1
|
Fung DK, Barra JT, Yang J, Schroeder JW, She F, Young M, Ying D, Stevenson DM, Amador-Noguez D, Wang JD. A shared alarmone-GTP switch controls persister formation in bacteria. Nat Microbiol 2025:10.1038/s41564-025-02015-6. [PMID: 40374742 DOI: 10.1038/s41564-025-02015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Persisters are phenotypically switched bacteria that survive antibiotic exposure despite being genetically susceptible. Three pathways to persistence-triggered, spontaneous and antibiotic-induced-have been described, but the underlying molecular mechanisms are poorly understood. Here, we used antibiotic time-kill assays as well as single-cell approaches to show that all of the pathways depend on a common switch involving the alarmone guanosine tetra/penta-phosphate ((p)ppGpp) in Bacillus subtilis, each stemming from different alarmone synthetase(s). The accumulation of (p)ppGpp promotes persistence through depletion of intracellular GTP. We developed a fluorescent GTP reporter to visualize rare events of persister formation in wild-type bacteria, revealing a rapid switch from growth to dormancy in single cells as their GTP levels drop beneath a threshold. While a decrease in GTP in the bulk population slows growth and promotes antibiotic tolerance, (p)ppGpp drives persistence by driving rapid, switch-like decreases in GTP levels beneath the persister threshold in single cells. Persistence through alarmone-GTP antagonism is probably a widespread mechanism to survive antibiotics in B. subtilis and potentially beyond.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jessica T Barra
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Fukang She
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Megan Young
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David Ying
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Ismail AS, Berryhill BA, Gil-Gil T, Manuel JA, Smith AP, Baquero F, Levin BR. The tradeoffs between persistence and mutation rates at sub-inhibitory antibiotic concentrations in Staphylococcus aureus. Microbiol Spectr 2025; 13:e0247924. [PMID: 40035534 PMCID: PMC11960066 DOI: 10.1128/spectrum.02479-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/19/2024] [Indexed: 03/05/2025] Open
Abstract
The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical and computer-simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations alters bacterial growth dynamics, increases the mutation rate to antibiotic resistance, and decreases the production of persister cells thereby reducing persistence levels. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy. IMPORTANCE Much of the research on antibiotics and antibiotic treatment has focused on drug concentrations sufficient to prevent the growth of bacteria. These concentrations, however, are not always reached everywhere in the body. Here, we look at the effects of exposure to these low concentrations of antibiotics on the common clinically important pathogen Staphylococcus aureus. We confirm a previous finding that sub-inhibitory antibiotic exposure decreases the total growth and the growth rate of the bacteria. Moreover, we demonstrate that the level of persistence, an important mechanism for bacteria to survive antibiotics, is decreased due to sub-inhibitory exposure. However, we find that the rate of generation of resistant mutants is substantially increased. Taken together, these results reveal an important trade-off that emerges as a consequence of bacteria being exposed to sub-inhibitory concentrations of antibiotics.
Collapse
Affiliation(s)
| | - Brandon A. Berryhill
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Andrew P. Smith
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Zegarra V, Weiland P, Plitzko PA, Thiery J, Czech L, Willmund F, Bedrunka P, Bange G. Structural and mechanistic basis for the regulation of the chloroplast signal recognition particle by (p)ppGpp. FEBS Lett 2025. [PMID: 39935135 DOI: 10.1002/1873-3468.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
The alarmones (p)ppGpp play a critical role in chloroplasts by acting as signalling molecules that regulate gene expression, protein synthesis and chloroplast (cp) development, particularly in response to stress and nutrient availability. However, the underlying molecular mechanisms are still poorly understood. Here, we show that (p)ppGpp binds to the GTPase-containing NG domains of the chloroplast signal recognition particle (SRP) and its receptor, preventing their GTP-dependent association through a competitive mechanism. The structure of (cp)FtsY bound to ppGpp reveals that the alarmone employs the same binding mode as its GDP counterpart and hinders chloroplast SRP:FtsY complex formation via its pyrophosphate moiety. Consequently, (p)ppGpp also inhibits the mutual stimulation of the two GTPases present in the (cp)SRP54:FtsY complex. Taken together, our findings provide the first description of how the alarmones (p)ppGpp may regulate the SRP-dependent protein trafficking pathway in plants.
