1
|
Zhou X, Zhou X, Li J, He Y, Qiu S, Xu Y, Liu Z, Yao Y, Liu J, Wen Y, Xie S, Chen J, Liu L, Ou Z, Cai C, Lin J, Lei B, Zou F. Bclaf1 mediates super-enhancer-driven activation of POLR2A to enhance chromatin accessibility in nitrosamine-induced esophageal carcinogenesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138218. [PMID: 40220379 DOI: 10.1016/j.jhazmat.2025.138218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Gene-environment interactions are pivotal contributors to nitrosamine-induced esophageal carcinogenesis. While genetic mechanisms in esophageal carcinoma (ESCA) are well-defined, epigenetic drivers remain elusive. This study identifies a novel mechanism of epigenetic regulation centered on B-cell lymphoma-2-associated transcription factor 1 (Bclaf1) in nitrosamine-induced (Methylnitronitrosoguanidine, MNNG) esophageal carcinogenesis. In nitrosamine-induced malignant transformation cells (MNNG-M), Bclaf1 expression is progressively increased with malignancy, and elevated Bclaf1 levels are correlated with poor prognosis in ESCA patients. Functionally, Bclaf1 significantly promotes the abnormal proliferation of MNNG-M and ESCA cells in vitro and in vivo. Mechanistically, transposase-accessible chromatin sequencing (ATAC-seq) results suggest that Bclaf1 silencing markedly reduces chromatin accessibility, thereby impairing the synthesis of newly transcribed RNA. Bclaf1 activates RNA polymerase II subunit POLR2A to promote chromatin accessibility through distinct transcriptional and splicing mechanisms. More specifically, cleavage under targets and tagmentation (CUT&Tag) assays revealed Bclaf1/P300/H3K27ac co-recruitment at the POLR2A promoter, driving transcription via the E2/E3 elements of the POLR2A super-enhancer. Additionally, RNA-binding protein immunoprecipitation (RIP) assays demonstrated that the Bclaf1 cofactor, small nuclear ribonucleoprotein polypeptide A (SNRPA), interacts with pre-POLR2A to regulate its splicing. Collectively, our study reveals that Bclaf1 facilitates nitrosamine-induced ESCA by controlling POLR2A transcriptional and splicing activities, providing novel insight for early detection and intervention.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| | - Jun Li
- Department of thoracic surgery, The third affiliated hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Yingzheng He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Shizhen Qiu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zeyu Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yina Yao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Ying Wen
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University Institute of Pediatrics, 9 Jinsui Road, Guangzhou 510623, China
| | - Sitong Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Linhua Liu
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Chunqing Cai
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Junyuan Lin
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
He B, Su S, Zhang Z, Lin Z, Qiu Q, Yang Y, Wen X, Zhu Z. Runx2 drives Schwann cells repair phenotype switch through chromatin remodeling and Sox2 activation after nerve injury. Mol Med 2025; 31:110. [PMID: 40119274 PMCID: PMC11929166 DOI: 10.1186/s10020-025-01142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The states of Schwann cells undergo significant shifts during nerve regeneration. Previous studies have shown the expression of Runx2 is locally upregulated within the affected areas. However, the regulatory mechanisms underlying its epigenetic control remain unclear. METHODS To investigate the epigenetic mechanisms through which Runx2 influences the phenotypic transition of repair Schwann cells. Runx2 siRNA fragments and Runx2 overexpression plasmids were constructed. Healthy adult Sprague-Dawley (SD) rats weighted 100-150 g, regardless of sex, were randomly selected. Following the establishment of a sciatic nerve crush injury model, samples were collected for qPCR analysis at 4 and 7 days post-injury. In vitro, the alterations in cell morphology, proliferation, apoptosis, and the ability to promote neural regeneration following the downregulation or upregulation of Runx2 in Schwann cells were assessed. A comprehensive analysis of transcriptome data, ATAC sequencing, and CUT&Tag sequencing of histones and transcription factors in SCs after Runx2 overexpression, along with single-cell RNA sequencing data from GSE216665 and Sox2 overexpression data from RSC96 in GSE94590, was conducted to elucidate the mechanism of action of Runx2, which was subsequently validated using dual luciferase assays. RESULTS Runx2 expression increased locally during the early stages of injury, primarily localized within Zhu Schwann cells (Zhu SCs). Runx2-overexpressing Schwann cells, when cultured in vitro, underwent a transformation from long, spindle-shaped He Schwann cells (He SCs) to flat, rounded Zhu SCs. Multi-omics analysis indicated that Runx2-OE may positively feedback-regulate its expression by opening transcriptional regulatory regions and binding to its own gene regulatory domains. Furthermore, it could also activate transcription factors such as Sox2, transitioning them from a transcriptionally silent to an active state, thereby enhancing Sox2 expression and synergistically regulating the phenotypic transition of Schwann cells. CONCLUSIONS Runx2 can activate and recruit downstream stemness factors, such as Sox2, by modulating chromatin accessibility and histone modification status within Schwann cells, thereby promoting and maintaining the timely phenotypic transformation of Schwann cells following injury.
