1
|
Yin C, Castillo-Hair S, Byeon GW, Bromley P, Meuleman W, Seelig G. Iterative deep learning design of human enhancers exploits condensed sequence grammar to achieve cell-type specificity. Cell Syst 2025:101302. [PMID: 40472848 DOI: 10.1016/j.cels.2025.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/04/2025] [Accepted: 05/14/2025] [Indexed: 06/11/2025]
Abstract
An important and largely unsolved problem in synthetic biology is how to target gene expression to specific cell types. Here, we apply iterative deep learning to design synthetic enhancers with strong differential activity between two human cell lines. We initially train models on published datasets of enhancer activity and chromatin accessibility and use them to guide the design of synthetic enhancers that maximize predicted specificity. We experimentally validate these sequences, use the measurements to re-optimize the model, and design a second generation of enhancers with improved specificity. Our design methods embed relevant transcription factor binding site (TFBS) motifs with higher frequency than comparable endogenous enhancers while using a more selective motif vocabulary, and we show that enhancer activity is correlated with transcription factor expression at the single-cell level. Finally, we characterize causal features of top enhancers via perturbation experiments and show that enhancers as short as 50 bp can maintain specificity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Christopher Yin
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | | | - Gun Woo Byeon
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Peter Bromley
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Wouter Meuleman
- Altius Institute for Biomedical Sciences, Seattle, WA, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Schneider-Heieck K, Pérez-Schindler J, Blatter J, de Smalen LM, Duchemin W, Steurer SA, Karrer-Cardel B, Ritz D, Handschin C. Krüppel-like factor 5 remodels lipid metabolism in exercised skeletal muscle. Mol Metab 2025; 96:102154. [PMID: 40250760 PMCID: PMC12060515 DOI: 10.1016/j.molmet.2025.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
Regular physical activity induces a variety of health benefits, preventing and counteracting diseases caused by a sedentary lifestyle. However, the molecular underpinnings of skeletal muscle plasticity in exercise remain poorly understood. We identified a role of the Krüppel-Like Factor 5 (Klf5) in this process, in particular in the regulation of lipid homeostasis. Surprisingly, gain- and loss-of-function studies in muscle in vivo revealed seemingly opposite functions of Klf5 in the response to an acute exercise bout and chronic training, modulating lipid oxidation and synthesis, respectively. Thus, even though only transiently induced, the function of Klf5 is complex and fundamental for a normal long-term training response. These findings highlight the importance of this mediator of external stress response to adaptive remodeling of skeletal muscle tissue.
Collapse
Affiliation(s)
| | | | | | | | - Wandrille Duchemin
- sciCORE Center for Scientific Computing, University of Basel, Basel, Switzerland
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Hu Z, Przytycki PF, Pollard KS. CellWalker2: Multi-omic discovery using hierarchical cell type relationships. CELL GENOMICS 2025:100886. [PMID: 40409272 DOI: 10.1016/j.xgen.2025.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/04/2024] [Accepted: 04/28/2025] [Indexed: 05/25/2025]
Abstract
Tissues are composed of cells with a wide range of similarities to each other, yet existing methods for single-cell genomics treat cell types as discrete labels. To address this gap, we developed CellWalker2, a graph diffusion-based model for the annotation and mapping of multi-modal data. With our open-source software package, hierarchically related cell types can be probabilistically matched across contexts and used to annotate cells, genomic regions, or gene sets. Additional features include estimating statistical significance and enabling gene expression and chromatin accessibility to be jointly modeled. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell-type annotation and mapping. We then use multi-omics data from the brain and immune system to demonstrate CellWalker2's ability to assign high-resolution cell-type labels to regulatory elements and TFs and to quantify both conserved and divergent cell-type relationships between species.
Collapse
Affiliation(s)
- Zhirui Hu
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, CA 94158, USA; Faculty of Computing & Data Sciences, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Epidemiology & Biostatistics, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Ronzio M, Bernardini A, Gallo A, Mantovani R, Dolfini D. Binding of NF-Y to transposable elements in mouse and human cells. Mob DNA 2025; 16:22. [PMID: 40346696 PMCID: PMC12065363 DOI: 10.1186/s13100-025-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Transposable Elements (TEs) represent a sizeable amount of mammalian genomes, providing regulatory sequences involved in shaping gene expression patterns. NF-Y is a Transcription factor -TF- trimer that binds to the CCAAT box, belonging to a selected group implicated in determining initiation of coding and noncoding RNAs. RESULTS We focus on NF-Y TE locations in 8 human and 8 mouse cells. Binding is exclusive for retroviral LTR12, MLT1 and MER in human and RLTR10 and IAPLTR in mouse cells. Cobinding and analysis of the DNA matrices signal enrichment of distinct TFs neighboring CCAAT in the three TE classes: MAFK/F/G in LTR12 and USF1/2 in MLT1 with precise alignment of sites, PKNOX1, MEIS2, PBX2/3 TALE TFs in MER57. The presence of "epigenetic" marks in human cells indicate prevalent co-association with open chromatin in MER, closed in LTR12 and mixed in MLT1. Based on chromatin features, these locations are mostly marked as enhancers, as confirmed by analysis of loci predicted to generate eRNAs. CONCLUSIONS These results are discussed in the context of functional data, suggesting a complex -positive and potentially-negative role of NF-Y on distinct classes of repetitive sequences.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Jones T, Sigauke RF, Sanford L, Taatjes DJ, Allen MA, Dowell RD. TF Profiler: a transcription factor inference method that broadly measures transcription factor activity and identifies mechanistically distinct networks. Genome Biol 2025; 26:92. [PMID: 40205447 PMCID: PMC11983743 DOI: 10.1186/s13059-025-03545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
TF Profiler is a method of inferring transcription factor (TF) regulatory activity, i.e., when a TF is present and actively participating in the regulation of transcription, directly from nascent sequencing assays such as PRO-seq and GRO-seq. While ChIP assays have measured DNA localization, they fall short of identifying when and where the effector domain of a transcription factor is active. Our method uses RNA polymerase activity to infer TF effector domain activity across hundreds of data sets and transcription factors. TF Profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.