Collapse
Affiliation(s)
- Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Germany
| | - Pauline Anka Plitzko
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Julia Thiery
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
| | - Felix Willmund
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Biology, Philipps-University Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2025; 16:e0351124. [PMID: 39727417 PMCID: PMC11796413 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Dominguez-Molina L, Kurata T, Cepauskas A, Echemendia-Blanco D, Zedek S, Talavera-Perez A, Atkinson GC, Hauryliuk V, Garcia-Pino A. Mechanisms of neutralization of toxSAS from toxin-antitoxin modules. Nat Chem Biol 2025; 21:182-192. [PMID: 38834893 PMCID: PMC11782079 DOI: 10.1038/s41589-024-01630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn2+ finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.
Collapse
Affiliation(s)
- Lucia Dominguez-Molina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ariel Talavera-Perez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Faculty of Science and Technology, University of Tartu Institute of Technology, Tartu, Estonia.
- Science for Life Laboratory, Lund, Sweden.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
6
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y, Sha S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. Int J Mol Sci 2024; 25:7771. [PMID: 39063012 PMCID: PMC11277187 DOI: 10.3390/ijms25147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a threat to human health worldwide. Mycobacterium tuberculosis (Mtb) and other nontuberculous mycobacteria (NTM) can form biofilms, and in vitro and animal experiments have shown that biofilms cause serious drug resistance and mycobacterial persistence. Deeper investigations into the mechanisms of mycobacterial biofilm formation and, consequently, the exploration of appropriate antibiofilm treatments to improve the efficiency of current anti-TB drugs will be useful for curing TB. In this review, the genes and molecules that have been recently reported to be involved in mycobacterial biofilm development, such as ABC transporter, Pks1, PpiB, GroEL1, MprB, (p)ppGpp, poly(P), and c-di-GMP, are summarized. Biofilm-induced clinical problems, including biofilm-related infections and enhanced virulence, as well as their possible mechanisms, are also discussed in detail. Moreover, we also illustrate newly synthesized anti-TB agents that target mycobacterial biofilm, as well as some assistant methods with high efficiency in reducing biofilms in hosts, such as the use of nanoparticles.
Collapse
Affiliation(s)
- Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Hanyu Yang
- The Queen’s University of Belfast Joint College, China Medical University, Shenyang 110122, China;
| | - Erning Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| |
Collapse
|
8
|
Ismail AS, Berryhill BA, Gil-Gil T, Manuel JA, Smith AP, Baquero F, Levin BR. The Tradeoffs Between Persistence and Mutation Rates at Sub-Inhibitory Antibiotic Concentrations in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587561. [PMID: 38617265 PMCID: PMC11014548 DOI: 10.1101/2024.04.01.587561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical-computer simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations not only alters the dynamics of bacterial growth but also increases the mutation rate to antibiotic resistance and decreases the rate of production of persister cells thereby reducing the persistence level. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy.
Collapse
Affiliation(s)
| | - Brandon A. Berryhill
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Program in Microbiology and Molecular Genetics, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Andrew P. Smith
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Sidorov RY, Tkachenko AG. The Mechanism of Inhibition of Mycobacterial (p)ppGpp Synthetases by a Synthetic Analog of Erogorgiaene. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:407-416. [PMID: 38648761 DOI: 10.1134/s0006297924030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 04/25/2024]
Abstract
The synthesis of (p)ppGpp alarmones plays a vital role in the regulation of metabolism suppression, growth rate control, virulence, bacterial persistence, and biofilm formation. The (p)ppGpp alarmones are synthesized by proteins of the RelA/SpoT homolog (RSH) superfamily, including long bifunctional RSH proteins and small alarmone synthetases. Here, we investigated enzyme kinetics and dose-dependent enzyme inhibition to elucidate the mechanism of 4-(4,7-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)pentanoic acid (DMNP) action on the (p)ppGpp synthetases RelMsm and RelZ from Mycolicibacterium smegmatis and RelMtb from Mycobacterium tuberculosis. DMNP was found to inhibit the activity of RelMtb. According to the enzyme kinetics analysis, DMNP acts as a noncompetitive inhibitor of RelMsm and RelZ. Based on the results of molecular docking, the DMNP-binding site is located in the proximity of the synthetase domain active site. This study might help in the development of alarmone synthetase inhibitors, which includes relacin and its derivatives, as well as DMNP - a synthetic analog of the marine coral metabolite erogorgiaene. Unlike conventional antibiotics, alarmone synthetase inhibitors target metabolic pathways linked to the bacterial stringent response. Although these pathways are not essential for bacteria, they regulate the development of adaptation mechanisms. Combining conventional antibiotics that target actively growing cells with compounds that impede bacterial adaptation may address challenges associated with antimicrobial resistance and bacterial persistence.