Collapse
Affiliation(s)
- Bo He
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Shouwen Su
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zeyu Zhang
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhongpei Lin
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Qinglin Qiu
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yan Yang
- Department of Dermatology, Guangzhou Dermatology Hospital, No. 56 Hengfu Road, Guangzhou, 510095, Guangdong, China.
| | - Xiaoyue Wen
- Orthopaedic Trauma and Joint Department, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
5
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
8
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
9
|
Yang Z, Peng Y, Wang Y, Yang P, Huang Z, Quan T, Xu X, Sun P, Sun Y, Lv J, Wei D, Zhou GQ. KLF5 regulates actin remodeling to enhance the metastasis of nasopharyngeal carcinoma. Oncogene 2024; 43:1779-1795. [PMID: 38649438 DOI: 10.1038/s41388-024-03033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.
Collapse
Affiliation(s)
- Zhenyu Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanfu Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yaqin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Panyang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zhuohui Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Tingqiu Quan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xudong Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jiawei Lv
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Guan-Qun Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
10
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
11
|
Ertl HA, Bayala EX, Siddiq MA, Wittkopp PJ. Divergence of Grainy head affects chromatin accessibility, gene expression, and embryonic viability in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588430. [PMID: 38645200 PMCID: PMC11030446 DOI: 10.1101/2024.04.07.588430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pioneer factors are critical for gene regulation and development because they bind chromatin and make DNA more accessible for binding by other transcription factors. The pioneer factor Grainy head (Grh) is present across metazoans and has been shown to retain a role in epithelium development in fruit flies, nematodes, and mice despite extensive divergence in both amino acid sequence and length. Here, we investigate the evolution of Grh function by comparing the effects of the fly (Drosophila melanogaster) and worm (Caenorhabditis elegans) Grh orthologs on chromatin accessibility, gene expression, embryonic development, and viability in transgenic D. melanogaster. We found that the Caenorhabditis elegans ortholog rescued cuticle development but not full embryonic viability in Drosophila melanogaster grh null mutants. At the molecular level, the C. elegans ortholog only partially rescued chromatin accessibility and gene expression. Divergence in the disordered N-terminus of the Grh protein contributes to these differences in embryonic viability and molecular phenotypes. These data show how pioneer factors can diverge in sequence and function at the molecular level while retaining conserved developmental functions at the organismal level.
Collapse
Affiliation(s)
- Henry A. Ertl
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick X. Bayala
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohammad A. Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. Nat Struct Mol Biol 2024; 31:633-643. [PMID: 38267599 DOI: 10.1038/s41594-023-01189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remains elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp of entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Baia Amaral D, Egidy R, Perera A, Bazzini AA. miR-430 regulates zygotic mRNA during zebrafish embryogenesis. Genome Biol 2024; 25:74. [PMID: 38504288 PMCID: PMC10949700 DOI: 10.1186/s13059-024-03197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Early embryonic developmental programs are guided by the coordinated interplay between maternally inherited and zygotically manufactured RNAs and proteins. Although these processes happen concomitantly and affecting gene function during this period is bound to affect both pools of mRNAs, it has been challenging to study their expression dynamics separately. RESULTS By employing SLAM-seq, a nascent mRNA labeling transcriptomic approach, in a developmental time series we observe that over half of the early zebrafish embryo transcriptome consists of maternal-zygotic genes, emphasizing their pivotal role in early embryogenesis. We provide an hourly resolution of de novo transcriptional activation events and follow nascent mRNA trajectories, finding that most de novo transcriptional events are stable throughout this period. Additionally, by blocking microRNA-430 function, a key post transcriptional regulator during zebrafish embryogenesis, we directly show that it destabilizes hundreds of de novo transcribed mRNAs from pure zygotic as well as maternal-zygotic genes. This unveils a novel miR-430 function during embryogenesis, fine-tuning zygotic gene expression. CONCLUSION These insights into zebrafish early embryo transcriptome dynamics emphasize the significance of post-transcriptional regulators in zygotic genome activation. The findings pave the way for future investigations into the coordinated interplay between transcriptional and post-transcriptional landscapes required for the establishment of animal cell identities and functions.
