1
|
Amarsanaa E, Wie M, Shin U, Bilal N, Hwang J, Lee E, Lee S, Kim BG, Kim S, Lee Y, Myung K. Synergistic enhancement of PARP inhibition via small molecule UNI66-mediated suppression of BRD4-dependent transcription of RAD51 and CtIP. NAR Cancer 2025; 7:zcaf013. [PMID: 40308947 PMCID: PMC12041917 DOI: 10.1093/narcan/zcaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/18/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Targeted therapy leveraging synthetic lethality in homologous recombination (HR)-defective tumors, particularly in BRCA-mutated tumors through poly(ADP-ribose) polymerase (PARP)-dependent repair inhibition, has shown success. However, the challenge lies in the ability of the tumors to reactivate HR via diverse mechanisms, leading to resistance against PARP-dependent repair inhibition. Addressing this issue, the down-regulation of HR activity has been explored as a potential strategy to overcome PARP inhibitor-resistant tumors. Yet, the intricate modulation of HR gene expression in mammalian cells is still not fully understood. In this study, we used a small molecule, UNI66, identified from high-throughput screening, to investigate regulatory mechanisms of HR. UNI66 was observed to induce synthetic lethality in PARP1-deficient cells and enhanced the sensitivity of multiple cancer cells to PARP inhibitors, suggesting a role in HR down-regulation. Mechanistically, UNI66 was found to interact with and inhibit BRD4 protein binding to the promoters of CtIP and RAD51 genes, resulting in the down-regulation of their transcription. This decrease in CtIP and RAD51 expression was associated with reduced HR activity, thereby increasing the sensitivity of tumors to PARP inhibitors. These findings indicate that BRD4-mediated transcriptional regulation of CtIP and RAD51 influences HR activity, which may have implications for overcoming resistance to PARP inhibitors.
Collapse
Affiliation(s)
- Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Minwoo Wie
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Nabeela Bilal
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jungme Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Shinseog Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Zou Y, Zhang H, Chen P, Tang J, Yang S, Nicot C, Guan Z, Li X, Tang H. Clinical approaches to overcome PARP inhibitor resistance. Mol Cancer 2025; 24:156. [PMID: 40442774 PMCID: PMC12123805 DOI: 10.1186/s12943-025-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
PARP inhibitors have profoundly changed treatment options for cancers with homologous recombination repair defects, especially those carrying BRCA1/2 mutations. However, the development of resistance to these inhibitors presents a significant clinical challenge as it limits long-term effectiveness. This review provides an overview of the current understanding of resistance mechanisms to PARP inhibitors and explores strategies to overcome these challenges. We discuss the basis of synthetic lethality induced by PARP inhibitors and detail diverse resistance mechanisms affecting PARP inhibitors, including homologous recombination restoration, reduced PARP trapping, enhanced drug efflux, and replication fork stabilization. The review then considers clinical approaches to combat resistance, focusing on combination therapies with immune checkpoint inhibitors, DNA damage response inhibitors, and epigenetic drugs. We also highlight ongoing clinical trials and potential biomarkers for predicting treatment response and resistance. The review concludes by outlining future research directions, emphasizing the need for longitudinal studies, advanced resistance monitoring technologies, and the development of novel combination strategies. By tackling PARP inhibitor resistance, this review seeks to aid in the development of more effective cancer therapies, with the potential to improve outcomes for patients with homologous recombination-deficient tumors.
Collapse
Affiliation(s)
- Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jiayi Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Siwei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Rainbow Boulevard, University of Kansas Medical Center, 3901 , Kansas City, KS, 66160, USA
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
4
|
Wang Y, Hess JD, Wang C, Ma L, Luo M, Jossart J, Perry JJ, Kwon D, Wang Z, Pei X, Shen C, Wang Y, Zhou M, Yin H, Horne D, Nussenzweig A, Zheng L, Shen B. Discovery and Characterization of Small Molecule Inhibitors Targeting Exonuclease 1 for Homologous Recombination-Deficient Cancer Therapy. ACS Chem Biol 2025. [PMID: 40378357 DOI: 10.1021/acschembio.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Human exonuclease 1 (EXO1), a member of the structure-specific nuclease family, plays a critical role in maintaining genome stability by processing DNA double-strand breaks (DSBs), nicks, and replication intermediates during DNA replication and repair. As its exonuclease activity is essential for homologous recombination (HR) and replication fork processing, EXO1 has emerged as a compelling therapeutic target, especially in cancers marked by heightened DNA damage and replication stress. Through high-throughput screening of 45,000 compounds, we identified seven distinct chemical scaffolds that demonstrated effective and selective inhibition of EXO1. Representative compounds from two of the most potent scaffolds, C200 and F684, underwent a comprehensive docking analysis and subsequent site-directed mutagenesis studies to evaluate their binding mechanisms. Biochemical assays further validated their potent and selective inhibition of the EXO1 nuclease activity. Tumor cell profiling experiments revealed that these inhibitors exploit synthetic lethality in BRCA1-deficient cells, emphasizing their specificity and therapeutic potential for targeting genetically HR-deficient (HRD) cancers driven by deleterious mutations in HR genes like BRCA1/2. Mechanistically, EXO1 inhibition suppressed DNA end resection, stimulated the accumulation of DNA double-strand breaks, and triggered S-phase PARylation, effectively disrupting DNA repair pathways that are essential for cancer cell survival. These findings establish EXO1 inhibitors as promising candidates for the treatment of HRD cancers and lay the groundwork for the further optimization and development of these compounds as targeted therapeutics.
Collapse
Affiliation(s)
- Yixing Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Jessica D Hess
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Chen Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Megan Luo
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Jennifer Jossart
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - John J Perry
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - David Kwon
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Zhe Wang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Xinyu Pei
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Changxian Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Yingying Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Holly Yin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, Maryland 20892, United States
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
5
|
Seppa IM, Ceppi I, Tennakoon M, Reginato G, Jackson J, Rouault CD, Agashe S, Sviderskiy VO, Limbu M, Lantelme E, Meroni A, Braunshier S, Borrello D, Verma P, Cejka P, Vindigni A. MRN-CtIP, EXO1, and DNA2-WRN/BLM act bidirectionally to process DNA gaps in PARPi-treated cells without strand cleavage. Genes Dev 2025; 39:582-602. [PMID: 40127955 PMCID: PMC12047661 DOI: 10.1101/gad.352421.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Single-stranded DNA (ssDNA) gaps impact genome stability and PARP inhibitor (PARPi) sensitivity, especially in BRCA1/2-deficient tumors. Using single-molecule DNA fiber analysis, electron microscopy, and biochemical methods, we found that MRN, CtIP, EXO1, and DNA2-WRN/BLM resect ssDNA gaps through a mechanism different from their actions at DNA ends. MRN resects ssDNA gaps in the 3'-to-5' direction using its pCtIP-stimulated exonuclease activity. Unlike at DNA ends, MRN does not use its endonucleolytic activity to cleave the 5'-terminated strand flanking the gap or the ssDNA. EXO1 and DNA2-WRN/BLM specifically resect the 5' end of the gap independent of MRN-CtIP. This resection process alters ssDNA gap repair kinetics in BRCA1-proficient and -deficient cells. In BRCA1-deficient cells treated with PARPis, excessive resection results in larger ssDNA gaps, hindering their repair and leading to DNA breaks in subsequent cell cycle stages due to ssDNA gaps colliding with DNA replication forks. These findings broaden our understanding of the role of human nucleases in DNA metabolism and have significant implications for defining the mechanisms driving PARPi sensitivity in BRCA-deficient tumors.