Collapse
Affiliation(s)
- Roman Y Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of Russian Academy of Sciences, Perm, 614000, Russia.
- Perm State University, Perm, 614990, Russia
| | - Alexander G Tkachenko
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of Russian Academy of Sciences, Perm, 614000, Russia
- Perm State University, Perm, 614990, Russia
| |
Collapse
|
10
|
Fung DK, Trinquier AE, Wang JD. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr Opin Microbiol 2023; 76:102398. [PMID: 37866203 PMCID: PMC10842992 DOI: 10.1016/j.mib.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aude E Trinquier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Guiraud P, Germain E, Byrne D, Maisonneuve E. The YmgB-SpoT interaction triggers the stringent response in Escherichia coli. J Biol Chem 2023; 299:105429. [PMID: 37926282 PMCID: PMC10704370 DOI: 10.1016/j.jbc.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Virtually all bacterial species synthesize (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the so-called stringent response, which controls many aspects of cellular physiology and metabolism. In Escherichia coli, (p)ppGpp levels are controlled by two homologous enzymes: the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified several protein candidates that can modulate (p)ppGpp levels in E. coli. In this work, we show that the putative two-component system connector protein YmgB can promote SpoT-dependent accumulation of ppGpp in E. coli. Importantly, we determined that the control of SpoT activities by YmgB is independent of its proposed role in the two-component Rcs system, and these two functions can be uncoupled. Using genetic and structure-function analysis, we show that the regulation of SpoT activities by YmgB occurs by functional and direct binding in vivo and in vitro to the TGS and Helical domains of SpoT. These results further support the role of these domains in controlling the reciprocal enzymatic states.
Collapse
Affiliation(s)
- Paul Guiraud
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ, Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France.
| |
Collapse
|
12
|
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MICROLIFE 2023; 4:uqad015. [PMID: 37223732 PMCID: PMC10118264 DOI: 10.1093/femsml/uqad015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.
Collapse
Affiliation(s)
- Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| | | | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
- Max Planck Unit for the Science of Pathogens, 10115 Berlin, Germany
| |
Collapse
|
13
|
Leiva LE, Zegarra V, Bange G, Ibba M. At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria. Microbiol Mol Biol Rev 2023; 87:e0004422. [PMID: 36853029 PMCID: PMC10029340 DOI: 10.1128/mmbr.00044-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Victor Zegarra
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
14
|
Sound the (Smaller) Alarm: The Triphosphate Magic Spot Nucleotide pGpp. Infect Immun 2023; 91:e0043222. [PMID: 36920208 PMCID: PMC10112252 DOI: 10.1128/iai.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
It has recently become evident that the bacterial stringent response is regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dismissed in the past as an artifact or degradation product, pGpp has been confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, (p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp functionally mimics (p)ppGpp and that its biological role is to make alarmone metabolism less dependent on the guanine energy charge of the cell by allowing GMP-dependent synthesis to continue when GDP/GTP has been depleted. However, recent reports that pGpp binds unique potential protein receptors and is the only alarmone synthesized by the intestinal pathogen Clostridioides difficile indicate that pGpp is more than a stand-in for the longer alarmones and plays a distinct biological role beyond its functional overlap (p)ppGpp.
