1
|
Liu H, Chen X, Wang H, Zhuang G, Zhu ZJ, Zhuang M. ZBTB17/MIZ1 promotes peroxisome biogenesis by transcriptional regulation of PEX13. J Cell Biol 2025; 224:e202407198. [PMID: 40243840 PMCID: PMC12005116 DOI: 10.1083/jcb.202407198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Peroxisomes are integral metabolic organelles involved in both catabolic and anabolic processes in humans, with defects linked to diseases. The functions of peroxisomes are regulated at transcriptional, translational, and posttranslational levels. In this study, we employed the CRISPR/Cas9-based screening of a ubiquitin ligase library to identify regulators of human peroxisomes. We discovered that ZBTB17 (MIZ1) plays a role in regulating the import of proteins into peroxisomes. Independent of its ubiquitin ligase activity, ZBTB17/MIZ1 operates as a transcription factor to modulate the expression of key importer PEX13, influencing the localization of peroxisomal enzymes. Furthermore, metabolomic profiling reveals that knockdown of ZBTB17 or PEX13 results in similar metabolic alterations, with downregulated purine synthesis. Collectively, we identify ZBTB17 as a key regulator of peroxisomal protein import, thereby affecting peroxisomal function and nucleotide metabolism. Our findings provide insights into the multifaceted regulation of peroxisomes in complex human cells and shed light on the molecular mechanisms underlying ZBTB17's role as a transcriptional regulator.
Collapse
Affiliation(s)
- Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Chen
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Chen B, Lyssiotis CA, Shah YM. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol Cell 2025; 85:1487-1508. [PMID: 40250411 DOI: 10.1016/j.molcel.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
Mitochondria serve as central hubs in cellular metabolism by sensing, integrating, and responding to metabolic demands. This integrative function is achieved through inter-organellar communication, involving the exchange of metabolites, lipids, and signaling molecules. The functional diversity of metabolite exchange and pathway interactions is enabled by compartmentalization within organelle membranes. Membrane contact sites (MCSs) are critical for facilitating mitochondria-organelle communication, creating specialized microdomains that enhance the efficiency of metabolite and lipid exchange. MCS dynamics, regulated by tethering proteins, adapt to changing cellular conditions. Dysregulation of mitochondrial-organelle interactions at MCSs is increasingly recognized as a contributing factor in the pathogenesis of multiple diseases. Emerging technologies, such as advanced microscopy, biosensors, chemical-biology tools, and functional genomics, are revolutionizing our understanding of inter-organellar communication. These approaches provide novel insights into the role of these interactions in both normal cellular physiology and disease states. This review will highlight the roles of metabolite transporters, lipid-transfer proteins, and mitochondria-organelle interfaces in the coordination of metabolism and transport.
Collapse
Affiliation(s)
- Brandon Chen
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Yatrik M Shah
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Radhakrishnan R, Kralik S, Class J, Sivam S, Sivam I, Patel R. Genetic and Metabolic Conditions Presenting as Pediatric Leukodystrophies. Semin Ultrasound CT MR 2025:S0887-2171(25)00009-5. [PMID: 40250574 DOI: 10.1053/j.sult.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN.
| | - Stephen Kralik
- Department of Radiology, Texas Children's Hospital, Houston, TX.
| | - Jon Class
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN.
| | - Sahana Sivam
- North Allegheny Senior High School, Wexford, PA..
| | - Inesh Sivam
- North Allegheny Senior High School, Wexford, PA..