Collapse
Affiliation(s)
- Taylor Jones
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
- Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Rutendo F Sigauke
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Lynn Sanford
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Dylan J Taatjes
- Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA.
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB 596, Boulder, CO, 80309, USA.
- Computer Science, University of Colorado Boulder, 1111 Engineering Drive, UCB 430, Boulder, CO, 80309, USA.
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, UCB 347, Boulder, CO, 80309, USA.
| |
Collapse
|
6
|
Esvald EE, Moistus A, Lehe K, Avarlaid A, Šubina A, Kuusemets L, Tuvikene J, Timmusk T. Stimulus-Dependent Expression of Bdnf Is Mediated by ATF2, MYT1L, and EGR1 Transcription Factors. J Neurosci 2025; 45:e0313242025. [PMID: 39947922 PMCID: PMC11924897 DOI: 10.1523/jneurosci.0313-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 03/21/2025] Open
Abstract
Neurotrophins like BDNF have a key role in the proper functioning of the central nervous system, influencing numerous processes like memory formation and behavior. An imbalance in BDNF levels can lead to a wide range of diseases, including depression and neurodevelopmental disorders. While the potential therapeutic effects of BDNF are well-recognized, there is a knowledge gap in understanding the mechanisms governing BDNF expression levels. Here, we focused on the regulation of Bdnf gene expression in response to different stimuli, specifically studying the effects of neuronal activity and BDNF-TrkB signaling on Bdnf transcription in cultured neurons from rats of either sex. We used in vitro DNA pulldown combined with mass spectrometry to determine transcription factors that interact with the Bdnf promoters upon different stimuli and validated numerous known regulators, such as USF and AP1 family, and novel candidate regulators using reporter assays. We show that the USF family of transcription factors is specifically recruited after membrane depolarization, whereas the AP1 family participates in Bdnf regulation only after BDNF-TrkB signaling. We further describe ATF2, MYT1L, and EGR family as novel regulators of Bdnf expression by demonstrating their direct binding to Bdnf promoters using chromatin immunoprecipitation assays both in vitro and in vivo, showing their functional role in Bdnf gene expression and ultimately identifying their regulatory cis-elements in Bdnf promoters. Furthermore, our results show competition between ATF2, CREB, and AP1 family in regulating Bdnf levels. Collectively, our results provide insight into the regulation of Bdnf expression upon different stimuli.
Collapse
Affiliation(s)
- Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
- Protobios LLC, Tallinn 12618, Estonia
| | - Andra Moistus
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Karin Lehe
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Anastassia Šubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Liis Kuusemets
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
- Protobios LLC, Tallinn 12618, Estonia
- dxlabs LLC, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
- Protobios LLC, Tallinn 12618, Estonia
| |
Collapse
|
7
|
Ciuba K, Piotrowska A, Chaudhury D, Dehingia B, Duński E, Behr R, Soroczyńska K, Czystowska-Kuźmicz M, Abbas M, Bulanda E, Gawlik-Zawiślak S, Pietrzak S, Figiel I, Włodarczyk J, Verkhratsky A, Niedbała M, Kaspera W, Wypych T, Wilczyński B, Pękowska A. Molecular signature of primate astrocytes reveals pathways and regulatory changes contributing to human brain evolution. Cell Stem Cell 2025; 32:426-444.e14. [PMID: 39909043 DOI: 10.1016/j.stem.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of "stripe" transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Piotrowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Debadeep Chaudhury
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Eryk Duński
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Platform Stem Cell Biology and Regeneration, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Karolina Soroczyńska
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Misbah Abbas
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sylwia Gawlik-Zawiślak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Pietrzak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, CIBERNED 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Tomasz Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bartosz Wilczyński
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
8
|
López-González L, Borrell V. Stripe out for brain evolution: Astrocytes go human. Cell Stem Cell 2025; 32:338-340. [PMID: 40054452 DOI: 10.1016/j.stem.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Evolution of the human brain involved neuron and glial cell changes. In this issue of Cell Stem Cell, Ciuba et al.1 identify an epigenetic mechanism central in the evolution of human astrocytes, where small enhancer modifications increased transcription factor binding, orchestrating transcriptomic changes that influence astrocyte structure and function.
Collapse
Affiliation(s)
- Lara López-González
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
9
|
Agarwal V, Inoue F, Schubach M, Penzar D, Martin BK, Dash PM, Keukeleire P, Zhang Z, Sohota A, Zhao J, Georgakopoulos-Soares I, Noble WS, Yardımcı GG, Kulakovskiy IV, Kircher M, Shendure J, Ahituv N. Massively parallel characterization of transcriptional regulatory elements. Nature 2025; 639:411-420. [PMID: 39814889 PMCID: PMC11903340 DOI: 10.1038/s41586-024-08430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
The human genome contains millions of candidate cis-regulatory elements (cCREs) with cell-type-specific activities that shape both health and many disease states1. However, we lack a functional understanding of the sequence features that control the activity and cell-type-specific features of these cCREs. Here we used lentivirus-based massively parallel reporter assays (lentiMPRAs) to test the regulatory activity of more than 680,000 sequences, representing an extensive set of annotated cCREs among three cell types (HepG2, K562 and WTC11), and found that 41.7% of these sequences were active. By testing sequences in both orientations, we find promoters to have strand-orientation biases and their 200-nucleotide cores to function as non-cell-type-specific 'on switches' that provide similar expression levels to their associated gene. By contrast, enhancers have weaker orientation biases, but increased tissue-specific characteristics. Utilizing our lentiMPRA data, we develop sequence-based models to predict cCRE function and variant effects with high accuracy, delineate regulatory motifs and model their combinatorial effects. Testing a lentiMPRA library encompassing 60,000 cCREs in all three cell types further identified factors that determine cell-type specificity. Collectively, our work provides an extensive catalogue of functional CREs in three widely used cell lines and showcases how large-scale functional measurements can be used to dissect regulatory grammar.