Collapse
|
15
|
Tamman H, Ernits K, Roghanian M, Ainelo A, Julius C, Perrier A, Talavera A, Ainelo H, Dugauquier R, Zedek S, Thureau A, Pérez J, Lima-Mendez G, Hallez R, Atkinson GC, Hauryliuk V, Garcia-Pino A. Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint. Nat Chem Biol 2023; 19:334-345. [PMID: 36470996 PMCID: PMC9974481 DOI: 10.1038/s41589-022-01198-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022]
Abstract
Stringent factors orchestrate bacterial cell reprogramming through increasing the level of the alarmones (p)ppGpp. In Beta- and Gammaproteobacteria, SpoT hydrolyzes (p)ppGpp to counteract the synthetase activity of RelA. However, structural information about how SpoT controls the levels of (p)ppGpp is missing. Here we present the crystal structure of the hydrolase-only SpoT from Acinetobacter baumannii and uncover the mechanism of intramolecular regulation of 'long'-stringent factors. In contrast to ribosome-associated Rel/RelA that adopt an elongated structure, SpoT assumes a compact τ-shaped structure in which the regulatory domains wrap around a Core subdomain that controls the conformational state of the enzyme. The Core is key to the specialization of long RelA-SpoT homologs toward either synthesis or hydrolysis: the short and structured Core of SpoT stabilizes the τ-state priming the hydrolase domain for (p)ppGpp hydrolysis, whereas the longer, more dynamic Core domain of RelA destabilizes the τ-state priming the monofunctional RelA for efficient (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
| | - Karin Ernits
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mohammad Roghanian
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Departement of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Anthony Perrier
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Rémy Dugauquier
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | | | - Javier Pérez
- Synchrotron SOLEIL, Saint-Aubin - BP 48, Gif sur Yvette, France
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
| | - Régis Hallez
- Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- Bacterial Cell Cycle and Development, Biology of Microorganisms Research Unit, Namur Research Institute for Life Science, University of Namur, Namur, Belgium
- WELBIO, Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, University of Lund, Lund, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| |
Collapse
|
16
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
18
|
Giudice E, Georgeault S, Lavigne R, Pineau C, Trautwetter A, Ermel G, Blanco C, Gillet R. Purification and Characterization of Authentic 30S Ribosomal Precursors Induced by Heat Shock. Int J Mol Sci 2023; 24:ijms24043491. [PMID: 36834906 PMCID: PMC9959188 DOI: 10.3390/ijms24043491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ribosome biogenesis is a complex and multistep process that depends on various assembly factors. To understand this process and identify the ribosome assembly intermediates, most studies have set out to delete or deplete these assembly factors. Instead, we took advantage of the impact of heat stress (45 °C) on the late stages of the biogenesis of the 30S ribosomal subunit to explore authentic precursors. Under these conditions, reduced levels of the DnaK chaperone proteins devoted to ribosome assembly lead to the transient accumulation of 21S ribosomal particles, which are 30S precursors. We constructed strains with different affinity tags on one early and one late 30S ribosomal protein and purified the 21S particles that form under heat shock. A combination of relative quantification using mass spectrometry-based proteomics and cryo-electron microscopy (cryo-EM) was then used to determine their protein contents and structures.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Sylvie Georgeault
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Régis Lavigne
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
- Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Annie Trautwetter
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Gwennola Ermel
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Carlos Blanco
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
| | - Reynald Gillet
- Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
19
|