| | - Rajan Patel
- Department of Radiology, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
4
|
Yang Y, Liu Y, Williams TA, Gao M, Yan Y, Bao M, Tao J, Ma G, Wang M, Xia Z, Zhang Z, Yang T, Sun M. Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism. Hypertens Res 2025; 48:1363-1378. [PMID: 39939827 DOI: 10.1038/s41440-025-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/30/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Primary aldosteronism (PA) caused by aldosterone hypersecretion is treated by adrenalectomy or medications. Histopathologic examination of resected adrenals reveals diverse histopathologic features. This study aimed to investigate the potential association of peripheral and adrenal tissue metabolic profiles with the histopathologic features of PA. The retrospective study included 105 surgically treated and 43 medically treated patients with PA. Adrenal specimens were categorized according to the HISTALDO (HISTopathology of primary ALDOsteronism) consensus. Peripheral and adrenal tissue metabolic profiles were assessed, including adiposity, adipokines and fatty acid abundances. The distinct fatty acid, arachidonic acid, was further functionally characterized. Surgically treated patients with classical histopathologic findings (n = 71) displayed lower body mass indexes, a lower prevalence of obesity, smaller waist circumference and visceral adipose tissue areas, and lower leptin concentrations compared with operated patients with the nonclassical histopathology (n = 34). No such differences were identified between the nonclassical histopathology group and medically treated group. Distinct concentrations of 18 out of 35 peripheral venous fatty acids, including arachidonic acid, were identified among the 3 groups. Further, accumulation of arachidonic acid was demonstrated in 4 aldosterone-producing adenomas compared with paired adjacent cortex possibly linked with suppressed peroxisomal beta-oxidation. Stimulation of human adrenocortical cells with arachidonic acid or peroxisomal beta-oxidation inhibitor caused 3.8-fold (P = 0.0050) and 1.7-fold (P = 0.0328) amplification of CYP11B2 expression, respectively, which were ablated by BAPTA-AM or KN93, and induced oxidative stress and apoptosis. Our findings show metabolic heterogeneity related to histopathology and support a role for arachidonic acid in PA pathophysiology.
Collapse
Affiliation(s)
- Yuhong Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuqing Liu
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Maoting Gao
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yutong Yan
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Guodong Ma
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiqing Xia
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiheng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Wei X, Qian W, Narasimhan H, Chan T, Liu X, Arish M, Young S, Li C, Cheon IS, Yu Q, Almeida-Santos G, Zhao XY, Yeatts EV, Spear OJ, Yi M, Parimon T, Fang Y, Hahn YS, Bullock TNJ, Somerville LA, Kaplan MH, Sperling AI, Shim YM, Vassallo R, Chen P, Ewald SE, Roden AC, Que J, Jiang D, Sun J. Macrophage peroxisomes guide alveolar regeneration and limit SARS-CoV-2 tissue sequelae. Science 2025; 387:eadq2509. [PMID: 40048515 DOI: 10.1126/science.adq2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 04/23/2025]
Abstract
Peroxisomes are vital but often overlooked metabolic organelles. We found that excessive interferon signaling remodeled macrophage peroxisomes. This loss of peroxisomes impaired inflammation resolution and lung repair during severe respiratory viral infections. Peroxisomes were found to modulate lipid metabolism and mitochondrial health in a macrophage type-specific manner and enhanced alveolar macrophage-mediated tissue repair and alveolar regeneration after viral infection. Peroxisomes also prevented excessive macrophage inflammasome activation and IL-1β release, limiting accumulation of KRT8high dysplastic epithelial progenitors following viral injury. Pharmacologically enhancing peroxisome biogenesis mitigated both acute symptoms and post-acute sequelae of COVID-19 (PASC) in animal models. Thus, macrophage peroxisome dysfunction contributes to chronic lung pathology and fibrosis after severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
- Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ting Chan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xue Liu
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Samuel Young
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Qing Yu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gislane Almeida-Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Eric V Yeatts
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Olivia J Spear
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Megan Yi
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyalak Parimon
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Lindsay A Somerville
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University of School of Medicine, Indianapolis, IN, USA
| | - Anne I Sperling
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yun Michael Shim
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah E Ewald
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Dianhua Jiang
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Sodders M, Das A, Bai H. Glial peroxisome dysfunction induces axonal swelling and neuroinflammation in Drosophila. G3 (BETHESDA, MD.) 2025; 15:jkae243. [PMID: 39385706 PMCID: PMC11708211 DOI: 10.1093/g3journal/jkae243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Glial cells are known to influence neuronal functions through glia-neuron communication. The present study aims to elucidate the mechanism behind peroxisome-mediated glia-neuron communication using Drosophila neuromuscular junction (NMJ) as a model system. We observe a high abundance of peroxisomes in the abdominal NMJ of adult Drosophila. Interestingly, glia-specific knockdown of peroxisome import receptor protein, Pex5, significantly increases axonal area and volume and leads to axon swelling. The enlarged axonal structure is likely deleterious, as the flies with glia-specific knockdown of Pex5 exhibit age-dependent locomotion defects. In addition, impaired peroxisomal ether lipid biosynthesis in glial cells also induces axon swelling. Consistent with our previous work, defective peroxisomal import function upregulates pro-inflammatory cytokine upd3 in glial cells, while glia-specific overexpression of upd3 induces axonal swelling. Furthermore, motor neuron-specific activation of the JAK-STAT pathway through hop overexpression results in axon swelling. Our findings demonstrated that impairment of glial peroxisomes alters axonal morphology, neuroinflammation, and motor neuron function.