Collapse
Affiliation(s)
- Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA.
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Max Schubach
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dmitry Penzar
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Pyaree Mohan Dash
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Keukeleire
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Ajuni Sohota
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Galip Gürkan Yardımcı
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Martin Kircher
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Jones T, Feng J, Luyties O, Cozzolino K, Sanford L, Rimel JK, Ebmeier CC, Shelby GS, Watts LP, Rodino J, Rajagopal N, Hu S, Brennan F, Maas ZL, Alnemy S, Richter WF, Koh AF, Cronin NB, Madduri A, Das J, Cooper E, Hamman KB, Carulli JP, Allen MA, Spencer S, Kotecha A, Marineau JJ, Greber BJ, Dowell RD, Taatjes DJ. TFIIH kinase CDK7 drives cell proliferation through a common core transcription factor network. SCIENCE ADVANCES 2025; 11:eadr9660. [PMID: 40020069 PMCID: PMC11870056 DOI: 10.1126/sciadv.adr9660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
How cyclin-dependent kinase 7 (CDK7) coordinately regulates the cell cycle and RNA polymerase II transcription remains unclear. Here, high-resolution cryo-electron microscopy revealed how two clinically relevant inhibitors block CDK7 function. In cells, CDK7 inhibition rapidly suppressed transcription, but constitutively active genes were disproportionately affected versus stimulus-responsive. Distinct transcription factors (TFs) regulate constitutive versus stimulus-responsive genes. Accordingly, stimulus-responsive TFs were refractory to CDK7 inhibition whereas constitutively active "core" TFs were repressed. Core TFs (n = 78) are predominantly promoter associated and control cell cycle and proliferative gene expression programs across cell types. Mechanistically, rapid suppression of core TF function can occur through CDK7-dependent phosphorylation changes in core TFs and RB1. Moreover, CDK7 inhibition depleted core TF protein levels within hours, consistent with durable target gene suppression. Thus, a major but unappreciated biological function for CDK7 is regulation of a TF cohort that drives proliferation, revealing an apparent universal mechanism by which CDK7 coordinates RNAPII transcription with cell cycle CDK regulation.
Collapse
Affiliation(s)
- Taylor Jones
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Junjie Feng
- Institute for Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Olivia Luyties
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Kira Cozzolino
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K. Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | | | - Grace S. Shelby
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lotte P. Watts
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Jessica Rodino
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | | | - Shanhu Hu
- Syros Pharmaceuticals, Cambridge, MA 02140, USA
| | - Finn Brennan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Zachary L. Maas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | | | - William F. Richter
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Adrian F. Koh
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 Eindhoven, Netherlands
| | - Nora B. Cronin
- London Consortium for High-Resolution Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Jhuma Das
- Syros Pharmaceuticals, Cambridge, MA 02140, USA
| | | | | | | | - Mary A. Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Sabrina Spencer
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 Eindhoven, Netherlands
| | | | - Basil J. Greber
- Institute for Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J. Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
11
|
Sanchez GJ, Liu Z, Hunter S, Xu Q, Westfall JTV, Wheeler GE, Toomey C, Taatjes D, Allen M, Dowell RD, Liu X. Histone Deacetylase Inhibitor Largazole Deactivates A Subset of Superenchancers and Causes Mitotic Chromosome Mis-alignment by Suppressing SP1 and BRD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635612. [PMID: 39975221 PMCID: PMC11838406 DOI: 10.1101/2025.01.29.635612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Histone deacetylase inhibitors have been investigated as potential therapeutic agents for cancer and other diseases. HDIs are known to promote histone acetylation, resulting in an open chromatin conformation and generally increased gene expression. In previous work, we reported that a subset of genes, particularly those regulated by superenhancers, can be suppressed by the HDAC inhibitor largazole. To elucidate the molecular mechanisms underlying gene repression by largazole, we conducted transposase-accessible chromatin sequencing, ChIP-seq, and RNA-seq studies. Our findings revealed that while largazole treatment generally enhances chromatin accessibility, it selectively decreases the accessibility of a subset of superenhancer regions. These genomic regions, showing the most significant changes in the presence of largazole, were enriched with transcription factor binding motifs for SP1, BRD4, CTCF, and YY1. ChIP-seq analysis confirmed reduced binding of BRD4 and SP1 at their respective sites on chromatin, particularly at superenhancers regulating genes such as ID1, c-Myc and MCMs. Largazole exerts its effects by inhibiting DNA replication, RNA processing, and cell cycle progression, partially through the suppression of SP1 expression. Depletion of SP1 by shRNA mimics several key biological effects of largazole and increases cellular sensitivity to the drug. Specific to cell cycle regulation, we demonstrated that largazole disrupts G/M transition by interfering with chromosome alignment during metaphase, a phenotype also observed with SP1 depletion. Our results suggest that largazole exerts its growth-inhibitory effect by suppressing BRD4 and SP1 at super-enhancers, leading to cytostatic responses and mitotic dysfunction.
Collapse
|
12
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Li P, Pulugulla S, Das S, Oh J, Spolski R, Lin JX, Leonard WJ. A new pipeline SPICE identifies novel JUN-IKZF1 composite elements. eLife 2025; 12:RP88833. [PMID: 39786853 PMCID: PMC11717359 DOI: 10.7554/elife.88833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Collapse
Affiliation(s)
- Peng Li
- Amgen IncRockvilleUnited States
| | - Sree Pulugulla
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Sonali Das
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| |
Collapse
|
14
|
Saelens W, Pushkarev O, Deplancke B. ChromatinHD connects single-cell DNA accessibility and conformation to gene expression through scale-adaptive machine learning. Nat Commun 2025; 16:317. [PMID: 39747019 PMCID: PMC11697365 DOI: 10.1038/s41467-024-55447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Gene regulation is inherently multiscale, but scale-adaptive machine learning methods that fully exploit this property in single-nucleus accessibility data are still lacking. Here, we develop ChromatinHD, a pair of scale-adaptive models that uses the raw accessibility data, without peak-calling or windows, to link regions to gene expression and determine differentially accessible chromatin. We show how ChromatinHD consistently outperforms existing peak and window-based approaches and find that this is due to a large number of uniquely captured, functional accessibility changes within and outside of putative cis-regulatory regions. Furthermore, ChromatinHD can delineate collaborating regulatory regions, including their preferential genomic conformations, that drive gene expression. Finally, our models also use changes in ATAC-seq fragment lengths to identify dense binding of transcription factors, a feature not captured by footprinting methods. Altogether, ChromatinHD, available at https://chromatinhd.org , is a suite of computational tools that enables a data-driven understanding of chromatin accessibility at various scales and how it relates to gene expression.