Collapse
Affiliation(s)
- Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Rhonda Egidy
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
14
|
Gibson TJ, Larson ED, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol 2024; 31:548-558. [PMID: 38365978 PMCID: PMC11261375 DOI: 10.1038/s41594-024-01231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Bulyk ML, Drouin J, Harrison MM, Taipale J, Zaret KS. Pioneer factors - key regulators of chromatin and gene expression. Nat Rev Genet 2023; 24:809-815. [PMID: 37740118 DOI: 10.1038/s41576-023-00648-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada.
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Applied Tumour Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
19
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
20
|
Bondra ER, Rine J. Context-dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2023; 120:e2304343120. [PMID: 37769255 PMCID: PMC10556627 DOI: 10.1073/pnas.2304343120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Repressor Activator Protein (Rap1), and Sir proteins. Despite an understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high-resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bidirectional HMLα promoter, bound its recognition sequence in silenced chromatin, and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HMLα in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the role of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HMLα when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability.
Collapse
Affiliation(s)
- Eliana R. Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
21
|
Gaskill MM, Soluri IV, Branks AE, Boka AP, Stadler MR, Vietor K, Huang HYS, Gibson TJ, Mukherjee A, Mir M, Blythe SA, Harrison MM. Localization of the Drosophila pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression. Dev Cell 2023; 58:1610-1624.e8. [PMID: 37478844 PMCID: PMC10528433 DOI: 10.1016/j.devcel.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. This non-uniform distribution is driven by binding to highly abundant GA repeats. At GA repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains essential for the robust regulation of gene expression.
Collapse
Affiliation(s)
- Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella V Soluri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Annemarie E Branks
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan P Boka
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine Vietor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao-Yu S Huang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Apratim Mukherjee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Lian T, Guan R, Zhou BR, Bai Y. Structural mechanism of synergistic targeting of the CX3CR1 nucleosome by PU.1 and C/EBPα. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554718. [PMID: 37790476 PMCID: PMC10542146 DOI: 10.1101/2023.08.25.554718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Pioneer transcription factors are vital for cell fate changes. PU.1 and C/EBPα work together to regulate hematopoietic stem cell differentiation. However, how they recognize in vivo nucleosomal DNA targets remain elusive. Here we report the structures of the nucleosome containing the mouse genomic CX3CR1 enhancer DNA and its complexes with PU.1 alone and with both PU.1 and the C/EBPα DNA binding domain. Our structures reveal that PU.1 binds the DNA motif at the exit linker, shifting 17 bp of DNA into the core region through interactions with H2A, unwrapping ~20 bp of nucleosomal DNA. C/EBPα binding, aided by PU.1's repositioning, unwraps ~25 bp entry DNA. The PU.1 Q218H mutation, linked to acute myeloid leukemia, disrupts PU.1-H2A interactions. PU.1 and C/EBPα jointly displace linker histone H1 and open the H1-condensed nucleosome array. Our study unveils how two pioneer factors can work cooperatively to open closed chromatin by altering DNA positioning in the nucleosome.
Collapse
Affiliation(s)
- Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Bascunana V, Pelletier A, Gouhier A, Bemmo A, Balsalobre A, Drouin J. Chromatin opening ability of pioneer factor Pax7 depends on unique isoform and C-terminal domain. Nucleic Acids Res 2023; 51:7254-7268. [PMID: 37326021 PMCID: PMC10415112 DOI: 10.1093/nar/gkad520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Pioneer factors are transcription factors (TFs) that have the unique ability to recognise their target DNA sequences within closed chromatin. Whereas their interactions with cognate DNA is similar to other TFs, their ability to interact with chromatin remains poorly understood. Having previously defined the modalities of DNA interactions for the pioneer factor Pax7, we have now used natural isoforms of this pioneer as well as deletion and replacement mutants to investigate the Pax7 structural requirements for chromatin interaction and opening. We show that the GL+ natural isoform of Pax7 that has two extra amino acids within the DNA binding paired domain is unable to activate the melanotrope transcriptome and to fully activate a large subset of melanotrope-specific enhancers targeted for Pax7 pioneer action. This enhancer subset remains in the primed state rather than being fully activated, despite the GL+ isoform having similar intrinsic transcriptional activity as the GL- isoform. C-terminal deletions of Pax7 lead to the same loss of pioneer ability, with similar reduced recruitments of the cooperating TF Tpit and of the co-regulators Ash2 and BRG1. This suggests complex interrelations between the DNA binding and C-terminal domains of Pax7 that are crucial for its chromatin opening pioneer ability.