Collapse
Affiliation(s)
- Maggie Sodders
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Anurag Das
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Shukla N, Neal ML, Farré JC, Mast FD, Truong L, Simon T, Miller LR, Aitchison JD, Subramani S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630809. [PMID: 40093121 PMCID: PMC11908190 DOI: 10.1101/2024.12.31.630809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peroxisomes are versatile organelles mediating energy homeostasis and redox balance. While peroxisome dysfunction is linked to numerous diseases, the molecular mechanisms and signaling pathways regulating peroxisomes during cellular stress remain elusive. Using yeast, we show that perturbations disrupting protein homeostasis including loss of ER or cytosolic chaperone function, impairments in ER protein translocation, blocking ER N-glycosylation, or reductive stress, cause peroxisome proliferation. This proliferation is driven by increased de novo biogenesis from the ER as well as increased fission of pre-existing peroxisomes, rather than impaired pexophagy. Notably, peroxisome biogenesis is essential for cellular recovery from proteotoxic stress. Through comprehensive testing of major signaling pathways, we determine this response to be mediated by activation of the heat shock response and inhibition of Target of Rapamycin (TOR) signaling. Finally, the effects of proteotoxic stress and TOR inhibition on peroxisomes are also captured in human fibroblasts. Overall, our findings reveal a critical and conserved role of peroxisomes in cellular response to proteotoxic stress.
Collapse
Affiliation(s)
- Nandini Shukla
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Claude Farré
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Linh Truong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theresa Simon
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leslie R Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Kim J, Huang K, Vo PTT, Miao T, Correia J, Kumar A, Simons MJP, Bai H. Peroxisomal import stress activates integrated stress response and inhibits ribosome biogenesis. PNAS NEXUS 2024; 3:pgae429. [PMID: 39398621 PMCID: PMC11470064 DOI: 10.1093/pnasnexus/pgae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Impaired organelle-specific protein import triggers a variety of cellular stress responses, including adaptive pathways to balance protein homeostasis. Most of the previous studies focus on the cellular stress response triggered by misfolded proteins or defective protein import in the endoplasmic reticulum or mitochondria. However, little is known about the cellular stress response to impaired protein import in the peroxisome, an understudied organelle that has recently emerged as a key signaling hub for cellular and metabolic homeostasis. To uncover evolutionarily conserved cellular responses upon defective peroxisomal import, we carried out a comparative transcriptomic analysis on fruit flies with tissue-specific peroxin knockdown and human HEK293 cells expressing dominant-negative PEX5C11A. Our RNA-seq results reveal that defective peroxisomal import upregulates integrated stress response (ISR) and downregulates ribosome biogenesis in both flies and human cells. Functional analyses confirm that impaired peroxisomal import induces eIF2α phosphorylation and ATF4 expression. Loss of ATF4 exaggerates cellular damage upon peroxisomal import defects, suggesting that ATF4 activation serves as a cellular cytoprotective mechanism upon peroxisomal import stress. Intriguingly, we show that peroxisomal import stress decreases the expression of rRNA processing genes and inhibits early pre-rRNA processing, which leads to the accumulation of 47S precursor rRNA and reduction of downstream rRNA intermediates. Taken together, we identify ISR activation and ribosome biogenesis inhibition as conserved adaptive stress responses to defective peroxisomal import and uncover a novel link between peroxisomal dysfunction and rRNA processing.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pham Thuy Tien Vo