Collapse
Affiliation(s)
- Isabelle M Seppa
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Ilaria Ceppi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Mithila Tennakoon
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Giordano Reginato
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Celia D Rouault
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Vladislav O Sviderskiy
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Stefan Braunshier
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Damiano Borrello
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Petr Cejka
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, CH 6500 Bellinzona, Switzerland
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, USA;
| |
Collapse
|
6
|
Simoneau A, Pratt CB, Wu HJ, Rajeswaran SS, Comer CG, Sudsakorn S, Zhang W, Liu S, Meier SR, Choi AH, Khendu T, Stowe H, Shen B, Whittington DA, Chen Y, Yu Y, Mallender WD, Feng T, Andersen JN, Maxwell JP, Throner S. Characterization of TNG348: A Selective, Allosteric USP1 Inhibitor That Synergizes with PARP Inhibitors in Tumors with Homologous Recombination Deficiency. Mol Cancer Ther 2025; 24:678-691. [PMID: 39886906 PMCID: PMC12046316 DOI: 10.1158/1535-7163.mct-24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Inhibition of the deubiquitinating enzyme USP1 can induce synthetic lethality in tumors characterized by homologous recombination deficiency (HRD) and represents a novel therapeutic strategy for the treatment of BRCA1/2-mutant cancers, potentially including patients whose tumors have primary or acquired resistance to PARP inhibitors (PARPi). In this study, we present a comprehensive characterization of TNG348, an allosteric, selective, and reversible inhibitor of USP1. TNG348 induces dose-dependent accumulation of ubiquitinated protein substrates both in vitro and in vivo. CRISPR screens show that TNG348 exerts its antitumor effect by disrupting the translesion synthesis pathway of DNA damage tolerance through RAD18-dependent ubiquitinated PCNA. Although TNG348 and PARPi share the ability to selectively kill HRD tumor cells, CRISPR screens reveal that TNG348 and PARPi do so through discrete mechanisms. Particularly, knocking out PARP1 causes resistance to PARPi but sensitizes cells to TNG348 treatment. Consistent with these findings, combination of TNG348 with PARPi leads to synergistic antitumor effects in HRD tumors, resulting in tumor growth inhibition and regression in multiple mouse xenograft tumor models. Importantly, our data on human cancer models further show that the addition of TNG348 to PARPi treatment can overcome acquired PARPi resistance in vivo. Although the clinical development of TNG348 has been discontinued because of unexpected liver toxicity in patients (NCT06065059), the present data provide preclinical and mechanistic support for the continued exploration of USP1 as a drug target for the treatment of patients with BRCA1/2-mutant or HRD cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
7
|
Zou L. Gap resection matters in BRCA mutant cancer. Genes Dev 2025; 39:539-540. [PMID: 40210436 PMCID: PMC12047648 DOI: 10.1101/gad.352827.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Cancer cells deficient in BRCA1/2 have impaired DNA repair, making them sensitive to PARP inhibitors (PARPis). In this issue of Genes & Development, Seppa and colleagues (doi:10.1101/gad.352421.124) investigated how BRCA1 protects single-stranded DNA gaps from nucleolytic processing. They showed that PARPi-induced gaps are rapidly resected by several exonucleases bidirectionally and filled by translesion synthesis. In BRCA1-deficient cells, gaps become larger and persistent due to excessive resection. These gaps do not convert to DNA double-stranded breaks (DSBs) via endonuclease activity but cause DSBs through replication fork collisions in a cell cycle-dependent manner. This research clarifies how BRCA1 loss contributes to PARPi sensitivity in BRCA mutant tumors.
Collapse
Affiliation(s)
- Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
8
|
Honda M, Razzaghi M, Gaur P, Malacaria E, Marozzi G, Di Biagi L, Aiello FA, Paintsil EA, Stanfield AJ, Deppe BJ, Gakhar L, Schnicker NJ, Spies MA, Pichierri P, Spies M. The RAD52 double-ring remodels replication forks restricting fork reversal. Nature 2025; 641:512-519. [PMID: 40175552 DOI: 10.1038/s41586-025-08753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
Human RAD52 is a multifunctional DNA repair protein involved in several cellular events that support genome stability, including protection of stalled DNA replication forks from excessive degradation1-4. In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress, protecting them from reversal by SMARCAL1 motor3. The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses, we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the single-stranded DNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1.
Collapse
Affiliation(s)
- Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mortezaali Razzaghi
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Marozzi
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ludovica Di Biagi
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Emeleeta A Paintsil
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew J Stanfield
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bailey J Deppe
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
- PAQ Therapeutics, Burlington, MA, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - M Ashley Spies
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, USA
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
9
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
10
|
Pai Bellare G, Kundu K, Dey P, Philip KT, Chauhan N, Sharma M, Rajput SK, Patro BS. Targeting Replication Fork Processing Synergizes with PARP Inhibition to Potentiate Lethality in Homologous Recombination Proficient Ovarian Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410718. [PMID: 40089867 PMCID: PMC12079468 DOI: 10.1002/advs.202410718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/20/2025] [Indexed: 03/17/2025]
Abstract
Synthetic lethality in homologous recombination (HR)-deficient cancers caused by Poly (ADP-ribose) polymerase inhibitors (PARPi) has been classically attributed to its role in DNA repair. The mode of action of PARPi and resistance thereof are now believed to be predominantly replication associated. Therefore, effective combinatorial approaches of targeting replication fork processing along with HR-downregulation to target HR-proficient and possibly PARPi-resistant tumors are warranted. Stilbenes are a privileged class of molecules, which include resveratrol, pterostilbene, piceatannol, etc, that modulate both replication processes and RAD51-expression. In this investigation, by screening a small library of stilbenes, including in-house synthesized molecules, trans-4,4'-dihydroxystilbene (DHS) was discovered as a potent natural agent, which downregulates RAD51 expression and HR repair (GFP-reporter assay). DHS induces extensive synergistic cell death in ovarian cancers when combined with talazoparib (PARPi). Mechanistically, DHS elicits replication-stress through severely impeding replication fork progress, speed, and inducing fork-asymmetry. This leads to robust induction of single stranded DNA (ssDNA) gaps and poly-ADP-ribosylation (PARylation) in S-phase cells, signifying issues related to lagging (Okazaki) strand synthesis. PARPi, which abrogates PARylation, potentiates DHS induced ssDNA gaps, and their conversion into lethal double strand breaks through MRE11 action. Furthermore, the combination is highly effective in mitigating ovarian tumor xenograft growth in SCID mice and exhibited a good therapeutic-index with no/minimal tissue-toxicity.
Collapse
Affiliation(s)
- Ganesh Pai Bellare
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| | - Kshama Kundu
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
| | - Papiya Dey
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
| | - Krupa Thankam Philip
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| | - Nitish Chauhan
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| | - Muskan Sharma
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
| | | | - Birija Sankar Patro
- Bio‐Organic DivisionBhabha Atomic Research CentreMumbai400085India
- Homi Bhabha National InstituteAnushaktinagarMumbai400094India
| |
Collapse
|
11
|
Kulkarni S, Seneviratne N, Tosun Ç, Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair (Amst) 2025; 149:103830. [PMID: 40203475 DOI: 10.1016/j.dnarep.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Advanced epithelial ovarian cancer of the high-grade serous subtype (HGSOC) remains a significant clinical challenge due to the development of resistance to current platinum-based chemotherapies. PARP1/2 inhibitors (PARPi) exploit the well-characterised homologous recombination repair deficiency (HRD) in HGSOC and offer an effective targeted approach to treatment. Several clinical trials demonstrated that PARPi (olaparib, rucaparib, niraparib) significantly improved progression-free survival (PFS) in HGSOC in the recurrent maintenance setting. However, 40-70 % of patients develop Resistance to PARPi presenting an ongoing challenge in the clinic. Therefore, there is an unmet need for novel targeted therapies and biomarkers to identify intrinsic or acquired resistance to PARPi in ovarian cancer. Understanding the mechanisms of resistance to PARPi is crucial for identifying molecular vulnerabilities, developing effective biomarkers for patient stratification and guiding treatment decisions. Here, we summarise the current landscape of mechanisms associated with PARPi resistance such as restored homologous recombination repair functionality, replication fork stability and alterations to PARP1 and PARP2 and the DNA damage response. We highlight the role of circulating tumour DNA (ctDNA) in identifying acquired resistance biomarkers and its potential in guiding 'real-time' treatment decisions. Moreover, we explore other innovative treatment strategies aimed at overcoming specific resistance mechanisms, including the inhibition of ATR, WEE1 and POLQ. We also examine the role of PARPi rechallenge in patients with acquired resistance.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Çağla Tosun
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Srinivasan Madhusudan
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
12
|
Liu H, Feng J, Pan T, Zhang P, Ye L, Jiang Z, Zhou Z, Mao Q, Li J, Yang X, Gao P, Huang D, Zhang H. Nuclear-Localized BCKDK Facilitates Homologous Recombination Repair to Support Breast Cancer Progression and Therapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416590. [PMID: 40298908 DOI: 10.1002/advs.202416590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Homologous recombination repair (HRR) is crucial for maintaining genomic stability by repairing DNA damage. Despite its importance, HRR's role in cancer progression is not fully elucidated. Here, this work shows that nuclear-localized branched-chain α-ketoacid dehydrogenase kinase (BCKDK) acts as a modulator of HRR, promoting cell resistance against DNA damage-inducing therapy in breast cancer. Mechanistically, this work demonstrates that BCKDK is localized in the nucleus and phosphorylates RNF8 at Ser157, preventing the ubiquitin-mediated degradation of RAD51, thereby facilitating HRR-mediated DNA repair under replication stress. Notably, aberrant expression of the BCKDK/p-RNF8/RAD51 axis correlates with breast cancer progression and poor patient survival. Furthermore, this work identifies a small molecule inhibitor of BCKDK, GSK180736A, that disrupts its HRR function and exhibits strong tumor suppression when combined with DNA damage-inducing drugs. Collectively, this study reveals a new role of BCKDK in regulating HRR, independent of its metabolic function, presenting it as a potential therapeutic target and predictive biomarker in breast cancer.