Collapse
Affiliation(s)
- Virginie Bascunana
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Audrey Pelletier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Arthur Gouhier
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Amandine Bemmo
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
24
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
25
|
Galitsyna A, Ulianov SV, Bykov NS, Veil M, Gao M, Perevoschikova K, Gelfand M, Razin SV, Mirny L, Onichtchouk D. Extrusion fountains are hallmarks of chromosome organization emerging upon zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549120. [PMID: 37503128 PMCID: PMC10370019 DOI: 10.1101/2023.07.15.549120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The first activation of gene expression during development (zygotic genome activation, ZGA) is accompanied by massive changes in chromosome organization. The connection between these two processes remains unknown. Using Hi-C for zebrafish embryos, we found that chromosome folding starts by establishing "fountains", novel elements of chromosome organization, emerging selectively at enhancers upon ZGA. Using polymer simulations, we demonstrate that fountains can emerge as sites of targeted cohesin loading and require two-sided, yet desynchronized, loop extrusion. Specific loss of fountains upon loss of pioneer transcription factors that drive ZGA reveals a causal connection between enhancer activity and fountain formation. Finally, we show that fountains emerge in early Medaka and Xenopus embryos; moreover, we found cohesin-dependent fountain pattern on enhancers of mouse embryonic stem cells. Taken together, fountains are the first enhancer-specific elements of chromosome organization; they constitute starting points of chromosome folding during early development, likely serving as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai S. Bykov
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, Barcelona, 08028 Spain
| | - Marina Veil
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Meijiang Gao
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
| | - Kristina Perevoschikova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Gelfand
- Institute for Information Transmission Problems (the Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daria Onichtchouk
- Department of Developmental Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, 79104, Germany
- Koltzov Institute of Developmental Biology RAS, Moscow, 119991, Russia
| |
Collapse
|
26
|
Guan R, Lian T, Zhou BR, Wheeler D, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4. Mol Cell 2023; 83:1970-1982.e6. [PMID: 37327775 PMCID: PMC10276192 DOI: 10.1016/j.molcel.2023.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Kim S, Morgunova E, Naqvi S, Bader M, Koska M, Popov A, Luong C, Pogson A, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541540. [PMID: 37398193 PMCID: PMC10312427 DOI: 10.1101/2023.05.29.541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
28
|
Bondra ER, Rine J. Context dependent function of the transcriptional regulator Rap1 in gene silencing and activation in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539937. [PMID: 37214837 PMCID: PMC10197613 DOI: 10.1101/2023.05.08.539937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Saccharomyces cerevisiae, heterochromatin is formed through interactions between site-specific DNA-binding factors, including the transcriptional activator Rap1, and Sir proteins. Despite a vast understanding of the establishment and maintenance of Sir-silenced chromatin, the mechanism of gene silencing by Sir proteins has remained a mystery. Utilizing high resolution chromatin immunoprecipitation, we found that Rap1, the native activator of the bi-directional HML α promoter, bound its recognition sequence in silenced chromatin and its binding was enhanced by the presence of Sir proteins. In contrast to prior results, various components of transcription machinery were not able to access HML α in the silenced state. These findings disproved the long-standing model of indiscriminate steric occlusion by Sir proteins and led to investigation of the transcriptional activator Rap1 in Sir-silenced chromatin. Using a highly sensitive assay that monitors loss-of-silencing events, we identified a novel role for promoter-bound Rap1 in the maintenance of silent chromatin through interactions with the Sir complex. We also found that promoter-bound Rap1 activated HML α when in an expressed state, and aided in the transition from transcription initiation to elongation. Highlighting the importance of epigenetic context in transcription factor function, these results point toward a model in which the duality of Rap1 function was mediated by local chromatin environment rather than binding-site availability. Significance Statement The coarse partitioning of the genome into regions of active euchromatin and repressed heterochromatin is an important, and conserved, level gene expression regulation in eukaryotes. Repressor Activator Protein (Rap1) is a transcription factor that promotes the activation of genes when recruited to promoters, and aids in the establishment of heterochromatin through interactions with silencer elements. Here, we investigate the role of Rap1 when bound to a promoter in silent chromatin and dissect the context-specific epigenetic cues that regulate the dual properties of this transcription factor. Together, our data highlight the importance of protein-protein interactions and local chromatin state on transcription factor function.
