PMC8654525 DOI: 10.1155/2021/4711232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Background RNF12 has been linked to a variety of biological activities, including the control of the MDM2/P53 pathway, although its additional functions remain unclear. RNF12 was discovered to be a new ubiquitin ligase (E3) for RB1, amongst the most frequently repressed proteins in cancer of human. Method Cell Counting Kit-8 was used to detect the cell proliferation; coimmunoprecipitation was used to determine that RNF12 interacts with RB1. Xenograft studies were used to verify the results. Result In vivo and in vitro RNF12 interacts with RB1 regardless of E3 ligase activity. The ubiquitination of RB1 by RNF12 had an effect on its stability. RNF12 inhibits the RB1 protein and stimulates the MAPK pathway, promoting the growth of GBMs. Conclusion Our findings show that RNF12 may operate as a tumour promoter by modulating the cancerous proliferation of glioblastoma by controlling the activity of a new RNF12/RB1/MAPK pathway regulatory axis and that this regulatory axis might be a valuable diagnostic focus in glioblastoma.
Collapse
Affiliation(s)
- Eryi Sun
- Zhenjiang First People's Hospital, Zhenjiang, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
43
|
Ma Y, Cui D, Wang L, Wang Y, Yang F, Pan H, Gong L, Zhang M, Xiong X, Zhao Y. P90 ribosomal S6 kinase confers cancer cell survival by mediating checkpoint kinase 1 degradation in response to glucose stress. Cancer Sci 2021; 113:132-144. [PMID: 34668620 PMCID: PMC8748233 DOI: 10.1111/cas.15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022] Open
Abstract
In solid tumors, cancer cells have devised multiple approaches to survival and proliferate in response to glucose starvation that is often observed in solid tumor microenvironments. However, the precise mechanisms are far less known. Herein, we report that glucose deprivation activates 90‐kDa ribosomal S6 kinase (p90 RSK), a highly conserved Ser/Thr kinase, and activated p90 RSK promotes cancer cell survival. Mechanistically, activated p90 RSK by glucose deprivation phosphorylates checkpoint kinase 1 (CHK1), a key transducer in checkpoint signaling pathways, at Ser280 and triggers CHK1 ubiquitination mediated by SCFβ‐TrCP ubiquitin ligase and proteasomal degradation, subsequently suppressing cancer cell apoptosis induced by glucose deprivation. Importantly, we identified an inverse correlation between p90 RSK activity and CHK1 levels within the solid tumor mass, with lower levels of CHK1 and higher activity of p90 RSK in the center of the tumor where low glucose concentrations are often observed. Thus, our study indicates that p90 RSK promotes CHK1 phosphorylation at Ser280 and its subsequent degradation, which allows cancer cells to escape from checkpoint signals under the stress of glucose deprivation, leading to cell survival and thus contributing to tumorigenesis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Linchen Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Pan
- Department of Lung Transplantation, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyuan Gong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Minrun Zhang
- Laboratory Animal Center of Zhejiang University, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Liao M, Dong Q, Chen R, Xu L, Jiang Y, Guo Z, Xiao M, He W, Cao C, Hu R, Sun W, Jiang H, Wang J. Oridonin inhibits DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia by inducing apoptosis and necroptosis. Cell Death Discov 2021; 7:297. [PMID: 34663800 PMCID: PMC8523644 DOI: 10.1038/s41420-021-00697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
DNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutations occur in ~20% of de novo acute myeloid leukemia (AML) patients, and >50% of these mutations in AML samples are heterozygous missense alterations within the methyltransferase domain at residue R882. DNMT3A R882 mutations in AML patients promote resistance to anthracycline chemotherapy and drive relapse. In this study, we performed high-throughput screening and identified that oridonin, an ent-kaurene diterpenoid extracted from the Chinese herb Rabdosia rubescens, inhibits DNMT3A R882 mutant leukemic cells at a low-micromolar concentration (IC50 = 2.1 µM) by activating both RIPK1-Caspase-8-Caspase-3-mediated apoptosis and RIPK1-RIPK3-MLKL-mediated necroptosis. The inhibitory effect of oridonin against DNMT3A R882 mutant leukemia cells can also be observed in vivo. Furthermore, oridonin inhibits clonal hematopoiesis of hematopoietic stem cells (HSCs) with Dnmt3a R878H mutation comparing to normal HSCs by inducing apoptosis and necroptosis. Overall, oridonin is a potential and promising drug candidate or lead compound targeting DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Min Liao
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiongye Dong
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ruiqing Chen
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Liqian Xu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuxuan Jiang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhenxing Guo
- Department of Hematology/Oncology, First Hospital of Tsinghua University, 100016, Beijing, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei He
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Changcai Cao
- Shandong Hongmai Biotechnology Co., Ltd. Room 1201, building B, Research Institute of Tianjin University, No. 51, Lutai Avenue, Zibo High tech Zone, 255000, Tianjin, China
| | - Ronghua Hu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
45
|