Collapse
Affiliation(s)
- Haiying Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiaqian Feng
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tingting Pan
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Pinggen Zhang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ling Ye
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zetan Jiang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zilong Zhou
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiankun Mao
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jian Li
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xinyi Yang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - De Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Key Laboratory of Molecular Oncology, Hefei, 230026, China
| | - Huafeng Zhang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
- Anhui Key Laboratory of Molecular Oncology, Hefei, 230026, China
| |
Collapse
|
13
|
Zhang Y, Ye M, Luan X, Sun Z, Zhang WD. Exploiting replication stress for synthetic lethality in MYC-driven cancers. Am J Cancer Res 2025; 15:1461-1479. [PMID: 40371148 PMCID: PMC12070092 DOI: 10.62347/rtvx8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/22/2025] [Indexed: 05/16/2025] Open
Abstract
The oncoprotein MYC, overexpressed in more than 70% of human cancers, plays a pivotal role in regulating gene transcription and has long been recognized as a promising target for cancer therapy. However, no MYC-targeted drug has been approved for clinical use, largely due to the lack of a well-defined druggable domain and its nuclear localization. MYC-overexpressing cancer cells exhibit increased replication stress, driven by factors such as elevated replication origin firing, nucleotide depletion, replication-transcription conflicts, and heightened reactive oxygen species (ROS) production. Simultaneously, MYC activates compensatory mechanisms, including enhanced DNA repair, checkpoint-mediated cell cycle regulation, and metabolic reprogramming, to mitigate this stress and support cell survival. Interfering with these compensatory pathways exacerbates replication stress, leading to synthetic lethality in MYC-driven cancer cells. In this review, we summarize recent advances in leveraging replication stress to achieve synthetic lethality in MYC-driven cancers. Furthermore, we discuss current strategies targeting replication stress, highlighting new opportunities for the development of therapies against MYC-driven malignancies.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Meng Ye
- School of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Xin Luan
- School of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Zhe Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Wei-Dong Zhang
- School of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou 510006, Guangdong, China
- School of Pharmacy, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
14
|
Martires LCM, Ahronian LG, Pratt CB, Das NM, Zhang X, Whittington DA, Zhang H, Shen B, Come J, McCarren P, Liu MS, Min C, Feng T, Jahic H, Ali JA, Aird DR, Li F, Andersen JN, Huang A, Mallender WD, Nicholson HE. LIG1 Is a Synthetic Lethal Target in BRCA1 Mutant Cancers. Mol Cancer Ther 2025; 24:618-627. [PMID: 39868490 PMCID: PMC11962389 DOI: 10.1158/1535-7163.mct-24-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on PARP inhibitors, which are subject to high rates of innate or acquired resistance in patients. In this study, we used CRISPR/Cas9-based screening to identify DNA ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1 mutant cells across a variety of breast and ovarian cancer cell lines. We used CRISPRn, CRISPRi, RNAi, and protein degradation to confirm the lethal effect of LIG1 inactivation at the DNA, RNA, and protein level in BRCA1 mutant cells in vitro. LIG1 inactivation resulted in viability loss across multiple BRCA1-mutated cell lines, whereas no effect was observed in BRCA1/2 wild-type cell lines, demonstrating target selectivity for the BRCA1 mutant context. On-target nature of the phenotype was demonstrated through rescue of viability with exogenous wild-type LIG1 cDNA. Next, we demonstrated a concentration-dependent relationship of LIG1 protein expression and BRCA1 mutant cell viability using a titratable, degradable LIG1 fusion protein. BRCA1 mutant viability required LIG1 catalytic activity, as catalytically dead mutant LIG1K568A failed to rescue viability loss caused by endogenous LIG1 depletion. LIG1 perturbation produced proportional increases in PAR staining in BRCA1 mutant cells, indicating a mechanism consistent with the function of LIG1 in sealing ssDNA nicks. Finally, we confirmed LIG1 hyperdependence in vivo using a xenograft model in which LIG1 loss resulted in tumor stasis in all mice. Our cumulative findings demonstrate that LIG1 is a promising synthetic lethal target for development in patients with BRCA1-mutant cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jon Come
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | - Mu-Sen Liu
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | | - Haris Jahic
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | | - Fang Li
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | - Alan Huang
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | |
Collapse
|
15
|
Lahiri S, Hamilton G, Moore G, Goehring L, Huang TT, Jensen RB, Rothenberg E. BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments. Nature 2025; 640:1103-1111. [PMID: 40140565 DOI: 10.1038/s41586-025-08749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
The tumour-suppressor protein BRCA2 has a central role in homology-directed DNA repair by enhancing the formation of RAD51 filaments on resected single-stranded DNA generated at double-stranded DNA breaks and stimulating RAD51 activity1,2. Individuals with BRCA2 mutations are predisposed to cancer; however, BRCA2-deficient tumours are often responsive to targeted therapy with PARP inhibitors (PARPi)3-6. The mechanism by which BRCA2 deficiency renders cells sensitive to PARPi but with minimal toxicity in cells heterozygous for BRCA2 mutations remains unclear. Here we identify a previously unknown role of BRCA2 that is directly linked to the effect of PARP1 inhibition. Using biochemical and single-molecule approaches, we demonstrate that PARPi-mediated PARP1 retention on a resected DNA substrate interferes with RAD51 filament stability and impairs RAD51-mediated DNA strand exchange. Full-length BRCA2 protects RAD51 filaments and counteracts the instability conferred by PARPi-mediated retention by preventing the binding of PARP1 to DNA. Extending these findings to a cellular context, we use quantitative single-molecule localization microscopy to show that BRCA2 prevents PARPi-induced PARP1 retention at homologous-recombination repair sites. By contrast, BRCA2-deficient cells exhibit increased PARP1 retention at these lesions in response to PARPi. These results provide mechanistic insights into the role of BRCA2 in maintaining RAD51 stability and protecting homologous-recombination repair sites by mitigating PARPi-mediated PARP1 retention.
Collapse
Affiliation(s)
- Sudipta Lahiri
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - George Hamilton
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Liana Goehring
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Frederick MI, Fyle E, Clouvel A, Abdesselam D, Hassan S. Targeting FEN1/EXO1 to enhance efficacy of PARP inhibition in triple-negative breast cancer. Transl Oncol 2025; 54:102337. [PMID: 40054125 PMCID: PMC11928819 DOI: 10.1016/j.tranon.2025.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. The only targeted therapeutic approach that has emerged for early TNBC patients with BRCA-mutations (BRCAMUT) are PARP inhibitors (PARPi). In combination, PARPi may benefit a larger cohort of TNBC patients. We used our previously identified 63-gene signature that was associated with PARPi response to identify candidate genes that could be therapeutic targets. We selected FEN1 for further investigation since its knockdown was associated with an increase in G2/M arrest, DNA damage, and apoptosis. We first tested LNT1, a FEN1/EXO1 inhibitor, in a panel of 10 TNBC cell lines. LNT1 sensitivity was identified predominantly in BRCA1-mutant/deficient cell lines. However, the combination of PARPi and LNT1 demonstrated a synergistic or additive effect in 7/10 cell lines, mainly in BRCA1/2 wild-type (BRCAWT) and BRCA2-mutant cell lines, with intrinsic and acquired resistance to PARPi. The greatest synergy was observed in a BRCA2-mutant cell line with acquired resistance to olaparib (HCC1395-OlaR), with a combination index value of 0.20. In the synergistic cell lines, BT549 (BRCAWT) and HCC1395-OlaR, the combination was associated with a rapid progression in DNA replication fork speed, an early and sustained increase in DNA damage in comparison to each of the single-agents. However, in the additive BRCA1/2 wild-type cell lines, MDAMB231 and HCC1806, the combination demonstrated a high DNA damage response that was largely driven by either talazoparib or LNT1. Therefore, targeting FEN1/EXO1 with PARPi is a promising targeted combination approach, particularly in the context of PARPi-resistant and BRCAWT TNBC.