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacinta Correia
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mirre J P Simons
- Department of Animal and Plant Sciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Montes ID, Amirthagunanathan S, Joshi AS, Raman M. The p97-UBXD8 complex maintains peroxisome abundance by suppressing pexophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614749. [PMID: 39386596 PMCID: PMC11463529 DOI: 10.1101/2024.09.24.614749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Peroxisomes are vital organelles involved in key metabolic functions in eukaryotic cells. Their significance is highlighted by peroxisome biogenesis disorders; severe childhood diseases marked by disrupted lipid metabolism. One mechanism regulating peroxisome abundance is through selective ubiquitylation of peroxisomal membrane proteins that triggers peroxisome degradation via selective autophagy (pexophagy). However, the mechanisms regulating pexophagy remain poorly understood in mammalian cells. Here we show that the evolutionarily conserved AAA-ATPase p97 and its membrane embedded adaptor UBXD8 are essential for maintaining peroxisome abundance. From quantitative proteomic studies we reveal that loss of UBXD8 affects many peroxisomal proteins. We find depletion of UBXD8 results in a loss of peroxisomes in a manner that is independent of the known role of UBXD8 in ER associated degradation (ERAD). Loss of UBXD8 or inhibition of p97 increases peroxisomal turnover through autophagy and can be rescued by depleting key autophagy proteins or overexpressing the deubiquitylating enzyme USP30. Furthermore, we find increased ubiquitylation of the peroxisomal membrane protein PMP70 in cells lacking UBXD8 or p97. Collectively, our findings identify a new role for the p97-UBXD8 complex in regulating peroxisome abundance by suppressing pexophagy.
Collapse
Affiliation(s)
- Iris D. Montes
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| | | | - Amit S. Joshi
- Department of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| |
Collapse
|
10
|
Mah CY, Nguyen ADT, Niijima T, Helm M, Dehairs J, Ryan FJ, Ryan N, Quek LE, Hoy AJ, Don AS, Mills IG, Swinnen JV, Lynn DJ, Nassar ZD, Butler LM. Peroxisomal β-oxidation enzyme, DECR2, regulates lipid metabolism and promotes treatment resistance in advanced prostate cancer. Br J Cancer 2024; 130:741-754. [PMID: 38216720 PMCID: PMC10912652 DOI: 10.1038/s41416-023-02557-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Peroxisomes are central metabolic organelles that have key roles in fatty acid homoeostasis. As prostate cancer (PCa) is particularly reliant on fatty acid metabolism, we explored the contribution of peroxisomal β-oxidation (perFAO) to PCa viability and therapy response. METHODS Bioinformatic analysis was performed on clinical transcriptomic datasets to identify the perFAO enzyme, 2,4-dienoyl CoA reductase 2 (DECR2) as a target gene of interest. Impact of DECR2 and perFAO inhibition via thioridazine was examined in vitro, in vivo, and in clinical prostate tumours cultured ex vivo. Transcriptomic and lipidomic profiling was used to determine the functional consequences of DECR2 inhibition in PCa. RESULTS DECR2 is upregulated in clinical PCa, most notably in metastatic castrate-resistant PCa (CRPC). Depletion of DECR2 significantly suppressed proliferation, migration, and 3D growth of a range of CRPC and therapy-resistant PCa cell lines, and inhibited LNCaP tumour growth and proliferation in vivo. DECR2 influences cell cycle progression and lipid metabolism to support tumour cell proliferation. Further, co-targeting of perFAO and standard-of-care androgen receptor inhibition enhanced suppression of PCa cell proliferation. CONCLUSION Our findings support a focus on perFAO, specifically DECR2, as a promising therapeutic target for CRPC and as a novel strategy to overcome lethal treatment resistance.