Zhang Y, Huang K, Zhang Y, Han T, Li L, Ruan C, Sun YH, Shi W, Han W, Wu SQ, Song J, Liu J, Han J. A unique death pathway keeps RIPK1 D325A mutant mice in check at embryonic day 10.5. PLoS Biol 2021; 19:e3001304. [PMID: 34437534 PMCID: PMC8389420 DOI: 10.1371/journal.pbio.3001304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor receptor-1 (TNFR1) signaling, apart from its pleiotropic functions in inflammation, plays a role in embryogenesis as deficiency of varieties of its downstream molecules leads to embryonic lethality in mice. Caspase-8 noncleavable receptor interacting serine/threonine kinase 1 (RIPK1) mutations occur naturally in humans, and the corresponding D325A mutation in murine RIPK1 leads to death at early midgestation. It is known that both the demise of Ripk1D325A/D325A embryos and the death of Casp8-/- mice are initiated by TNFR1, but they are mediated by apoptosis and necroptosis, respectively. Here, we show that the defects in Ripk1D325A/D325A embryos occur at embryonic day 10.5 (E10.5), earlier than that caused by Casp8 knockout. By analyzing a series of genetically mutated mice, we elucidated a mechanism that leads to the lethality of Ripk1D325A/D325A embryos and compared it with that underlies Casp8 deletion-mediated lethality. We revealed that the apoptosis in Ripk1D325A/D325A embryos requires a scaffold function of RIPK3 and enzymatically active caspase-8. Unexpectedly, caspase-1 and caspase-11 are downstream of activated caspase-8, and concurrent depletion of Casp1 and Casp11 postpones the E10.5 lethality to embryonic day 13.5 (E13.5). Moreover, caspase-3 is an executioner of apoptosis at E10.5 in Ripk1D325A/D325A mice as its deletion extends life of Ripk1D325A/D325A mice to embryonic day 11.5 (E11.5). Hence, an unexpected death pathway of TNFR1 controls RIPK1 D325A mutation-induced lethality at E10.5.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kai Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuxia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Tao Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chenchen Ruan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ye-hsuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenke Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Su-qin Wu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jing Song
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jun Liu
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Laboratory Animal Center, Xiamen University, Xiamen, Fujian, China
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
46
|
Wright EB, Fukuda S, Li M, Li Y, O'Doherty GA, Lannigan DA. Identifying requirements for RSK2 specific inhibitors. J Enzyme Inhib Med Chem 2021; 36:1798-1809. [PMID: 34348556 PMCID: PMC8344253 DOI: 10.1080/14756366.2021.1957862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4” position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.
Collapse
Affiliation(s)
- Eric B Wright
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shinji Fukuda
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mingzong Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Deborah A Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
47
|
Abstract
TNF-induced necroptosis is involved in many physiological and pathological processes. Phospho-MLKL is a hallmark of necroptosis. Cecum is a sensitive organ with extensive necroptosis responses to TNF in vivo. Here, taking advantage of commercially available mouse TNF and easily accessible reagents and materials, we systematically provide a detailed and highly versatile protocol of detecting necroptosis signaling in mouse cecum by immunohistochemical labeling, which can also be used in other tissues or antibodies in immunohistochemical staining. For complete details on the use and execution of this protocol, please refer to Yang et al. (2020) and Chen et al. (2015). Phospho-MLKL is used to detect necroptosis in mouse cecum after TNF challenge Reliable experimental results with easy-to-obtain experimental materials The protocol could be applied to other polyphonic tissues or use a different antibody
Collapse
|
48
|
Wang L, Deng B, Yan P, Wu H, Li C, Zhu H, Du J, Hou L. Neuroprotective effect of ketamine against TNF-α-induced necroptosis in hippocampal neurons. J Cell Mol Med 2021; 25:3449-3459. [PMID: 33660415 PMCID: PMC8034479 DOI: 10.1111/jcmm.16426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Tumour necrosis factor‐α (TNF‐α), a crucial cytokine, has various homeostatic and pathogenic bioactivities. The aim of this study was to assess the neuroprotective effect of ketamine against TNF‐α‐induced motor dysfunction and neuronal necroptosis in male C57BL/6J mice in vivo and HT‐22 cell lines in vitro. The behavioural testing results of the present study indicate that ketamine ameliorated TNF‐α‐induced neurological dysfunction. Moreover, immunohistochemical staining results showed that TNF‐α‐induced brain dysfunction was caused by necroptosis and microglial activation, which could be attenuated by ketamine pre‐treatment inhibiting reactive oxygen species production and mixed lineage kinase domain‐like phosphorylation in hippocampal neurons. Therefore, we concluded that ketamine may have neuroprotective effects as a potent inhibitor of necroptosis, which provides a new theoretical and experimental basis for the application of ketamine in TNF‐α‐induced necroptosis‐associated diseases.
Collapse
Affiliation(s)
- Lu Wang
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Deng
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Panpan Yan
- Medical College of Yan'an University, Yan'an, China
| | - Huanghui Wu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chunhui Li
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongrui Zhu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiwei Du
- Department of Nursing, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Samson AL, Garnish SE, Hildebrand JM, Murphy JM. Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling. Sci Signal 2021; 14:14/668/eabc6178. [PMID: 33531383 DOI: 10.1126/scisignal.abc6178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Necroptosis is a lytic, proinflammatory cell death pathway, which has been implicated in host defense and, when dysregulated, the pathology of many human diseases. The central mediators of this pathway are the receptor-interacting serine/threonine protein kinases RIPK1 and RIPK3 and the terminal executioner, the pseudokinase mixed lineage kinase domain-like (MLKL). Here, we review the chronology of signaling along the RIPK1-RIPK3-MLKL axis and highlight how the subcellular compartmentalization of signaling events controls the initiation and execution of necroptosis. We propose that a network of modulators surrounds the necroptotic signaling core and that this network, rather than acting universally, tunes necroptosis in a context-, cell type-, and species-dependent manner. Such a high degree of mechanistic flexibility is likely an important property that helps necroptosis operate as a robust, emergency form of cell death.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|