Collapse
Affiliation(s)
- Mallory I Frederick
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Elicia Fyle
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Anna Clouvel
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Djihane Abdesselam
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada; Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), l'Institut de Cancer de Montreal, Montreal, QC H2X0A9, Canada; Division of Surgical Oncology, Department of Surgery, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X0C1, Canada.
| |
Collapse
|
17
|
Peña-Gómez MJ, Rodríguez-Martín Y, del Rio Oliva M, Wijesekara Hanthi Y, Berrada S, Freire R, Masson JY, Reyes JC, Costanzo V, Rosado IV. HMCES corrupts replication fork stability during base excision repair in homologous recombination-deficient cells. SCIENCE ADVANCES 2025; 11:eads3227. [PMID: 40138423 PMCID: PMC11939059 DOI: 10.1126/sciadv.ads3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Apurinic/apyrimidinic (AP) sites and single-strand breaks arising from base excision repair (BER) during the misincorporation of damaged nucleobases may hinder replication fork stability in homologous recombination-deficient (HRD) cells. At templated AP sites, cross-links between the DNA and 5-hydroxymethylcytosine binding, embryonic stem cell-specific (HMCES) regulate replication fork speed, avoiding cytotoxic double-strand breaks. While the role of HMCES at the template DNA strand is well studied, its effects on nascent DNA are not. We provide evidence that HMCES-DNA-protein cross-links (DPCs) are detrimental to the BER-mediated removal of 5-hydroxymethyl-2'-deoxycytidine (5hmdC)-derived 5-hydroxymethyl-2'-deoxyuridine from replication forks. HRD cells have heightened HMCES-DPCs, which increase further upon 5hmdC exposure, suggesting that HMCES binds both spontaneous and 5hmdC-induced AP sites. HMCES depletion substantially suppresses 5hmdC-mediated replication fork defects, chromosomal aberrations, and cell death in HRD cells. This reveals that HMCES-DPCs are a source of BER-initiated single-stranded DNA gaps, which indicates that endogenous DPCs contribute to genomic instability in HRD tumors.
Collapse
Affiliation(s)
- María José Peña-Gómez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yaiza Rodríguez-Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Marta del Rio Oliva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| | - Yodhara Wijesekara Hanthi
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Sara Berrada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - José Carlos Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Vincenzo Costanzo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Iván V. Rosado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
18
|
Tsukada K, Imamura R, Miyake T, Saikawa K, Saito M, Kase N, Fu L, Ishiai M, Matsumoto Y, Shimada M. CDK-mediated phosphorylation of PNKP is required for end-processing of single-strand DNA gaps on Okazaki fragments and genome stability. eLife 2025; 14:e99217. [PMID: 40146629 PMCID: PMC11949490 DOI: 10.7554/elife.99217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3'-phosphatase and 5'-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.
Collapse
Affiliation(s)
- Kaima Tsukada
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
| | - Rikiya Imamura
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Tomoko Miyake
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Kotaro Saikawa
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Mizuki Saito
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Naoya Kase
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Lingyan Fu
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | | | - Yoshihisa Matsumoto
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| | - Mikio Shimada
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science TokyoTokyoJapan
| |
Collapse
|
19
|
Musiani D, Yücel H, Vallette M, Angrisani A, El Botty R, Ouine B, Schintu N, Adams C, Chevalier M, Heloise D, El Marjou A, Nemazanyy I, Regairaz M, Marangoni E, Fachinetti D, Ceccaldi R. Uracil processing by SMUG1 in the absence of UNG triggers homologous recombination and selectively kills BRCA1/2-deficient tumors. Mol Cell 2025; 85:1072-1084.e10. [PMID: 40010343 DOI: 10.1016/j.molcel.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) is the major obstacle to their effectiveness in the treatment of homologous recombination (HR)-deficient (HRD) tumors. Hence, developing alternative treatments for HRD tumors is critical. Here, we show that targeting the uracil excision pathway kills HRD tumors, including those with PARPi resistance. We found that the interplay between the two major uracil DNA glycosylases UNG and SMUG1 is regulated by nuclear nicotinamide adenine dinucleotide (NAD+), which maintains UNG at replication forks (RFs) and restrains SMUG1 chromatin binding. In the absence of UNG, SMUG1 retention on chromatin leads to persistent abasic sites, which incision by APE1 results in PARP1 hyperactivation, stalled RFs, and RAD51 foci. In HRD cells (i.e., BRCA1/2-deficient), this leads to under-replicated DNA that, when propagated throughout mitosis, results in chromosome fragmentation and cell death. Our findings open up unique possibilities for targeted therapies for HRD tumors based on UNG inhibition and uracil accumulation in the genome.
Collapse
Affiliation(s)
- Daniele Musiani
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Hatice Yücel
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Marie Vallette
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Annapaola Angrisani
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144 and UMR3664, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Bérengère Ouine
- Recombinant Protein Facility CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Niccolo Schintu
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Caroline Adams
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Manon Chevalier
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Derrien Heloise
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Ahmed El Marjou
- Recombinant Protein Facility CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Marie Regairaz
- INSERM U830, PSL Research University, Institut Curie, Paris, France; Laboratoire de Biologie et Pharmacologie Appliquée, ENS-Paris-Saclay, CNRS UMR 8113, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144 and UMR3664, 26 rue d'Ulm, 75005 Paris, France
| | - Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| |
Collapse
|
20
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Zong R, Zhou P, Qin S, Li J, Xu S, Kang M, Zhang Y. Evaluating the efficacy of PARP inhibitor in ARID1A-deficient colorectal cancer: A ex vivo study. Cancer Biomark 2025; 42:18758592251317873. [PMID: 40235227 DOI: 10.1177/18758592251317873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
ARID1A mutations are a common occurrence in colorectal cancer (CRC) cells, but clinical therapeutic options targeting this anomaly remain unavailable. The loss of ARID1A functionality compromises DNA damage repair processes, potentially causing cancer cells to rely more heavily on PARP-dependent DNA repair pathways to preserve genomic integrity, thereby making them susceptible to PARP inhibitor (PARPi) therapy. To evaluate the suitability of PARPi treatment for CRC patients with ARID1A sufficiency (ARID1A+) and ARID1A deficiency (ARID1A-), our study enrolled 80 patients who had undergone surgical treatment for primary CRC. Surgical specimens underwent immunohistochemical examination to assess ARID1A protein expression. The study explored correlations between ARID1A expression loss and clinicopathological characteristics. Moreover, primary CRC cells were isolated through enzymatic digestion and validated using the colorectal carcinoma marker CK20. Subsequently, PARPi sensitivity was investigated in untreated ARID1A+ and ARID1A- CRC patients using an ATP-tumor chemosensitivity assay (ATP-TCA). Additionally, we confirmed the efficacy of PARPi in these primary CRC cells through clone formation and assessed its impact on cell cycle dynamics, apoptosis, and DNA damage repair signaling pathways using immunofluorescence and flow cytometry. The results demonstrated that the ARID1A- group displayed greater sensitivity to PARPi compared to the ARID1A+ group. PARPi treatment led to increased tumor cell death in the ARID1A- group. Mechanistically, ARID1A deficiency resulted in cell cycle abnormalities, particularly G2/M phase arrest, which was further exacerbated by PARPi treatment. Furthermore, PARPi treatment significantly increased the number of RAD51 foci in ARID1A- cell lines. In conclusion, our study highlights the potential of PARPi as an effective therapeutic option for ARID1A- CRC patients.