Collapse
Affiliation(s)
- Wouter Saelens
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- VIB Center for Inflammation Research, Ghent, Belgium.
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering and Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
15
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
16
|
Liu X, Wei H, Zhang Q, Zhang N, Wu Q, Xu C. Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions. Nat Commun 2024; 15:10922. [PMID: 39738122 PMCID: PMC11686180 DOI: 10.1038/s41467-024-55403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding. When analyzed at one-dimensional level, the billions of chromatin contacts from Footprint-C enable genome-wide analysis at single footprint resolution, and reveal preferential modes of local TF co-occupancy. At pairwise contact level, Footprint-C exhibits higher efficiency in identifying chromatin structural features when compared with other Hi-C methods, segregates chromatin interactions emanating from adjacent TF footprints, and uncovers multiway interactions involving different TFs. Altogether, Footprint-C results suggest that rich regulatory modes of TF may underlie both local residence and distal chromatin interactions, in terms of TF identity, valency, and conformational configuration.
Collapse
Affiliation(s)
- Xiaokun Liu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanhan Wei
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenhuan Xu
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Li P, Pulugulla SH, Das S, Oh J, Spolski R, Lin JX, Leonard WJ. A new pipeline SPICE identifies novel JUN-IKZF1 composite elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543110. [PMID: 39763964 PMCID: PMC11703198 DOI: 10.1101/2023.05.31.543110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed cooperative binding of JUN and IKZF1 and showed that the activity of an IL10 -luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Collapse
Affiliation(s)
- Peng Li
- Correspondence to: P.L. () or W.J.L. ()
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu L, Han L, Han K, Zhang Z, Zhang H, Zhang L. Identification of co-localised transcription factors based on paired motifs analysis. IET Syst Biol 2024; 18:238-249. [PMID: 39588827 DOI: 10.1049/syb2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction of transcription factors (TFs) with DNA precisely regulates gene transcription. In mammalian cells, thousands of TFs often interact with DNA cis-regulatory elements in a combinatorial manner rather than act alone. The identification of cooperativity between TFs can help to explore the mechanism of transcriptional regulation. However, little is known about the cooperative patterns of TFs in the genome. To identify which TFs prefer co-localisation, the authors conducted a paired motif analysis in the accessible regions of the human genome based on the Poisson background model. Especially, the authors distinguish the cooperative binding TFs and the competitive binding TFs according to the distance between TF motifs. In the K562 cell line, the authors find that TFs from a same family are always competing the same binding sites, such as FOS_JUN family, whereas KLF family TFs show significant cooperative binding in the adjacency region. Furthermore, the comparative analysis across 16 human cell lines indicates that most TF combination patterns are conserved, but there are still some cell-line-specific patterns. Finally, in human prostate cancer cells (PC-3) and human prostate normal cells (RWPE-2), the authors investigate the specific TF combination patterns in the disease cell and normal cell. The results show that the cooperative binding TF pairs shared by PC-3 and RWPE-2 account for over 90%. Simultaneously, the authors also identify 26 specific TF combination pairs in PC-3 cancer cells.
Collapse
Affiliation(s)
- Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lu Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Kaiyuan Han
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Haojiang Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Amrute JM, Lee PC, Eres I, Lee CJM, Bredemeyer A, Sheth MU, Yamawaki T, Gurung R, Anene-Nzelu C, Qiu WL, Kundu S, Li DY, Ramste M, Lu D, Tan A, Kang CJ, Wagoner RE, Alisio A, Cheng P, Zhao Q, Miller CL, Hall IM, Gupta RM, Hsu YH, Haldar SM, Lavine KJ, Jackson S, Andersson R, Engreitz JM, Foo RSY, Li CM, Ason B, Quertermous T, Stitziel NO. Single cell variant to enhancer to gene map for coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.13.24317257. [PMID: 39606421 PMCID: PMC11601770 DOI: 10.1101/2024.11.13.24317257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Although genome wide association studies (GWAS) in large populations have identified hundreds of variants associated with common diseases such as coronary artery disease (CAD), most disease-associated variants lie within non-coding regions of the genome, rendering it difficult to determine the downstream causal gene and cell type. Here, we performed paired single nucleus gene expression and chromatin accessibility profiling from 44 human coronary arteries. To link disease variants to molecular traits, we developed a meta-map of 88 samples and discovered 11,182 single-cell chromatin accessibility quantitative trait loci (caQTLs). Heritability enrichment analysis and disease variant mapping demonstrated that smooth muscle cells (SMCs) harbor the greatest genetic risk for CAD. To capture the continuum of SMC cell states in disease, we used dynamic single cell caQTL modeling for the first time in tissue to uncover QTLs whose effects are modified by cell state and expand our insight into genetic regulation of heterogenous cell populations. Notably, we identified a variant in the COL4A1/COL4A2 CAD GWAS locus which becomes a caQTL as SMCs de-differentiate by changing a transcription factor binding site for EGR1/2. To unbiasedly prioritize functional candidate genes, we built a genome-wide single cell variant to enhancer to gene (scV2E2G) map for human CAD to link disease variants to causal genes in cell types. Using this approach, we found several hundred genes predicted to be linked to disease variants in different cell types. Next, we performed genome-wide Hi-C in 16 human coronary arteries to build tissue specific maps of chromatin conformation and link disease variants to integrated chromatin hubs and distal target genes. Using this approach, we show that rs4887091 within the ADAMTS7 CAD GWAS locus modulates function of a super chromatin interactome through a change in a CTCF binding site. Finally, we used CRISPR interference to validate a distal gene, AMOTL2, liked to a CAD GWAS locus. Collectively we provide a disease-agnostic framework to translate human genetic findings to identify pathologic cell states and genes driving disease, producing a comprehensive scV2E2G map with genetic and tissue level convergence for future mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Paul C. Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ittai Eres