Collapse
Affiliation(s)
- Eliana R Bondra
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
29
|
Gibson TJ, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533281. [PMID: 37066406 PMCID: PMC10103944 DOI: 10.1101/2023.03.18.533281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity. The mechanisms governing pioneer-factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head, and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin, and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J. Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| |
Collapse
|
30
|
Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat Commun 2023; 14:298. [PMID: 36653403 PMCID: PMC9849279 DOI: 10.1038/s41467-023-35937-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
For successful regeneration, the identity of the missing tissue must be specified according to the pre-existing tissue. Planarians are ideal for the study of the mechanisms underlying this process; the same field of cells can regrow a head or a tail according to the missing body part. After amputation, the differential activation of the Wnt/β-catenin signal specifies anterior versus posterior identity. Initially, both wnt1 and notum (Wnt inhibitor) are expressed in all wounds, but 48 hours later they are restricted to posterior or anterior facing wounds, respectively, by an unknown mechanism. Here we show that 12 hours after amputation, the chromatin accessibility of cells in the wound region changes according to the polarity of the pre-existing tissue in a Wnt/β-catenin-dependent manner. Genomic analyses suggest that homeobox transcription factors and chromatin-remodeling proteins are direct Wnt/β-catenin targets, which trigger the expression of posterior effectors. Finally, we identify FoxG as a wnt1 up-stream regulator, probably via binding to its first intron enhancer region.
Collapse
|
31
|
Guan R, Lian T, Zhou BR, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4 for pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522631. [PMID: 36789416 PMCID: PMC9928048 DOI: 10.1101/2023.01.03.522631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA motifs. Two use their POUS domains by forming extensive hydrogen bonds. The other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Our study suggests a mechanism whereby OCT4s target the LIN28B nucleosome by forming multivalent interactions with nucleosomal motifs, unwrapping nucleosomal DNA, evicting H1, and cooperatively open closed chromatin to initiate cell reprogramming.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Correspondence:
| |
Collapse
|
32
|
Li M, Kasan K, Saha Z, Yoon Y, Schmidt-Ott U. Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo polarity determining mosquito gene cucoid. PLoS One 2023; 18:e0274716. [PMID: 36595500 PMCID: PMC9810180 DOI: 10.1371/journal.pone.0274716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The C2H2 zinc finger gene cucoid establishes anterior-posterior (AP) polarity in the early embryo of culicine mosquitoes. This gene is unrelated to genes that establish embryo polarity in other fly species (Diptera), such as the homeobox gene bicoid, which serves this function in the traditional model organism Drosophila melanogaster. The cucoid gene is a conserved single copy gene across lower dipterans but nothing is known about its function in other species, and its evolution in higher dipterans, including Drosophila, is unresolved. We found that cucoid is a member of the ZAD-containing C2H2 zinc finger (ZAD-ZNF) gene family and is orthologous to 27 of the 91 members of this family in D. melanogaster, including M1BP, ranshi, ouib, nom, zaf1, odj, Nnk, trem, Zif, and eighteen uncharacterized genes. Available knowledge of the functions of cucoid orthologs in Drosophila melanogaster suggest that the progenitor of this lineage specific expansion may have played a role in regulating chromatin. We also describe many aspects of the gene duplication history of cucoid in the brachyceran lineage of D. melanogaster, thereby providing a framework for predicting potential redundancies among these genes in D. melanogaster.