Collapse
Affiliation(s)
- Chui Yan Mah
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - An Dieu Trang Nguyen
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Takuto Niijima
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Madison Helm
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - Feargal J Ryan
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Natalie Ryan
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lake-Ee Quek
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Zeyad D Nassar
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
11
|
Plessner M, Thiele L, Hofhuis J, Thoms S. Tissue-specific roles of peroxisomes revealed by expression meta-analysis. Biol Direct 2024; 19:14. [PMID: 38365851 PMCID: PMC10873952 DOI: 10.1186/s13062-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial β-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.
Collapse
Affiliation(s)
- Matthias Plessner
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Leonie Thiele
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Julia Hofhuis
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sven Thoms
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany.
| |
Collapse
|
12
|
Ceravolo G, Zhelcheska K, Squadrito V, Pellerin D, Gitto E, Hartley L, Houlden H. Update on leukodystrophies and developing trials. J Neurol 2024; 271:593-605. [PMID: 37755460 PMCID: PMC10770198 DOI: 10.1007/s00415-023-11996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.
Collapse
Affiliation(s)
- Giorgia Ceravolo
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK.
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Violetta Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - David Pellerin
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
13
|
Cheng X, Zhang L, Gao Z, Li K, Xu J, Liu W, Ru X. Transcriptomic analysis reveals the immune response mechanisms of sea cucumber Apostichopus japonicus under noise stress from offshore wind turbine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167802. [PMID: 37838058 DOI: 10.1016/j.scitotenv.2023.167802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
As an important form of renewable energy, offshore wind power can effectively reduce dependence on traditional energy sources and decrease carbon emissions. However, operation of wind turbines can generate underwater noise that may have negative impacts on marine benthic organisms in the surrounding area. Sea cucumbers are slow-moving invertebrates that inhabit the ocean, relying on their immune system to adapt to their environment. To evaluate the frequency range of characteristic noise produced by offshore wind turbines, we conducted a field survey. Additionally, we utilized sea cucumbers in simulated experiments to assess their response to the noise produced by offshore wind turbines. We established a control group, a low-frequency noise group simulating offshore wind turbine noise at 125 Hz and 250 Hz, and a high-frequency noise group at 2500 Hz, each lasting for 7 days. Results from measuring immune enzyme activity in the coelomic fluid suggest that noise can reduce the activity of superoxide dismutase enzymes, which may make sea cucumbers more susceptible to oxidative damage caused by free radicals. Exposure to low-frequency noise can have the effect of diminishing the activity of catalase, and this decrease in catalase activity could potentially increase the susceptibility of the sea cucumber's coelom to inflammation. In order to elucidate the hypothetical mechanism of immune response, intestinal tissue was extracted for transcriptome sequencing. The results showed that under 125 Hz low-frequency noise stress, the number of differentially expressed genes was the highest, reaching 1764. Under noise stress, sea cucumber's cell apoptosis and cell motility are reduced, interfering with lipid metabolism process and membrane synthesis. This research provides theoretical support for the environmental safety assessment of offshore wind power construction.