Collapse
Affiliation(s)
- Rui Zong
- First Department of Oncology Radiotherapy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ping Zhou
- Second Department of Internal Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shaojie Qin
- Department of Radiation Physics, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jie Li
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Shan Xu
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Mianyang Fulin hospital, Mianyang, China
| | - MingWei Kang
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Yuping Zhang
- Second Department of Oncology Radiotherapy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
22
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Schlacher K. A multiverse of BRCA vulnerabilities. NATURE CANCER 2025; 6:234-236. [PMID: 39972106 DOI: 10.1038/s43018-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Hu X, Wu Y, Yao M, Chen Z, Li Q. The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy. Future Med Chem 2025; 17:329-345. [PMID: 39819213 PMCID: PMC11792837 DOI: 10.1080/17568919.2025.2453414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins. Inhibiting USP1 effectively suppresses tumor proliferation and migration and may help overcome resistance to cisplatin and PARP inhibitors. As a potential synthetic lethal target, USP1 demonstrates significant research potential. This review highlights the biological mechanisms of USP1 in cancer progression, the signaling pathways it regulates, and the latest advancements in USP1 inhibitors, while also analyzing the opportunities and challenges of targeting USP1. By adopting the perspective of "the other side of the coin," this review aims to underscore the crucial yet often overlooked role of the deubiquitinase USP1, contrasting it with the extensively studied ubiquitin ligases, and emphasizing its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Xinlan Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yan Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Mengmeng Yao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| |
Collapse
|
25
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
26
|
Wu M, Jiang Y, Zhang D, Wu Y, Jin Y, Liu T, Mao X, Yu H, Xu T, Chen Y, Huang W, Che J, Zhang B, Liu T, Lin N, Dong X. Discovery of a potent PARP1 PROTAC as a chemosensitizer for the treatment of colorectal cancer. Eur J Med Chem 2025; 282:117062. [PMID: 39602992 DOI: 10.1016/j.ejmech.2024.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Given the vulnerability of colorectal cancer (CRC) patients could not obtain a sustained benefit from chemotherapy, combination therapy is frequently employed as a treatment strategy. Targeting PARP1 blockade exhibit specific toxicity towards tumor cells with BRCA1 or BRCA2 mutations through synthetic lethality. This study focuses on developing a series of potent PROTACs targeting PARP1 in order to enhance the sensitivity of CRC cells with BRCA1 or BRCA2 mutations to chemotherapy. Compound C6, obtained based on precise structural optimization of the linker, has been shown to effectively degrade PARP1 with a DC50 value of 58.14 nM. Furthermore, C6 significantly increased the cytotoxic efficacy of SN-38, an active metabolite of Irinotecan, in BRCA-mutated CRC cells, achieving a favorable combination index (CI) of 0.487. In conclusion, this research underscores the potential benefits of employing a combination therapy that utilizes PAPRP1 degrader C6 alongside Irinotecan for CRC patients harboring BRCA mutations in CRC.
Collapse
Affiliation(s)
- Mingfei Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiquan Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinfei Mao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Jinxin Che
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| | - Nengming Lin
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Xiaowu Dong
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
27
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
28
|
Estrada MD, Gebhardt CJ, Salem M, Sharma K, Bassing CH, Oltz EM, Collins PL. Transcriptional regulation of the non-homologous end joining gene Ligase IV by an intronic regulatory element directs thymocyte development. RESEARCH SQUARE 2025:rs.3.rs-5718046. [PMID: 39866872 PMCID: PMC11760251 DOI: 10.21203/rs.3.rs-5718046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified. Here, we examine mechanisms governing Lig4 transcription in mammals, finding that most tissues maintain very low levels of LIG4 production. Select tissues upregulate LIG4, employing different strategies for genomic regulation. In developing lymphocytes, the Lig4 locus is devoid of long-range chromatin contacts; instead, its expression and role in immune development depend upon a promoter-proximal intronic regulatory element. Deletion of the Lig4 intronic regulatory element results in thymocyte-specific loss of Lig4 upregulation, defects in lymphocyte development and altered antigen receptor rearrangement. Our findings show the NHEJ gene, Lig4, is transcriptionally controlled to support stage-specific function concurrent with programmed DSBs. Moreover, we provide an example of how DNA cis-regulatory elements very close to a promoter can have substantial transcriptional effects.
Collapse
Affiliation(s)
- Matthew D Estrada
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Christopher J Gebhardt
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Mariam Salem
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Kruthika Sharma
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
29
|
Duzanic FD, Penengo L. The interferon response at the intersection of genome integrity and innate immunity. DNA Repair (Amst) 2025; 145:103786. [PMID: 39577202 DOI: 10.1016/j.dnarep.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
In recent years, numerous reports indicated that, besides pathogen infections, DNA replication stress and defective DNA repair can trigger the innate immune response by introducing a state of viral mimicry, due to cytosolic accumulation of the self-nucleic acid species, which culminates in the activation of type I interferon (IFN) pathway. In turn, IFN upregulates a variety of factors mutually implicated in immune- and genome-related mechanisms, shedding light on the unprecedented causality between genome stability and innate immunity. Intriguingly, in addition to being induced by replication stress, IFN-regulated factors can also promote it, pinpointing IFN signaling as both a consequence and a cause of replication stress. Here, we provide an overview of the factors and molecular mechanisms implicated in the evolutionary conserved crosstalk between genome maintenance and innate immunity, highlighting the role of the IFN-stimulated gene 15 (ISG15), which appears to be at the hub of this intersection. Moreover, we discuss the potential significance and clinical implications of the immune-mediated modulation of DNA replication and repair upon pathogen infection and in human diseases such as cancer and autoinflammatory syndromes. Finally, we discuss the relevant open questions and future directions.
Collapse
Affiliation(s)
- Filip D Duzanic
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Lorenza Penengo
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland.
| |
Collapse
|
30
|
Fracassi G, Lorenzin F, Orlando F, Gioia U, D’Amato G, Casaramona AS, Cantore T, Prandi D, Santer FR, Klocker H, d’Adda di Fagagna F, Mateo J, Demichelis F. CRISPR/Cas9 screens identify LIG1 as a sensitizer of PARP inhibitors in castration-resistant prostate cancer. J Clin Invest 2024; 135:e179393. [PMID: 39718835 PMCID: PMC11827843 DOI: 10.1172/jci179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
PARP inhibitors (PARPi) have received regulatory approval for the treatment of several tumors, including prostate cancer (PCa), and demonstrate remarkable results in the treatment of castration-resistant prostate cancer (CRPC) patients characterized by defects in homologous recombination repair (HRR) genes. Preclinical studies showed that DNA repair genes (DRG) other than HRR genes may have therapeutic value in the context of PARPi. To this end, we performed multiple CRISPR/Cas9 screens in PCa cell lines using a custom sgRNA library targeting DRG combined with PARPi treatment. We identified DNA ligase 1 (LIG1), essential meiotic structure-specific endonuclease 1 (EME1), and Fanconi anemia core complex associated protein 24 (FAAP24) losses as PARPi sensitizers and assessed their frequencies from 3% to 6% among CRPC patients. We showed that concomitant inactivation of LIG1 and PARP induced replication stress and DNA double-strand breaks, ultimately leading to apoptosis. This synthetic lethality (SL) is conserved across multiple tumor types (e.g., lung, breast, and colorectal), and its applicability might be extended to LIG1-functional tumors through a pharmacological combinatorial approach. Importantly, the sensitivity of LIG1-deficient cells to PARPi was confirmed in vivo. Altogether, our results argue for the relevance of determining the status of LIG1 and potentially other non-HRR DRG for CRPC patient stratification and provide evidence to expand their therapeutic options.
Collapse
Affiliation(s)
- Giulia Fracassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Orlando
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ubaldo Gioia
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
- IFOM ETS–The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giacomo D’Amato
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Arnau S. Casaramona
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital Campus, Barcelona, Spain
| | - Thomas Cantore
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Frédéric R. Santer
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabrizio d’Adda di Fagagna
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
- IFOM ETS–The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Joaquin Mateo
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital Campus, Barcelona, Spain
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
31
|
Pale LM, Khatib JB, Nusawardhana A, Straka J, Nicolae CM, Moldovan GL. CRISPR knockout genome-wide screens identify the HELQ-RAD52 axis in regulating the repair of cisplatin-induced single-stranded DNA gaps. Nucleic Acids Res 2024; 52:13832-13848. [PMID: 39530221 DOI: 10.1093/nar/gkae998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Treatment with genotoxic agents, such as platinum compounds, is still the mainstay therapeutical approach for the majority of cancers. Our understanding of the mechanisms of action of these drugs is, however, imperfect and continuously evolving. Recent advances highlighted single-stranded DNA (ssDNA) gap accumulation as a potential determinant underlying cisplatin chemosensitivity, at least in some genetic backgrounds, such as BRCA mutations. Cisplatin-induced ssDNA gaps form upon restart of DNA synthesis downstream of cisplatin-induced lesions through repriming catalyzed by the PRIMPOL enzyme. Here, we show that PRIMPOL overexpression in otherwise wild-type cells results in accumulation of cisplatin-induced ssDNA gaps without sensitizing cells to cisplatin, suggesting that ssDNA gap accumulation does not confer cisplatin sensitivity in BRCA-proficient cells. To understand how ssDNA gaps may cause cellular sensitivity, we employed CRISPR-mediated genome-wide genetic screening to identify factors which enable the cytotoxicity of cisplatin-induced ssDNA gaps. We found that the helicase HELQ specifically suppresses cisplatin sensitivity in PRIMPOL-overexpressing cells, and this is associated with reduced ssDNA accumulation. We moreover identify RAD52 as a mediator of this pathway. RAD52 promotes ssDNA gap accumulation through a BRCA-mediated mechanism. Our work identified the HELQ-RAD52-BRCA axis as a regulator of ssDNA gap processing and cisplatin sensitization.