Collapse
Affiliation(s)
- Muzi Li
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Koray Kasan
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Zinnia Saha
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Yoseop Yoon
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Urs Schmidt-Ott
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
33
|
Ertl HA, Hill MS, Wittkopp PJ. Differential Grainy head binding correlates with variation in chromatin structure and gene expression in Drosophila melanogaster. BMC Genomics 2022; 23:854. [PMID: 36575386 PMCID: PMC9795675 DOI: 10.1186/s12864-022-09082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Phenotypic evolution is often caused by variation in gene expression resulting from altered gene regulatory mechanisms. Genetic variation affecting chromatin remodeling has been identified as a potential source of variable gene expression; however, the roles of specific chromatin remodeling factors remain unclear. Here, we address this knowledge gap by examining the relationship between variation in gene expression, variation in chromatin structure, and variation in binding of the pioneer factor Grainy head between imaginal wing discs of two divergent strains of Drosophila melanogaster and their F1 hybrid. We find that (1) variation in Grainy head binding is mostly due to sequence changes that act in cis but are located outside of the canonical Grainy head binding motif, (2) variation in Grainy head binding correlates with changes in chromatin accessibility, and (3) this variation in chromatin accessibility, coupled with variation in Grainy head binding, correlates with variation in gene expression in some cases but not others. Interactions among these three molecular layers is complex, but these results suggest that genetic variation affecting the binding of pioneer factors contributes to variation in chromatin remodeling and the evolution of gene expression.
Collapse
Affiliation(s)
- Henry A. Ertl
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mark S. Hill
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA ,grid.83440.3b0000000121901201Present address: Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute and The Francis Crick Institute, London, UK
| | - Patricia J. Wittkopp
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
34
|
Abstract
The control of gene expression in eukaryotes relies on how transcription factors and RNA polymerases manipulate the structure of chromatin. These interactions are especially important in development as gene expression programs change. Chromatin generally limits the accessibility of DNA, and thus exposing sequences at regulatory elements is critical for gene expression. However, it is challenging to understand how transcription factors manipulate chromatin structure and the sequence of regulatory events. The Drosophila embryo has provided a powerful setting to directly observe the establishment and elaboration of chromatin features and experimentally test the causality of transcriptional events that are shared among many metazoans. The large embryo is tractable by live imaging, and a variety of well-developed tools allow the manipulation of factors during early development. The early embryo develops as a syncytium with rapid nuclear divisions and no zygotic transcription, with largely featureless chromatin. Thus, studies in this system have revealed the progression of genome activation triggered by pioneer factors that initiate DNA exposure at regulatory elements and the establishment of chromatin domains, including heterochromatin, the nucleolus, and nuclear bodies. The de novo emergence of nuclear structures in the early embryo reveals features of chromatin dynamics that are likely to be central to transcriptional regulation in all cells.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
35
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
36
|
Pluta R, Aragón E, Prescott NA, Ruiz L, Mees RA, Baginski B, Flood JR, Martin-Malpartida P, Massagué J, David Y, Macias MJ. Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1. Nat Commun 2022; 13:7279. [PMID: 36435807 PMCID: PMC9701222 DOI: 10.1038/s41467-022-34925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022] Open
Abstract
Forkhead box H1 (FoxH1) is an essential maternal pioneer factor during embryonic development that binds to specific GG/GT-containing DNA target sequences. Here we have determined high-resolution structures of three FoxH1 proteins (from human, frog and fish species) and four DNAs to clarify the way in which FoxH1 binds to these sites. We found that the protein-DNA interactions extend to both the minor and major DNA grooves and are thus almost twice as extensive as those of other FOX family members. Moreover, we identified two specific amino acid changes in FoxH1 that allowed the recognition of GG/GT motifs. Consistent with the pioneer factor activity of FoxH1, we found that its affinity for nucleosomal DNA is even higher than for linear DNA fragments. The structures reported herein illustrate how FoxH1 binding to distinct DNA sites provides specificity and avoids cross-regulation by other FOX proteins that also operate during the maternal-zygotic transition and select canonical forkhead sites.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Nicholas A Prescott
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Rebeca A Mees
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Julia R Flood
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
37
|