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maya U. Sheth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Rijan Gurung
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chukwuemeka Anene-Nzelu
- Montreal Heart Institute, Montreal, 5000 Rue Belanger, QC, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC, H3T 1J4, Canada
| | - Wei-Lin Qiu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Y. Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Markus Ramste
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Daniel Lu
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Anthony Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Chul-Joo Kang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ryan E. Wagoner
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul Cheng
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Quanyi Zhao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Ira M. Hall
- Center for Genomic Health, Yale University, New Haven, CT, 06510, USA
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Rajat M. Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Amgen Research, South San Francisco, CA, 94080, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Sciences and Engineering Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Chi-Ming Li
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Brandon Ason
- Amgen Research, South San Francisco, CA, 94080, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305
| | - Nathan O. Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
20
|
Kliesmete Z, Orchard P, Lee VYK, Geuder J, Krauß SM, Ohnuki M, Jocher J, Vieth B, Enard W, Hellmann I. Evidence for compensatory evolution within pleiotropic regulatory elements. Genome Res 2024; 34:1528-1539. [PMID: 39255977 PMCID: PMC11534155 DOI: 10.1101/gr.279001.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
Pleiotropy, measured as expression breadth across tissues, is one of the best predictors for protein sequence and expression conservation. In this study, we investigated its effect on the evolution of cis-regulatory elements (CREs). To this end, we carefully reanalyzed the Epigenomics Roadmap data for nine fetal tissues, assigning a measure of pleiotropic degree to nearly half a million CREs. To assess the functional conservation of CREs, we generated ATAC-seq and RNA-seq data from humans and macaques. We found that more pleiotropic CREs exhibit greater conservation in accessibility, and the mRNA expression levels of the associated genes are more conserved. This trend of higher conservation for higher degrees of pleiotropy persists when analyzing the transcription factor binding repertoire. In contrast, simple DNA sequence conservation of orthologous sites between species tends to be even lower for pleiotropic CREs than for species-specific CREs. Combining various lines of evidence, we propose that the lack of sequence conservation in functionally conserved pleiotropic CREs is owing to within-element compensatory evolution. In summary, our findings suggest that pleiotropy is also a good predictor for the functional conservation of CREs, even though this is not reflected in the sequence conservation of pleiotropic CREs.
Collapse
Affiliation(s)
- Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
| | - Peter Orchard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, USA
| | - Victor Yan Kin Lee
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
| | - Simon M Krauß
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
- Department of Hematology, Cell Therapy, Hemostaseology and Infectious Diseases, University Leipzig Medical Center, 04103 Leipzig, Germany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
- Faculty of Medicine, Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Jessica Jocher
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
| | - Beate Vieth
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians Universität München, 82152 Munich, Germany;
| |
Collapse
|
21
|
Luo X, Zou Q. Identifying the "stripe" transcription factors and cooperative binding related to DNA methylation. Commun Biol 2024; 7:1265. [PMID: 39367138 PMCID: PMC11452537 DOI: 10.1038/s42003-024-06992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
DNA methylation plays a critical role in gene regulation by modulating the DNA binding of transcription factors (TFs). This study integrates TFs' ChIP-seq profiles with WGBS profiles to investigate how DNA methylation affects protein interactions. Statistical methods and a 5-letter DNA motif calling model have been developed to characterize DNA sequences bound by proteins, while considering the effects of DNA modifications. By employing these methods, 79 significant universal "stripe" TFs and cofactors (USFs), 2360 co-binding protein pairs, and distinct protein modules associated with various DNA methylation states have been identified. The USFs hint a regulatory hierarchy within these protein interactions. Proteins preferentially bind to non-CpG sites in methylated regions, indicating binding affinity is not solely CpG-dependent. Proteins involved in methylation-specific USFs and cobinding pairs play essential roles in promoting and sustaining DNA methylation through interacting with DNMTs or inhibiting TET binding. These findings underscore the interplay between protein binding and methylation, offering insights into epigenetic regulation in cellular biology.
Collapse
Affiliation(s)
- Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
22
|
Kribelbauer-Swietek JF, Pushkarev O, Gardeux V, Faltejskova K, Russeil J, van Mierlo G, Deplancke B. Context transcription factors establish cooperative environments and mediate enhancer communication. Nat Genet 2024; 56:2199-2212. [PMID: 39363017 PMCID: PMC11525195 DOI: 10.1038/s41588-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.