Collapse
Affiliation(s)
- Xiaochen Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoming Gao
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Kehan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jialei Xu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Weijian Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
14
|
Huang F, Cai F, Dahabieh MS, Gunawardena K, Talebi A, Dehairs J, El-Turk F, Park JY, Li M, Goncalves C, Gagnon N, Su J, LaPierre JH, Gaub P, Joyal JS, Mitchell JJ, Swinnen JV, Miller WH, del Rincón SV. Peroxisome disruption alters lipid metabolism and potentiates antitumor response with MAPK-targeted therapy in melanoma. J Clin Invest 2023; 133:e166644. [PMID: 37616051 PMCID: PMC10575734 DOI: 10.1172/jci166644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute
- Department of Experimental Medicine, and
| | - Feiyang Cai
- Lady Davis Institute
- Department of Experimental Medicine, and
| | | | | | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Farah El-Turk
- McGill University Health Centre, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte Justine, Montreal, Quebec, Canada
| | - Jae Yeon Park
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Mengqi Li
- Lady Davis Institute
- Department of Experimental Medicine, and
| | | | | | | | | | - Perrine Gaub
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada
| | | | | | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Wilson H. Miller
- Lady Davis Institute
- Department of Experimental Medicine, and
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute
- Department of Experimental Medicine, and
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Liu Y, Chen W, Li C, Li L, Yang M, Jiang N, Luo S, Xi Y, Liu C, Han Y, Zhao H, Zhu X, Yuan S, Xiao L, Sun L. DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol 2023; 66:102855. [PMID: 37597421 PMCID: PMC10458997 DOI: 10.1016/j.redox.2023.102855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
16
|
Yamashita A, Ignatenko O, Nguyen M, Lambert R, Watt K, Daneault C, Robillard-Frayne I, Topisirovic I, Rosiers CD, McBride HM. Depletion of LONP2 unmasks differential requirements for peroxisomal function between cell types and in cholesterol metabolism. Biol Direct 2023; 18:60. [PMID: 37736739 PMCID: PMC10515011 DOI: 10.1186/s13062-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Olesia Ignatenko
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mai Nguyen
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Kathleen Watt
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
Li W, Pang Y, Jin K, Wang Y, Wu Y, Luo J, Xu W, Zhang X, Xu R, Wang T, Jiao L. Membrane contact sites orchestrate cholesterol homeostasis that is central to vascular aging. WIREs Mech Dis 2023; 15:e1612. [PMID: 37156598 DOI: 10.1002/wsbm.1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Chronological age causes structural and functional vascular deterioration and is a well-established risk factor for the development of cardiovascular diseases, leading to more than 40% of all deaths in the elderly. The etiology of vascular aging is complex; a significant impact arises from impaired cholesterol homeostasis. Cholesterol level is balanced through synthesis, uptake, transport, and esterification, the processes executed by multiple organelles. Moreover, organelles responsible for cholesterol homeostasis are spatially and functionally coordinated instead of isolated by forming the membrane contact sites. Membrane contact, mediated by specific protein-protein interaction, pulls opposing organelles together and creates the hybrid place for cholesterol transfer and further signaling. The membrane contact-dependent cholesterol transfer, together with the vesicular transport, maintains cholesterol homeostasis and has intimate implications in a growing list of diseases, including vascular aging-related diseases. Here, we summarized the latest advances regarding cholesterol homeostasis by highlighting the membrane contact-based regulatory mechanism. We also describe the downstream signaling under cholesterol homeostasis perturbations, prominently in cholesterol-rich conditions, stimulating age-dependent organelle dysfunction and vascular aging. Finally, we discuss potential cholesterol-targeting strategies for therapists regarding vascular aging-related diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Pang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuru Wang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
19
|
Ravindran R, Bacellar IOL, Castellanos-Girouard X, Wahba HM, Zhang Z, Omichinski JG, Kisley L, Michnick SW. Peroxisome biogenesis initiated by protein phase separation. Nature 2023; 617:608-615. [PMID: 37165185 PMCID: PMC10302873 DOI: 10.1038/s41586-023-06044-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Peroxisomes are organelles that carry out β-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their dysfunction1. Among disease-causing variant genes are those required for protein transport into peroxisomes. The peroxisomal protein import machinery, which also shares similarities with chloroplasts2, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes3. Current models postulate a large pore formed by transmembrane proteins4; however, so far, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes the membrane proteins Pex13 and Pex14 and the cargo-protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions in Pex13 and Pex5 resemble those found in nuclear pore complex proteins. Peroxisomal protein import depends on both the number and pattern of aromatic residues in these intrinsically disordered regions, consistent with their roles as 'stickers' in associative polymer models of LLPS5,6. Finally, imaging fluorescence cross-correlation spectroscopy shows that cargo import correlates with transient focusing of GFP-Pex13 and GFP-Pex14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our findings lead us to suggest a model in which LLPS of Pex5-cargo with Pex13 and Pex14 results in transient protein transport channels7.