Collapse
Affiliation(s)
- Lindsey M Pale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Alexandra Nusawardhana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Straka J, Khatib JB, Pale L, Nicolae CM, Moldovan GL. CAF-1 promotes efficient PrimPol recruitment to nascent DNA for single-stranded DNA gap formation. Nucleic Acids Res 2024; 52:13865-13880. [PMID: 39558157 DOI: 10.1093/nar/gkae1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Suppression of single-stranded DNA (ssDNA) gap accumulation at replication forks has emerged as a potential determinant of chemosensitivity in homologous recombination (HR)-deficient tumors, as ssDNA gaps are transformed into cytotoxic double-stranded DNA breaks. We have previously shown that the histone chaperone CAF-1's nucleosome deposition function is vital to preventing degradation of stalled replication forks correlating with HR-deficient cells' response to genotoxic drugs. Here we report that the CAF-1-ASF1 pathway promotes ssDNA gap accumulation at replication forks in both wild-type and breast cancer (BRCA)-deficient backgrounds. We show that this is independent of CAF-1's nucleosome deposition function but instead may rely on its proper localization to replication forks. Moreover, we show that the efficient localization to nascent DNA of PrimPol, the enzyme responsible for repriming upon replication stress, is dependent on CAF-1. As PrimPol has been shown to be responsible for generating ssDNA gaps as a byproduct of its repriming function, CAF-1's role in its recruitment could directly impact ssDNA gap formation. We also show that chemoresistance observed in HR-deficient cells when CAF-1 or ASF1A are lost correlates with suppression of ssDNA gaps rather than protection of stalled replication forks. Overall, this work identifies an unexpected role of CAF-1 in regulating PrimPol recruitment and ssDNA gap generation.
Collapse
Affiliation(s)
- Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lindsey Pale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
33
|
Talens F, Teixeira V, Kok Y, Chen M, Rosenberg E, Debipersad R, Duiker E, van den Tempel N, Janatova M, Zemankova P, Nederlof P, Wisman G, Kleibl Z, de Jong S, van Vugt MTM. RAD51 recruitment but not replication fork stability associates with PARP inhibitor response in ovarian cancer patient-derived xenograft models. NAR Cancer 2024; 6:zcae044. [PMID: 39611179 PMCID: PMC11604054 DOI: 10.1093/narcan/zcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat BRCA1/2 mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection. Analysis of BRCA1/2 status showed that in our cohort of 31 ovarian cancer PDX models 22.6% harbored a BRCA1/2 alteration (7/31), and 48.3% (15/31) were genomically unstable as measured by copy number alteration analysis. In vivo, PARPi olaparib response was measured in 15 selected PDX models. Functional assessment of HR using ex vivo irradiation-induced RAD51 foci formation identified all olaparib-sensitive PDX models, including four models without BRCA1/2 alterations. In contrast, replication fork protection or replication speed in ex vivo tumor tissue did not correlate with olaparib response. Targeted panel sequencing in olaparib-sensitive models lacking BRCA1/2 alterations revealed a MUS81 variant as a possible mechanism underlying PARPi sensitivity. Combined, we show that ex vivo RAD51 analysis effectively predicts in vivo olaparib response and revealed a subset of PARPi-sensitive, HR-deficient ovarian cancer PDX models, lacking a BRCA1/2 alteration.
Collapse
Affiliation(s)
- Francien Talens
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Vivian Oliviera Nunes Teixeira
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Rashmie Debipersad
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Evelien W Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 00 Prague, Czech Republic
| | - Petra M Nederlof
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - G Bea A Wisman
- Department of Gynecology and Obstetrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 128 00 Prague, Czech Republic
- Department of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 00 Prague, Czech Republic
| | - Steven de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|
34
|
Liu J, Geng Y, Jiang S, Guan L, Gao J, Niu MM, Li J. Discovery of novel PARP1/NRP1 dual-targeting inhibitors with strong antitumor potency. Front Pharmacol 2024; 15:1454957. [PMID: 39679370 PMCID: PMC11637875 DOI: 10.3389/fphar.2024.1454957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Given that overexpression of Poly (ADP-ribose) polymerase-1 (PARP1) and Neuropilin-1 (NRP1) is implicated in the pathogenesis of human breast cancer, the design of dual PARP1/NRP1 inhibitors has wide therapeutic prospect. However, there have been no reports of such inhibitors so far. Herein, we discovered novel small molecule inhibitors that simultaneously target PARP1 and NRP1 using structure-based virtual screening for the treatment of breast cancer. Notably, PPNR-4 was the most potent inhibitor targeting PARP1 (IC50 = 7.71 ± 0.39 nM) and NRP1 (IC50 = 24.48 ± 2.16 nM). PPNR-4 showed high affinity and binding stability to PARP1 and NRP1. The cytotoxicity assays showed that PPNR-4 demonstrated significant antiproliferative activity on MDA-MB-231 cells (IC50 = 0.21 μM) without effect on normal human cells. In vivo experiments exhibited that PPNR-4 showed more effective than the positive controls in inhibiting the growth of tumors. Overall, these data suggest that PPNR-4 is an effective antitumor candidate and deserves further research.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Su Jiang
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Junyi Gao
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jindong Li
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
35
|
Gong X, Liu C, Tang H, Wu S, Yang Q. Application and research progress of synthetic lethality in the development of anticancer therapeutic drugs. Front Oncol 2024; 14:1460412. [PMID: 39655075 PMCID: PMC11625670 DOI: 10.3389/fonc.2024.1460412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
With the tremendous success of the PARP inhibitor olaparib in clinical practice, synthetic lethality has become an important field for the discovery and development of anticancer drugs. More and more synthetic lethality targets have been discovered with the rapid development of biotechnology in recent years. Currently, many drug candidates that were designed and developed on the basis of the concept of synthetic lethality have entered clinical trials. Taking representative synthetic lethal targets Poly ADP-ribose polymerase 1 (PARP1), Werner syndrome helicase (WRN) and protein arginine methyltransferase 5 (PRMT5) as examples, this article briefly discusses the application and research progress of synthetic lethality in the development of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Uhrig M, Sharma N, Maxwell P, Gomez J, Selemenakis P, Mazin A, Wiese C. Disparate requirements for RAD54L in replication fork reversal. Nucleic Acids Res 2024; 52:12390-12404. [PMID: 39315725 PMCID: PMC11551752 DOI: 10.1093/nar/gkae828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
RAD54L is a DNA motor protein with multiple roles in homologous recombination DNA repair. In vitro, RAD54L was shown to also catalyze the reversal and restoration of model replication forks. In cells, however, little is known about how RAD54L may regulate the dynamics of DNA replication. Here, we show that RAD54L restrains the progression of replication forks and functions as a fork remodeler in human cancer cell lines and non-transformed cells. Analogous to HLTF, SMARCAL1 and FBH1, and consistent with a role in fork reversal, RAD54L decelerates fork progression in response to replication stress and suppresses the formation of replication-associated ssDNA gaps. Interestingly, loss of RAD54L prevents nascent strand DNA degradation in both BRCA1/2- and 53BP1-deficient cells, suggesting that RAD54L functions in both pathways of RAD51-mediated replication fork reversal. In the HLTF/SMARCAL1 pathway, RAD54L is critical, but its ability to catalyze branch migration is dispensable, indicative of its function downstream of HLTF/SMARCAL1. Conversely, in the FBH1 pathway, branch migration activity of RAD54L is essential, and FBH1 engagement is dependent on its concerted action with RAD54L. Collectively, our results reveal disparate requirements for RAD54L in two distinct RAD51-mediated fork reversal pathways, positing its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Mollie E Uhrig
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Petey Maxwell
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jordi Gomez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander V Mazin
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
37
|
MacGilvary N, Cantor SB. Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer. DNA Repair (Amst) 2024; 144:103775. [PMID: 39461277 DOI: 10.1016/j.dnarep.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The mechanisms by which poly(ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi)s inflict replication stress and/or DNA damage are potentially numerous. PARPi toxicity could derive from loss of its catalytic activity and/or its physical trapping of PARP1 onto DNA that perturbs not only PARP1 function in DNA repair and DNA replication, but also obstructs compensating pathways. The combined disruption of PARP1 with either of the hereditary breast and ovarian cancer genes, BRCA1 or BRCA2 (BRCA), results in synthetic lethality. This has driven the development of PARP inhibitors as therapies for BRCA-mutant cancers. In this review, we focus on recent findings that highlight loss of PARP1 catalytic activity, rather than PARPi-induced allosteric trapping, as central to PARPi efficacy in BRCA deficient cells. However, we also review findings that PARP-trapping is an effective strategy in other genetic deficiencies. Together, we conclude that the mechanism-of-action of PARP inhibitors is not unilateral; with loss of activity or enhanced trapping differentially killing depending on the genetic context. Therefore, effectively targeting cancer cells requires an intricate understanding of their key underlying vulnerabilities.