Collapse
Affiliation(s)
- Judith F Kribelbauer-Swietek
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Olga Pushkarev
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Katerina Faltejskova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
23
|
Shrestha R, Chesner LN, Zhang M, Zhou S, Foye A, Lundberg A, Weinstein AS, Sjöström M, Zhu X, Moreno-Rodriguez T, Li H, Alumkal JJ, Aggarwal R, Small EJ, Lupien M, Quigley DA, Feng FY. An Atlas of Accessible Chromatin in Advanced Prostate Cancer Reveals the Epigenetic Evolution during Tumor Progression. Cancer Res 2024; 84:3086-3100. [PMID: 38990734 DOI: 10.1158/0008-5472.can-24-0890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease that resists therapy targeting androgen signaling, the primary driver of prostate cancer. mCRPC resists androgen receptor (AR) inhibitors by amplifying AR signaling or by evolving into therapy-resistant subtypes that do not depend on AR. Elucidation of the epigenetic underpinnings of these subtypes could provide important insights into the drivers of therapy resistance. In this study, we produced chromatin accessibility maps linked to the binding of lineage-specific transcription factors (TF) by performing assay for transposase-accessible chromatin sequencing on 70 mCRPC tissue biopsies integrated with transcriptome and whole-genome sequencing. mCRPC had a distinct global chromatin accessibility profile linked to AR function. Analysis of TF occupancy across accessible chromatin revealed 203 TFs associated with mCRPC subtypes. Notably, ZNF263 was identified as a putative prostate cancer TF with a significant impact on gene activity in the double-negative subtype (AR- neuroendocrine-), potentially activating MYC targets. Overall, this analysis of chromatin accessibility in mCRPC provides valuable insights into epigenetic changes that occur during progression to mCRPC. Significance: Integration of a large cohort of transcriptome, whole-genome, and ATAC sequencing characterizes the chromatin accessibility changes in advanced prostate cancer and identifies therapy-resistant prostate cancer subtype-specific transcription factors that modulate oncogenic programs.
Collapse
Affiliation(s)
- Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Lisa N Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Alana S Weinstein
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
24
|
Ronzio M, Bernardini A, Taglietti V, Ceribelli M, Donati G, Gallo A, Pavesi G, Dellabona P, Casorati G, Messina G, Mantovani R, Dolfini D. Genomic binding of NF-Y in mouse and human cells. Genomics 2024; 116:110895. [PMID: 39025317 DOI: 10.1016/j.ygeno.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
NF-Y is a Transcription Factor that regulates transcription through binding to the CCAAT-box. To understand its strategy, we analyzed 16 ChIP-seq datasets from human and mouse cells. Shared loci, mostly located in promoters of expressed genes of cell cycle, metabolism and gene expression pathways, are associated with histone marks of active chromatin and specific modules of TFs. Other peaks are in enhancers and Transposable Elements -TE- of retroviral origin in human and mouse. We evaluated the relationship with USF1, a common synergistic partner in promoters and MLT1 TEs, upon NF-YB inactivation: USF1 binding decreases in promoters, modestly in MLT1, suggesting a pioneering role of NF-Y in formers, not in the latters. These data define a common set of NF-Y functional targets across different mammalian cell types, suggesting a pioneering role in promoters with respect to TEs.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Michele Ceribelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Donati
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
25
|
Huang S, Reed C, Ilsley M, Magor G, Tallack M, Landsberg M, Mitchell H, Gillinder K, Perkins A. Mutations in linker-2 of KLF1 impair expression of membrane transporters and cytoskeletal proteins causing hemolysis. Nat Commun 2024; 15:7019. [PMID: 39147774 PMCID: PMC11327367 DOI: 10.1038/s41467-024-50579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
The SP/KLF family of transcription factors harbour three C-terminal C2H2 zinc fingers interspersed by two linkers which confers DNA-binding to a 9-10 bp motif. Mutations in KLF1, the founding member of the family, are common. Missense mutations in linker two result in a mild phenotype. However, when co-inherited with loss-of-function mutations, they result in severe non-spherocytic hemolytic anemia. We generate a mouse model of this disease by crossing Klf1+/- mice with Klf1H350R/+ mice that harbour a missense mutation in linker-2. Klf1H350R/- mice exhibit severe hemolysis without thalassemia. RNA-seq demonstrate loss of expression of genes encoding transmembrane and cytoskeletal proteins, but not globins. ChIP-seq show no change in DNA-binding specificity, but a global reduction in affinity, which is confirmed using recombinant proteins and in vitro binding assays. This study provides new insights into how linker mutations in zinc finger transcription factors result in different phenotypes to those caused by loss-of-function mutations.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Casie Reed
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Melissa Ilsley
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Graham Magor
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Michael Tallack
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
| | - Michael Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Helen Mitchell
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Kevin Gillinder
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Andrew Perkins
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia.
- Department of Haematology, The Alfred Hospital, Melbourne, Australia.
- Biodiscovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
26
|
Guimarães DSPSF, Barrios NMF, de Oliveira AG, Rizo‐Roca D, Jollet M, Smith JA, Araujo TR, da Cruz MV, Marconato E, Hirabara SM, Vieira AS, Krook A, Zierath JR, Silveira LR. Concerted regulation of skeletal muscle metabolism and contractile properties by the orphan nuclear receptor Nr2f6. J Cachexia Sarcopenia Muscle 2024; 15:1335-1347. [PMID: 38682559 PMCID: PMC11294040 DOI: 10.1002/jcsm.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND The maintenance of skeletal muscle plasticity upon changes in the environment, nutrient supply, and exercise depends on regulatory mechanisms that couple structural and metabolic adaptations. The mechanisms that interconnect both processes at the transcriptional level remain underexplored. Nr2f6, a nuclear receptor, regulates metabolism and cell differentiation in peripheral tissues. However, its role in the skeletal muscle is still elusive. Here, we aimed to investigate the effects of Nr2f6 modulation on muscle biology in vivo and in vitro. METHODS Global RNA-seq was performed in Nr2f6 knockdown C2C12 myocytes (N = 4-5). Molecular and metabolic assays and proliferation experiments were performed using stable Nr2f6 knockdown and Nr2f6 overexpression C2C12 cell lines (N = 3-6). Nr2f6 content was evaluated in lipid overload models in vitro and in vivo (N = 3-6). In vivo experiments included Nr2f6 overexpression in mouse tibialis anterior muscle, followed by gene array transcriptomics and molecular assays (N = 4), ex vivo contractility experiments (N = 5), and histological analysis (N = 7). The conservation of Nr2f6 depletion effects was confirmed in primary skeletal muscle cells of humans and mice. RESULTS Nr2f6 knockdown upregulated genes associated with muscle differentiation, metabolism, and contraction, while cell cycle-related genes were downregulated. In human skeletal muscle cells, Nr2f6 knockdown significantly increased the expression of myosin heavy chain genes (two-fold to three-fold) and siRNA-mediated depletion of Nr2f6 increased maximal C2C12 myocyte's lipid oxidative capacity by 75% and protected against lipid-induced cell death. Nr2f6 content decreased by 40% in lipid-overloaded myotubes and by 50% in the skeletal muscle of mice fed a high-fat diet. Nr2f6 overexpression in mice resulted in an atrophic and hypoplastic state, characterized by a significant reduction in muscle mass (15%) and myofibre content (18%), followed by an impairment (50%) in force production. These functional phenotypes were accompanied by the establishment of an inflammation-like molecular signature and a decrease in the expression of genes involved in muscle contractility and oxidative metabolism, which was associated with the repression of the uncoupling protein 3 (20%) and PGC-1α (30%) promoters activity following Nr2f6 overexpression in vitro. Additionally, Nr2f6 regulated core components of the cell division machinery, effectively decoupling muscle cell proliferation from differentiation. CONCLUSIONS Our findings reveal a novel role for Nr2f6 as a molecular transducer that plays a crucial role in maintaining the balance between skeletal muscle contractile function and oxidative capacity. These results have significant implications for the development of potential therapeutic strategies for metabolic diseases and myopathies.