Collapse
Affiliation(s)
- Rini Ravindran
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Isabel O L Bacellar
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
- Douglas Research Centre, Montreal, Quebec, Canada
| | | | - Haytham M Wahba
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zhenghao Zhang
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Mitchell Physics Building (MPHY), College Station, TX, USA
| | - James G Omichinski
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Colasante C, Bonilla-Martinez R, Berg T, Windhorst A, Baumgart-Vogt E. Peroxisomes during postnatal development of mouse endocrine and exocrine pancreas display cell-type- and stage-specific protein composition. Cell Tissue Res 2023:10.1007/s00441-023-03766-6. [PMID: 37126142 DOI: 10.1007/s00441-023-03766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Peroxisomal dysfunction unhinges cellular metabolism by causing the accumulation of toxic metabolic intermediates (e.g. reactive oxygen species, very -chain fatty acids, phytanic acid or eicosanoids) and the depletion of important lipid products (e.g. plasmalogens, polyunsaturated fatty acids), leading to various proinflammatory and devastating pathophysiological conditions like metabolic syndrome and age-related diseases including diabetes. Because the peroxisomal antioxidative marker enzyme catalase is low abundant in Langerhans islet cells, peroxisomes were considered scarcely present in the endocrine pancreas. Recently, studies demonstrated that the peroxisomal metabolism is relevant for pancreatic cell functionality. During the postnatal period, significant changes occur in the cell structure and the metabolism to trigger the final maturation of the pancreas, including cell proliferation, regulation of energy metabolism, and activation of signalling pathways. Our aim in this study was to (i) morphometrically analyse the density of peroxisomes in mouse endocrine versus exocrine pancreas and (ii) investigate how the distribution and the abundance of peroxisomal proteins involved in biogenesis, antioxidative defence and fatty acid metabolism change during pancreatic maturation in the postnatal period. Our results prove that endocrine and exocrine pancreatic cells contain high amounts of peroxisomes with heterogeneous protein content indicating that distinct endocrine and exocrine cell types require a specific set of peroxisomal proteins depending on their individual physiological functions. We further show that significant postnatal changes occur in the peroxisomal compartment of different pancreatic cells that are most probably relevant for the metabolic maturation and differentiation of the pancreas during the development from birth to adulthood.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Timm Berg
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany
| | - Anita Windhorst
- Institute for Medical Informatic, Justus Liebig University, Rudolf-Buchheim-Str. 6, 35392, Gießen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Medical Cell Biology, Justus Liebig -University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
21
|
Yifrach E, Holbrook‐Smith D, Bürgi J, Othman A, Eisenstein M, van Roermund CWT, Visser W, Tirosh A, Rudowitz M, Bibi C, Galor S, Weill U, Fadel A, Peleg Y, Erdmann R, Waterham HR, Wanders RJA, Wilmanns M, Zamboni N, Schuldiner M, Zalckvar E. Systematic multi-level analysis of an organelle proteome reveals new peroxisomal functions. Mol Syst Biol 2022; 18:e11186. [PMID: 36164978 PMCID: PMC9513677 DOI: 10.15252/msb.202211186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.
Collapse
Affiliation(s)
- Eden Yifrach
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Jérôme Bürgi
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
| | - Alaa Othman
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Miriam Eisenstein
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Carlo WT van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Wouter Visser
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Asa Tirosh
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Markus Rudowitz
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Chen Bibi
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Shahar Galor
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Uri Weill
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Amir Fadel
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Life Sciences Core Facilities (LSCF)The Weizmann Institute of ScienceRehovotIsrael
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute of Biochemistry and PathobiochemistryRuhr‐University BochumBochumGermany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical Centers – Location AMCAmsterdamThe Netherlands
| | - Matthias Wilmanns
- Hamburg Unit c/o DESYEuropean Molecular Biology Laboratory (EMBL)HamburgGermany
- University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Maya Schuldiner
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| | - Einat Zalckvar
- Department of Molecular GeneticsThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
22
|
Nesci S. Cellular metabolism therapy. J Transl Med 2022; 20:297. [PMID: 35791017 PMCID: PMC9254557 DOI: 10.1186/s12967-022-03514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|