Ito S, Das ND, Umehara T, Koseki H. Factors and Mechanisms That Influence Chromatin-Mediated Enhancer-Promoter Interactions and Transcriptional Regulation. Cancers (Basel) 2022; 14:5404. [PMID: 36358822 PMCID: PMC9659172 DOI: 10.3390/cancers14215404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression is regulated through chromatin conformation, in which enhancers and promoters physically interact (E-P interactions). How such chromatin-mediated E-P interactions affect gene expression is not yet fully understood, but the roles of histone acetylation and methylation, pioneer transcription factors, and architectural proteins such as CCCTC binding factor (CTCF) and cohesin have recently attracted attention. Moreover, accumulated data suggest that E-P interactions are mechanistically involved in biophysical events, including liquid-liquid phase separation, and in biological events, including cancers. In this review, we discuss various mechanisms that regulate eukaryotic gene expression, focusing on emerging views regarding chromatin conformations that are involved in E-P interactions and factors that establish and maintain them.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Nando Dulal Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
38
|
Larson ED, Komori H, Fitzpatrick ZA, Krabbenhoft SD, Lee CY, Harrison M. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 (BETHESDA, MD.) 2022; 12:6649735. [PMID: 35876878 PMCID: PMC9434156 DOI: 10.1093/g3journal/jkac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/15/2022] [Indexed: 05/22/2023]
Abstract
Following fertilization, the unified germ cells rapidly transition to a totipotent embryo. Maternally deposited mRNAs encode the proteins necessary for this reprogramming as the zygotic genome remains transcriptionally quiescent during the initial stages of development. The transcription factors required to activate the zygotic genome are among these maternally deposited mRNAs and are robustly translated following fertilization. In Drosophila, the mRNA encoding Zelda, the major activator of the zygotic genome, is not translated until 1 h after fertilization. Here we demonstrate that zelda translation is repressed in the early embryo by the TRIM-NHL protein Brain tumor (BRAT). BRAT also regulates Zelda levels in the larval neuroblast lineage. In the embryo, BRAT-mediated translational repression is regulated by the Pan Gu kinase, which is triggered by egg activation. The Pan Gu kinase phosphorylates translational regulators, suggesting that Pan Gu kinase activity alleviates translational repression of zelda by BRAT and coupling translation of zelda with that of other regulators of early embryonic development. Using the premature translation of zelda in embryos lacking BRAT activity, we showed that early translation of a zygotic genome activator is not sufficient to drive precocious gene expression. Instead, Zelda-target genes showed increased expression at the time they are normally activated. We propose that transition through early development requires the integration of multiple processes, including the slowing of the nuclear division cycle and activation of the zygotic genome. These processes are coordinately controlled by Pan Gu kinase-mediated regulation of translation.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hideyuki Komori
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zoe A Fitzpatrick
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa Harrison
- Corresponding author: Department of Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, 6204B Biochemical Sciences Building, Madison, WI 53706, USA.
| |
Collapse
|
39
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
40
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
41
|
Bellec M, Dufourt J, Hunt G, Lenden-Hasse H, Trullo A, Zine El Aabidine A, Lamarque M, Gaskill MM, Faure-Gautron H, Mannervik M, Harrison MM, Andrau JC, Favard C, Radulescu O, Lagha M. The control of transcriptional memory by stable mitotic bookmarking. Nat Commun 2022; 13:1176. [PMID: 35246556 PMCID: PMC8897465 DOI: 10.1038/s41467-022-28855-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 01/23/2023] Open
Abstract
To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.
Collapse
Affiliation(s)
- Maëlle Bellec
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - George Hunt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Hélène Lenden-Hasse
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marie Lamarque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heloïse Faure-Gautron
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Ovidiu Radulescu
- LPHI, UMR CNRS 5235, University of Montpellier, Place E. Bataillon - Bât. 24 cc 107, Montpellier, 34095, Cedex 5, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France.
| |
Collapse
|
42
|
Miao L, Tang Y, Bonneau AR, Chan SH, Kojima ML, Pownall ME, Vejnar CE, Gao F, Krishnaswamy S, Hendry CE, Giraldez AJ. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol Cell 2022; 82:986-1002.e9. [PMID: 35182480 PMCID: PMC9327391 DOI: 10.1016/j.molcel.2022.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.
Collapse
Affiliation(s)
- Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Yin Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ashley R Bonneau
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark E Pownall
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Caroline E Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
43
|
Strader L, Weijers D, Wagner D. Plant transcription factors - being in the right place with the right company. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102136. [PMID: 34856504 PMCID: PMC8844091 DOI: 10.1016/j.pbi.2021.102136] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional regulation underlies many of the growth and developmental processes that shape plants as well as their adaptation to their environment. Key to transcriptional control are transcription factors, DNA-binding proteins that serve two essential functions: to find the appropriate DNA contact sites in their target genes; and to recruit other proteins to execute transcriptional transactions. In recent years, protein structural, genomic, bioinformatic, and proteomic analyses have led to new insights into how these central functions are regulated. Here, we review new findings relating to plant transcription factor function and to their role in shaping transcription in the context of chromatin.