Collapse
Affiliation(s)
- Dimitrius Santiago P. S. F. Guimarães
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| | - Ninon M. F. Barrios
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| | | | - David Rizo‐Roca
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Maxence Jollet
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Jonathon A.B. Smith
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Thiago R. Araujo
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| | | | - Emilio Marconato
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| | - Sandro M. Hirabara
- Interdisciplinary Post‐Graduate Program in Health SciencesCruzeiro do Sul UniversitySão PauloBrazil
| | - André S. Vieira
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| | - Anna Krook
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Juleen R. Zierath
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Leonardo R. Silveira
- Department of Structural and Functional BiologyUniversity of CampinasCampinasBrazil
| |
Collapse
|
27
|
Borowsky AT, Bailey-Serres J. Rewiring gene circuitry for plant improvement. Nat Genet 2024; 56:1574-1582. [PMID: 39075207 DOI: 10.1038/s41588-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Aspirations for high crop growth and yield, nutritional quality and bioproduction of materials are challenged by climate change and limited adoption of new technologies. Here, we review recent advances in approaches to profile and model gene regulatory activity over developmental and response time in specific cells, which have revealed the basis of variation in plant phenotypes: both redeployment of key regulators to new contexts and their repurposing to control different slates of genes. New synthetic biology tools allow tunable, spatiotemporal regulation of transgenes, while recent gene-editing technologies enable manipulation of the regulation of native genes. Ultimately, understanding how gene circuitry is wired to control form and function across varied plant species, combined with advanced technology to rewire that circuitry, will unlock solutions to our greatest challenges in agriculture, energy and the environment.
Collapse
Affiliation(s)
- Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
28
|
Wu H, Wang Q, Liao Y, Wang S. MSC-derived exosomes deliver ZBTB4 to mediate transcriptional repression of ITIH3 in astrocytes in spinal cord injury. Brain Res Bull 2024; 212:110954. [PMID: 38641154 DOI: 10.1016/j.brainresbull.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND BMSC-secreted exosomes (BMSC-Exos) have shown potential for promoting behavioral recovery following spinal cord injury (SCI). However, its role in blocking astrocyte activation remains unclear. Thus, this study aimed to determine whether BMSC-Exos impair the function of astrocytes following SCI in mice and to seek the mechanism. METHODS BMSC-Exos were collected by ultracentrifugation and identified. The SCI mice were developed by laminectomy combined with spinal cord shock, followed by BMSC-Exos or nerve growth factor (positive control) treatment. HE staining, Nissl staining, and TUNEL were conducted to analyze the pathological structural damage and neuronal damage in the mouse spinal cord. Bioinformatics was used to screen altered molecules under the BMSC-Exos treatment. Effects of BMSC-Exos and changes in ZBTB4 and ITIH3 expression on neuronal damage induced by activated astrocytes in the co-culture system were analyzed by CCK-8 and flow cytometry. RESULTS Nerve growth factor and BMSC-Exos promoted motor function recovery, alleviated nerve injury, and reduced apoptosis in mice with SCI. ZBTB4 was enriched in BMSC-Exos and lowly expressed in SCI. Downregulation of ZBTB4 diminished the therapeutic effects of BMSC-Exos against SCI. ITIH3 was a downstream target of ZBTB4. Neurotoxic activation of astrocytes induced neuronal injury, which was alleviated by BMSC-Exos. However, ZBTB4 knockdown overturned the effects of BMSC-Exos in vitro and combined ITIH3 knockdown alleviated the accentuating effects of ZBTB4 knockdown on neuronal injury. CONCLUSION BMSC-Exos protected against astrocyte-induced neuronal injury by delivering ZBTB4 to repress ITIH3, ultimately improving motor function in mice with SCI.
Collapse
Affiliation(s)
- Hongzi Wu
- Orthopaedics Center, Karamay Central Hospital,Karamay, Xinjiang Uygur Autonomous Region 834000, PR China
| | - Qiang Wang
- Department of Orthopaedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, PR China
| | - Yi Liao
- Orthopaedics Center, Karamay Central Hospital,Karamay, Xinjiang Uygur Autonomous Region 834000, PR China
| | - Shaobo Wang
- Orthopaedics Center, Karamay Central Hospital,Karamay, Xinjiang Uygur Autonomous Region 834000, PR China.
| |
Collapse
|
29
|
Yin C, Hair SC, Byeon GW, Bromley P, Meuleman W, Seelig G. Iterative deep learning-design of human enhancers exploits condensed sequence grammar to achieve cell type-specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599076. [PMID: 38915713 PMCID: PMC11195158 DOI: 10.1101/2024.06.14.599076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An important and largely unsolved problem in synthetic biology is how to target gene expression to specific cell types. Here, we apply iterative deep learning to design synthetic enhancers with strong differential activity between two human cell lines. We initially train models on published datasets of enhancer activity and chromatin accessibility and use them to guide the design of synthetic enhancers that maximize predicted specificity. We experimentally validate these sequences, use the measurements to re-optimize the predictor, and design a second generation of enhancers with improved specificity. Our design methods embed relevant transcription factor binding site (TFBS) motifs with higher frequencies than comparable endogenous enhancers while using a more selective motif vocabulary, and we show that enhancer activity is correlated with transcription factor expression at the single cell level. Finally, we characterize causal features of top enhancers via perturbation experiments and show enhancers as short as 50bp can maintain specificity.