Zhu M, Dai X. Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nat Commun 2023; 14:467. [PMID: 36709335 PMCID: PMC9884231 DOI: 10.1038/s41467-023-36254-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Timely adaptation to nutrient downshift is crucial for bacteria to maintain fitness during feast and famine cycle in the natural niche. However, the molecular mechanism that ensures the timely adaption of bacterial growth to nutrient downshift remains poorly understood. Here, we quantitatively investigated the adaptation of Escherichia coli to various kinds of nutrient downshift. We found that relA deficient strain, which is devoid of stringent response, exhibits a significantly longer growth lag than wild type strain during adapting to both amino acid downshift and carbon downshift. Quantitative proteomics show that increased (p)ppGpp level promotes the growth adaption of bacteria to amino acid downshift via triggering the proteome resource re-allocation from ribosome synthesis to amino acid biosynthesis. Such type of proteome re-allocation is significantly delayed in the relA-deficient strain, which underlies its longer lag than wild type strain during amino acid downshift. During carbon downshift, a lack of stringent response in relA deficient strain leads to disruption of the transcription-translation coordination, thus compromising the transcription processivity and further the timely expression of related catabolic operons for utilizing secondary carbon sources. Our studies shed light on the fundamental strategy of bacteria to maintain fitness under nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| |
Collapse
|
20
|
Ainelo A, Caballero-Montes J, Bulvas O, Ernits K, Coppieters ‘t Wallant K, Takada H, Craig SZ, Mazzucchelli G, Zedek S, Pichová I, Atkinson GC, Talavera A, Martens C, Hauryliuk V, Garcia-Pino A. The structure of DarB in complex with Rel NTD reveals nonribosomal activation of Rel stringent factors. SCIENCE ADVANCES 2023; 9:eade4077. [PMID: 36652515 PMCID: PMC9848473 DOI: 10.1126/sciadv.ade4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Rel stringent factors are bifunctional ribosome-associated enzymes that catalyze both synthesis and hydrolysis of the alarmones (p)ppGpp. Besides the allosteric control by starved ribosomes and (p)ppGpp, Rel is regulated by various protein factors depending on specific stress conditions, including the c-di-AMP-binding protein DarB. However, how these effector proteins control Rel remains unknown. We have determined the crystal structure of the DarB2:RelNTD2 complex, uncovering that DarB directly engages the SYNTH domain of Rel to stimulate (p)ppGpp synthesis. This association with DarB promotes a SYNTH-primed conformation of the N-terminal domain region, markedly increasing the affinity of Rel for ATP while switching off the hydrolase activity of the enzyme. Binding to c-di-AMP rigidifies DarB, imposing an entropic penalty that precludes DarB-mediated control of Rel during normal growth. Our experiments provide the basis for understanding a previously unknown mechanism of allosteric regulation of Rel stringent factors independent of amino acid starvation.
Collapse
Affiliation(s)
- Andres Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters ‘t Wallant
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Hiraku Takada
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Sophie Z. Craig
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Gemma C. Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles 10 (ULB), Boulevard du Triomphe, Building BC (1C4 203), 1050 Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
21
|
Molecular Characterization of Clinical Rel Mutations and Consequences for Resistance Expression and Fitness in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0093822. [PMID: 36346240 PMCID: PMC9764984 DOI: 10.1128/aac.00938-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of β-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.
Collapse
|
22
|
Chen Y, Zhang Z, Chen Y, Zhou S, Deng Q, Wang S. Enhancement of inhibition rate of antibiotic against bacteria by molecularly imprinted nanoparticles targeting alarmone nucleotides as antibiotic adjuvants. J Mater Chem B 2022; 10:9438-9445. [PMID: 36321529 DOI: 10.1039/d2tb00641c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Antibiotic tolerance and resistance in bacteria have caused a great threat to humankind. Bacteria can rapidly accumulate alarmone nucleotides (guanosine tetra- and pentaphosphate, usually denoted as (p)ppGpp) to repair damaged DNA under adverse conditions. The inhibition synthetase enzyme activity of (p)ppGpp, indirectly preventing synthesis, or promoting degradation, has been reported; however, transferring these strategies to practical applications is still a challenging task due to the lack of highly effective molecules for these purposes. Here, an approach based on molecularly imprinted polymer nanoparticles (MIP-NPs) as antibiotic adjuvants was proposed, where MIP-NPs with specific recognition sites were used to capture alarmone nucleotides released by bacteria during stringent response activation. Enhanced inhibition rates of 40-80% were achieved in the presence of the MIP-NPs. The dose of antibiotic could be greatly reduced by utilizing the MIP-NPs as adjuvants for a similar deactivation effectiveness. Good biocompatibility (no obvious hemolysis or cytotoxic effects) and apparent antimicrobial efficiency for resisting wound infection in vivo support the fact that well-designed MIP-NPs have a bright future in dealing with the growing threat of antibiotic tolerance and resistance.