Collapse
Affiliation(s)
- Nathan MacGilvary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
38
|
da Costa AA, Somuncu O, Ravindranathan R, Mukkavalli S, Martignetti DB, Nguyen H, Jiao Y, Lamarre BP, Sadatrezaei G, Moreau L, Liu J, Iyer DR, Lazaro JB, Shapiro GI, Parmar K, D’Andrea AD. Single-Stranded DNA Gap Accumulation Is a Functional Biomarker for USP1 Inhibitor Sensitivity. Cancer Res 2024; 84:3435-3446. [PMID: 38885312 PMCID: PMC11474172 DOI: 10.1158/0008-5472.can-23-4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Recent studies suggest that PARP and POLQ inhibitors confer synthetic lethality in BRCA1-deficient tumors by accumulation of single-stranded DNA (ssDNA) gaps at replication forks. Loss of USP1, a deubiquitinating enzyme, is also synthetically lethal with BRCA1 deficiency, and USP1 inhibitors are now undergoing clinical development for these cancers. Herein, we show that USP1 inhibitors also promote the accumulation of ssDNA gaps during replication in BRCA1-deficient cells, and this phenotype correlates with drug sensitivity. USP1 inhibition increased monoubiquitinated proliferating cell nuclear antigen at replication forks, mediated by the ubiquitin ligase RAD18, and knockdown of RAD18 caused USP1 inhibitor resistance and suppression of ssDNA gaps. USP1 inhibition overcame PARP inhibitor resistance in a BRCA1-mutated xenograft model and induced ssDNA gaps. Furthermore, USP1 inhibition was synergistic with PARP and POLQ inhibition in BRCA1-mutant cells, with enhanced ssDNA gap accumulation. Finally, in patient-derived ovarian tumor organoids, sensitivity to USP1 inhibition alone or in combination correlated with the accumulation of ssDNA gaps. Assessment of ssDNA gaps in ovarian tumor organoids represents a rapid approach for predicting response to USP1 inhibition in ongoing clinical trials. Significance: USP1 inhibitors kill BRCA1-deficient cells and cause ssDNA gap accumulation, supporting the potential of using ssDNA gap detection as a functional biomarker for clinical trials on USP1 inhibitors.
Collapse
Affiliation(s)
- Alexandre A. da Costa
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ozge Somuncu
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ramya Ravindranathan
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Sirisha Mukkavalli
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Huy Nguyen
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Yuqing Jiao
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Benjamin P. Lamarre
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lisa Moreau
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joyce Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Divya R. Iyer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jean-Bernard Lazaro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
39
|
Cadzow L, Brenneman J, Tobin E, Sullivan P, Nayak S, Ali JA, Shenker S, Griffith J, McGuire M, Grasberger P, Mishina Y, Murray M, Dodson AE, Gannon H, Krall E, Hixon J, Chipumuro E, Sinkevicius K, Gokhale PC, Ganapathy S, Matulonis UA, Liu JF, Olaharski A, Sangurdekar D, Liu H, Wilt J, Schlabach M, Stegmeier F, Wylie AA. The USP1 Inhibitor KSQ-4279 Overcomes PARP Inhibitor Resistance in Homologous Recombination-Deficient Tumors. Cancer Res 2024; 84:3419-3434. [PMID: 39402989 PMCID: PMC11474170 DOI: 10.1158/0008-5472.can-24-0293] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024]
Abstract
Defects in DNA repair pathways play a pivotal role in tumor evolution and resistance to therapy. At the same time, they create vulnerabilities that render tumors dependent on the remaining DNA repair processes. This phenomenon is exemplified by the clinical activity of PARP inhibitors in tumors with homologous recombination (HR) repair defects, such as tumors with inactivating mutations in BRCA1 or BRCA2. However, the development of resistance to PARP inhibitors in BRCA-mutant tumors represents a high unmet clinical need. In this study, we identified deubiquitinase ubiquitin-specific peptidase-1 (USP1) as a critical dependency in tumors with BRCA mutations or other forms of HR deficiency and developed KSQ-4279, the first potent and selective USP1 inhibitor to enter clinical testing. The combination of KSQ-4279 with a PARP inhibitor was well tolerated and induced durable tumor regression across several patient-derived PARP-resistant models. These findings indicate that USP1 inhibitors represent a promising therapeutic strategy for overcoming PARP inhibitor resistance in patients with BRCA-mutant/HR-deficient tumors and support continued testing in clinical trials. Significance: KSQ-4279 is a potent and selective inhibitor of USP1 that induces regression of PARP inhibitor-resistant tumors when dosed in combination with PARP inhibitors, addressing an unmet clinical need for BRCA-mutant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elsa Krall
- KSQ Therapeutics, Lexington, Massachusetts.
| | - Jeff Hixon
- KSQ Therapeutics, Lexington, Massachusetts.
| | | | | | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | | | - Joyce F. Liu
- Dana Farber Cancer Institute, Boston, Massachusetts.
| | | | | | - Hanlan Liu
- KSQ Therapeutics, Lexington, Massachusetts.
| | | | | | | | | |
Collapse
|
40
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
41
|
Yin Z, Tao J, Liu Y, Chen H, Hu K, Wang Y, Xiong M. In Silico Analysis Uncovers FOXA1 as a Potential Biomarker for Predicting Neoadjuvant Chemotherapy Response in Fine-Needle Aspiration Biopsies. J Cancer 2024; 15:6052-6072. [PMID: 39440050 PMCID: PMC11493000 DOI: 10.7150/jca.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background: The preoperative identification of neoadjuvant chemotherapy (NAC) treatment responsiveness in breast cancer (BC) patients is advantageous for tailoring treatment regimens. There is a relative scarcity in the current research exploring NAC treatment responsive biomarkers using bulk sequencing data obtained from fine-needle aspiration (FNA). Materials and Methods: Limma was employed for the selection of differentially expressed genes. Additionally, WGCNA, machine learning, and Genetic Perturbation Similarity Analysis (GPSA) were utilized to identify key genes associated with NAC treatment response. ConsensusClusterPlus was employed for unsupervised clustering. Rt-qPCR and WB were conducted to assess gene expression and protein levels in clinical tissues and cell lines. The Seahorse XF96 Extracellular Flux Analyzer was utilized to evaluate Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). The "pRRophetic" package was used for drug sensitivity prediction, while CB-Dock2 was applied for molecular docking and optimal pose presentation. Spatial transcriptomic analysis was based on the CROST database. Results: Eleven biomarkers were identified associated with NAC treatment response in BC patients, with FOXA1 identified as a pivotal hub gene among them. The expression levels of FOXA1 showed a significant positive correlation with genomic stability and a marked negative correlation with the homologous recombination deficiency (HRD) score. Downregulation of the FOXA1 gene resulted in reduced glycolysis in MCF-7 cells.Additionally, FOXA1 were found to serve as a biomarker for both NAC and PARP inhibitor treatment sensitivity in BC patients. Spatial transcriptomic analysis indicates significantly elevated infiltration of T follicular helper (T-FH) cells and mast cells surrounding tumors exhibiting high FOXA1 expression. Conclusion: In summary, our study involved the analysis of diverse sequencing datasets derived from various FNA samples to identify biomarkers sensitive to NAC, thereby offering novel insights into resources for future personalized clinical treatment strategies.