Collapse
Affiliation(s)
- Lucia Strader
- Department of Biology, Duke University, Durham, NC, USA
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, Wageningen, the Netherlands
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Salbert G, Sérandour AA, Staels B, Lefebvre P, Eeckhoute J. The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics 2022; 14:223-225. [PMID: 35034474 DOI: 10.2217/epi-2021-0509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gilles Salbert
- Université de Rennes 1, UMR6290 CNRS, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| |
Collapse
|
45
|
Larson ED, Komori H, Gibson TJ, Ostgaard CM, Hamm DC, Schnell JM, Lee CY, Harrison MM. Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun 2021; 12:7153. [PMID: 34887421 PMCID: PMC8660810 DOI: 10.1038/s41467-021-27506-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
During Drosophila embryogenesis, the essential pioneer factor Zelda defines hundreds of cis-regulatory regions and in doing so reprograms the zygotic transcriptome. While Zelda is essential later in development, it is unclear how the ability of Zelda to define cis-regulatory regions is shaped by cell-type-specific chromatin architecture. Asymmetric division of neural stem cells (neuroblasts) in the fly brain provide an excellent paradigm for investigating the cell-type-specific functions of this pioneer factor. We show that Zelda synergistically functions with Notch to maintain neuroblasts in an undifferentiated state. Zelda misexpression reprograms progenitor cells to neuroblasts, but this capacity is limited by transcriptional repressors critical for progenitor commitment. Zelda genomic occupancy in neuroblasts is reorganized as compared to the embryo, and this reorganization is correlated with differences in chromatin accessibility and cofactor availability. We propose that Zelda regulates essential transitions in the neuroblasts and embryo through a shared gene-regulatory network driven by cell-type-specific enhancers.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cyrina M Ostgaard
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Danielle C Hamm
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jack M Schnell
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Stem Cell and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cheng-Yu Lee
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
46
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
47
|
Mandla R, Jung C, Vedantham V. Transcriptional and Epigenetic Landscape of Cardiac Pacemaker Cells: Insights Into Cellular Specialization in the Sinoatrial Node. Front Physiol 2021; 12:712666. [PMID: 34335313 PMCID: PMC8322687 DOI: 10.3389/fphys.2021.712666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiac pacemaker cells differentiate and functionally specialize early in embryonic development through activation of critical gene regulatory networks. In general, cellular specification and differentiation require that combinations of cell type-specific transcriptional regulators activate expression of key effector genes by binding to DNA regulatory elements including enhancers and promoters. However, because genomic DNA is tightly packaged by histones that must be covalently modified in order to render DNA regulatory elements and promoters accessible for transcription, the process of development and differentiation is intimately connected to the epigenetic regulation of chromatin accessibility. Although the difficulty of obtaining sufficient quantities of pure populations of pacemaker cells has limited progress in this field, the advent of low-input genomic technologies has the potential to catalyze a rapid growth of knowledge in this important area. The goal of this review is to outline the key transcriptional networks that control pacemaker cell development, with particular attention to our emerging understanding of how chromatin accessibility is modified and regulated during pacemaker cell differentiation. In addition, we will discuss the relevance of these findings to adult sinus node function, sinus node diseases, and origins of genetic variation in heart rhythm. Lastly, we will outline the current challenges facing this field and promising directions for future investigation.
Collapse
Affiliation(s)
- Ravi Mandla
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Catherine Jung
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Vasanth Vedantham
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
48
|
Kobayashi W, Tachibana K. Awakening of the zygotic genome by pioneer transcription factors. Curr Opin Struct Biol 2021; 71:94-100. [PMID: 34256217 DOI: 10.1016/j.sbi.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
After fertilization, the genome of the totipotent embryo is transcriptionally inactive and then initiates bursts of transcription termed zygotic genome activation (ZGA). Despite the fundamental importance of initiating an embryonic transcription program for the start of life, the essential regulators and molecular mechanisms triggering ZGA in most organisms are poorly understood. One mechanism centers on pioneer factors that function in cellular reprogramming and differentiation. Recent studies revealed that not only a single but multiple pioneer factors bind cooperatively to the genome to open chromatin, resulting in changes in epigenetic modifications and triggering ZGA. Here, we review recent insights into the functions of pioneer factors during ZGA and discuss the potential relevance to three-dimensional chromatin organization during embryonic development.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
49
|
Michael AK, Thomä NH. Reading the chromatinized genome. Cell 2021; 184:3599-3611. [PMID: 34146479 DOI: 10.1016/j.cell.2021.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|