Collapse
Affiliation(s)
- Yali Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Zhen Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Yujie Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Shufang Zhou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China.
| | - Shuo Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 1038 Dagu South Road, Tianjin, 300457, China. .,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
23
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
24
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
25
|
Tailor K, Sagar P, Dave K, Pohnerkar J. Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent. Mol Genet Genomics 2022; 297:601-620. [PMID: 35238978 DOI: 10.1007/s00438-022-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
The guanosine nucleotide derivatives ppGpp and pppGpp are central to the remarkable capacity of bacteria to adapt to fluctuating environments and metabolic perturbations. They are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of intracellular (p)ppGpp levels. Characterization of the mutant studied here indicates that moderate level expression of RelA appreciably reduces growth of cells wherein the basal levels of (p)ppGpp are higher than in the wild type without elevating the levels further. Consistent with this result, a large part of the growth inhibition effect is reproduced by overexpression of RelA NTD-CTD fusion lacking the (p)ppGpp synthesis function. A null mutation in relA abolishes this growth inhibitory effect suggesting its requirement for basal level synthesis of (p)ppGpp. Accordingly, increase in the (p)ppGpp levels in the relA1 mutant by spoT202 mutation largely restored the growth inhibitory effects of overexpression of RelA NTD-CTD fusion. Expression of this construct consisting of 119 amino acids of the N-terminal hydrolytic domain (HD) fused in-frame with the CTD domain (±TGS domain) renders the growth inhibitory effects (p)ppGpp-responsive-inhibited growth only of spoT1 and spoT202 relA1 mutants. This finding uncovered an hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function, unraveling the importance of RelA NTD-HD domain for its regulatory role. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes with possible implications in the feedback regulation of the (p)ppGpp synthesis function, a proposal that accounts for the nonlinear kinetics of (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Krishma Tailor
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prarthi Sagar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Keyur Dave
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jayashree Pohnerkar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
26
|
Inhibition of SRP-dependent protein secretion by the bacterial alarmone (p)ppGpp. Nat Commun 2022; 13:1069. [PMID: 35217658 PMCID: PMC8881573 DOI: 10.1038/s41467-022-28675-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
The stringent response enables bacteria to respond to nutrient limitation and other stress conditions through production of the nucleotide-based second messengers ppGpp and pppGpp, collectively known as (p)ppGpp. Here, we report that (p)ppGpp inhibits the signal recognition particle (SRP)-dependent protein targeting pathway, which is essential for membrane protein biogenesis and protein secretion. More specifically, (p)ppGpp binds to the SRP GTPases Ffh and FtsY, and inhibits the formation of the SRP receptor-targeting complex, which is central for the coordinated binding of the translating ribosome to the SecYEG translocon. Cryo-EM analysis of SRP bound to translating ribosomes suggests that (p)ppGpp may induce a distinct conformational stabilization of the NG domain of Ffh and FtsY in Bacillus subtilis but not in E. coli. Bacterial responses to nutrient limitation and other stress conditions are often modulated by the nucleotide-based second messenger (p)ppGpp. Here, the authors show that (p)ppGpp inhibits the SRP membrane-protein insertion and secretion pathway by binding to GTPases Ffh and FtsY.
Collapse
|
27
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
28
|
Mojr V, Roghanian M, Tamman H, Do Pham DD, Petrová M, Pohl R, Takada H, Van Nerom K, Ainelo H, Caballero-Montes J, Jimmy S, Garcia-Pino A, Hauryliuk V, Rejman D. Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools. ACS Chem Biol 2021; 16:1680-1691. [PMID: 34477366 DOI: 10.1021/acschembio.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
Collapse
Affiliation(s)
- Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Mohammad Roghanian
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Steffi Jimmy
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Deutsches Elektronen-Synchrotron DESY, Centre for Structural Systems Biology (CSSB), Notkestr. 85, 22607 Hamburg, Germany
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|