Collapse
Affiliation(s)
- Zhenglang Yin
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jianfei Tao
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of General surgery, The People's Hospital of Feidong County, Hefei, 231699, China
- Department of Thoracic Surgery, The People's Hospital of Feidong County, Hefei, 231699, China
| | - Yanyan Liu
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Haohao Chen
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Kongwang Hu
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Maoming Xiong
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
42
|
Mendoza-Munoz PL, Kushwaha ND, Chauhan D, Ali Gacem KB, Garrett JE, Dynlacht JR, Charbonnier JB, Gavande NS, Turchi JJ. Impact of Optimized Ku-DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response. Cancers (Basel) 2024; 16:3286. [PMID: 39409907 PMCID: PMC11475570 DOI: 10.3390/cancers16193286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku-DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment.
Collapse
Affiliation(s)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Dineshsinha Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Karim Ben Ali Gacem
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
- Structure-Design-Informatics, Sanofi R&D, 94400 Vitry sur Seine, France
| | - Joy E. Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph R. Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- NERx Biosciences, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
44
|
Honda M, Razzaghi M, Gaur P, Malacaria E, Marozzi G, Biagi LD, Aiello FA, Paintsil EA, Stanfield AJ, Deppe BJ, Gakhar L, Schnicker NJ, Ashley Spies M, Pichierri P, Spies M. A double-ring of human RAD52 remodels replication forks restricting fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.566657. [PMID: 38014173 PMCID: PMC10680749 DOI: 10.1101/2023.11.14.566657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Human RAD52 1,2 is a multifunctional DNA repair protein involved in several cellular events that support genome stability including protection of stalled DNA replication forks from excessive degradation 3-7 . In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress protecting them from reversal by SMARCAL1 5 . The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the ssDNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1. One Sentence Summary Using cryo-EM, biochemical and single-molecule approaches we show that the structure of stalled DNA replication fork promotes a unique two-ring organization of human RAD52 protein which remodels the fork via DNA strand exchange.
Collapse
|
45
|
Dibitetto D, Widmer CA, Rottenberg S. PARPi, BRCA, and gaps: controversies and future research. Trends Cancer 2024; 10:857-869. [PMID: 39004561 DOI: 10.1016/j.trecan.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
In recent years, various poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been approved for the treatment of several cancers to target the vulnerability of homologous recombination (HR) deficiency (e.g., due to BRCA1/2 dysfunction). In this review we analyze the ongoing debates and recent breakthroughs in the use of PARPis for BRCA1/2-deficient cancers, juxtaposing the 'double-strand break (DSB)' and 'single-stranded DNA (ssDNA) gap' models of synthetic lethality induced by PARPis. We spotlight the complexity of this interaction, highlighting emerging research on the role of DNA polymerase theta (POLθ) and ssDNA gaps in shaping therapy responses. We scrutinize the clinical ramifications of these findings, especially concerning PARPi efficacy and resistance mechanisms, underscoring the heterogeneity of BRCA-mutated tumors and the urgent need for advanced research to bridge the gap between laboratory models and patient outcomes.
Collapse
Affiliation(s)
- Diego Dibitetto
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Bern Center for Precision Medicine and Cancer Therapy Research Cluster, Department for Biomedical Research, University of Bern, 3012 Bern, Switzerland; Molecular Oncology and DNA Damage Response Laboratory, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| | - Carmen A Widmer
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Bern Center for Precision Medicine and Cancer Therapy Research Cluster, Department for Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Bern Center for Precision Medicine and Cancer Therapy Research Cluster, Department for Biomedical Research, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Hale A, Moldovan GL. Novel insights into the role of bisphenol A (BPA) in genomic instability. NAR Cancer 2024; 6:zcae038. [PMID: 39319028 PMCID: PMC11420844 DOI: 10.1093/narcan/zcae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenol A (BPA) is a phenolic chemical that has been used for over 50 years in the manufacturing of polycarbonate and polyvinyl chloride plastics, and it is one of the highest volume chemicals produced worldwide. Because BPA can bind to and activate estrogen receptors, studies have mainly focused on the effect of BPA in disrupting the human endocrine and reproductive systems. However, BPA also plays a role in promoting genomic instability and has been associated with initiating carcinogenesis. For example, it has been recently shown that exposure to BPA promotes the formation of single stranded DNA gaps, which may be associated with increased genomic instability. In this review, we outline the mechanisms by which BPA works to promote genomic instability including chromosomal instability, DNA adduct formation, ROS production, and estrogen receptor (ER) activation. Moreover, we define the ways in which BPA promotes both carcinogenesis and resistance to chemotherapy, and we provide critical insights into future directions and outstanding questions in the field.
Collapse
Affiliation(s)
- Anastasia Hale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Coulson-Gilmer C, Littler S, Barnes B, Brady R, Anagho H, Pillay N, Dey M, Macmorland W, Bronder D, Nelson L, Tighe A, Lin WH, Morgan R, Unwin R, Nielsen M, McGrail J, Taylor S. Intrinsic PARG inhibitor sensitivity is mimicked by TIMELESS haploinsufficiency and rescued by nucleoside supplementation. NAR Cancer 2024; 6:zcae030. [PMID: 39015544 PMCID: PMC11249981 DOI: 10.1093/narcan/zcae030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
A subset of cancer cells are intrinsically sensitive to inhibitors targeting PARG, the poly(ADP-ribose) glycohydrolase that degrades PAR chains. Sensitivity is accompanied by persistent DNA replication stress, and can be induced by inhibition of TIMELESS, a replisome accelerator. However, the nature of the vulnerability responsible for intrinsic sensitivity remains undetermined. To understand PARG activity dependency, we analysed Timeless model systems and intrinsically sensitive ovarian cancer cells. We show that nucleoside supplementation rescues all phenotypes associated with PARG inhibitor sensitivity, including replisome speed and fork stalling, S-phase completion and mitotic entry, proliferation dynamics and clonogenic potential. Importantly nucleoside supplementation restores PARG inhibitor resistance despite the continued presence of PAR chains, indicating that sensitivity does not correlate with PAR levels. In addition, we show that inhibition of thymidylate synthase, an enzyme required for dNTP homeostasis, induces PARG-dependency. Together, these observations suggest that PARG inhibitor sensitivity reflects an inability to control replisome speed and/or maintain helicase-polymerase coupling in response to nucleotide imbalances.
Collapse
Affiliation(s)
- Camilla Coulson-Gilmer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Samantha Littler
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Bethany M Barnes
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Rosie M Brady
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Holda A Anagho
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nisha Pillay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - William Macmorland
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Daniel Bronder
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Wei-Hsiang Lin
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Robert D Morgan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK
| | - Richard D Unwin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanne C McGrail
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
48
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
49
|
Latancia MT, Leandro GDS, Bastos AU, Moreno NC, Ariwoola ABA, Martins DJ, Ashton NW, Ribeiro VC, Hoch NC, Rocha CRR, Woodgate R, Menck CFM. Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells. DNA Repair (Amst) 2024; 141:103715. [PMID: 39029375 PMCID: PMC11330349 DOI: 10.1016/j.dnarep.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (Polɩ) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of Polɩ and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding Polɩ and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of Polɩ and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.
Collapse
Affiliation(s)
- Marcela Teatin Latancia
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Giovana da Silva Leandro
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - André Uchimura Bastos
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Natália Cestari Moreno
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Abu-Bakr Adetayo Ariwoola
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Davi Jardim Martins
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicholas William Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Victória Chaves Ribeiro
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicolas Carlos Hoch
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | | |
Collapse
|
50
|
Schreuder A, Wendel TJ, Dorresteijn CGV, Noordermeer SM. (Single-stranded DNA) gaps in understanding BRCAness. Trends Genet 2024; 40:757-771. [PMID: 38789375 DOI: 10.1016/j.tig.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.
Collapse
Affiliation(s)
- Anne Schreuder
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Tiemen J Wendel
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Carlo G V Dorresteijn
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|