Collapse
Affiliation(s)
- Christopher Yin
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA
| | | | - Gun Woo Byeon
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA
| | - Peter Bromley
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Wouter Meuleman
- Altius Institute for Biomedical Sciences, Seattle, WA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Pollin G, Mathison AJ, de Assuncao TM, Thomas A, Zeighami A, Salmonson A, Liu H, Urrutia G, Vankayala P, Pandol SJ, Hong JC, Zimmermann MT, Iovanna J, Jin VX, Urrutia R, Lomberk G. Ehmt2 inactivation in pancreatic epithelial cells shapes the transcriptional landscape and inflammation response of the whole pancreas. Front Genet 2024; 15:1412767. [PMID: 38948355 PMCID: PMC11211573 DOI: 10.3389/fgene.2024.1412767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that Ehmt2 inactivation in the mouse pancreas alters growth and immune gene expression networks, antagonizing Kras-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of Ehmt2 in maintaining a transcriptional landscape that protects organs from inflammation. Methods: Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from Ehmt2 conditional knockout animals (Ehmt2 fl/fl ) targeted to the exocrine pancreatic epithelial cells (Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the Ehmt2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. Results and discussion: The Ehmt2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional Ehmt2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific Ehmt2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the Ehmt2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thiago M. de Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anju Thomas
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Atefeh Zeighami
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ann Salmonson
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hongfei Liu
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pallavi Vankayala
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Johnny C. Hong
- Division of Transplantation, Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National de la Santé et de la Recherche médicale (INSERM) U1068, CNRS UMR 7258, Parc Scientifique et Technologique de Luminy, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Victor X. Jin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
31
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, PsychENCODE Consortium, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 PMCID: PMC12085231 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | | | - Alex A. Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
32
|
Hu Z, Przytycki PF, Pollard KS. CellWalker2: multi-omic discovery of hierarchical cell type relationships and their associations with genomic annotations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594770. [PMID: 38798605 PMCID: PMC11118555 DOI: 10.1101/2024.05.17.594770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
CellWalker2 is a graph diffusion-based method for single-cell genomics data integration. It extends the CellWalker model by incorporating hierarchical relationships between cell types, providing estimates of statistical significance, and adding data structures for analyzing multi-omics data so that gene expression and open chromatin can be jointly modeled. Our open-source software enables users to annotate cells using existing ontologies and to probabilistically match cell types between two or more contexts, including across species. CellWalker2 can also map genomic regions to cell ontologies, enabling precise annotation of elements derived from bulk data, such as enhancers, genetic variants, and sequence motifs. Through simulation studies, we show that CellWalker2 performs better than existing methods in cell type annotation and mapping. We then use data from the brain and immune system to demonstrate CellWalker2's ability to discover cell type-specific regulatory programs and both conserved and divergent cell type relationships in complex tissues.
Collapse
Affiliation(s)
- Zhirui Hu
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
- Faculty of Computing & Data Sciences, Boston University, 665 Commonwealth Avenue, Boston, 02215, MA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, 1650 Owens Street, San Francisco, 94158, CA, USA
- Department of Epidemiology & Biostatistics, University of California, 1650 Owens Street, San Francisco, 94158, CA, USA
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, 94158, CA, USA
| |
Collapse
|
33
|
Cooper L, Xu H, Polmear J, Kealy L, Szeto C, Pang ES, Gupta M, Kirn A, Taylor JJ, Jackson KJL, Broomfield BJ, Nguyen A, Gago da Graça C, La Gruta N, Utzschneider DT, Groom JR, Martelotto L, Parish IA, O'Keeffe M, Scharer CD, Gras S, Good-Jacobson KL. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024; 57:1037-1055.e6. [PMID: 38593796 PMCID: PMC11096045 DOI: 10.1016/j.immuni.2024.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mansi Gupta
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alana Kirn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Benjamin J Broomfield
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia; Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Zhang M, Zhai Y, An X, Li Q, Zhang D, Zhou Y, Zhang S, Dai X, Li Z. DNA methylation regulates RNA m 6A modification through transcription factor SP1 during the development of porcine somatic cell nuclear transfer embryos. Cell Prolif 2024; 57:e13581. [PMID: 38095020 PMCID: PMC11056710 DOI: 10.1111/cpr.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications play critical roles during somatic cell nuclear transfer (SCNT) embryo development. Whether RNA N6-methyladenosine (m6A) affects the developmental competency of SCNT embryos remains unclear. Here, we showed that porcine bone marrow mesenchymal stem cells (pBMSCs) presented higher RNA m6A levels than those of porcine embryonic fibroblasts (pEFs). SCNT embryos derived from pBMSCs had higher RNA m6A levels, cleavage, and blastocyst rates than those from pEFs. Compared with pEFs, the promoter region of METTL14 presented a hypomethylation status in pBMSCs. Mechanistically, DNA methylation regulated METTL14 expression by affecting the accessibility of transcription factor SP1 binding, highlighting the role of the DNA methylation/SP1/METTL14 pathway in donor cells. Inhibiting the DNA methylation level in donor cells increased the RNA m6A level and improved the development efficiency of SCNT embryos. Overexpression of METTL14 significantly increased the RNA m6A level in donor cells and the development efficiency of SCNT embryos, whereas knockdown of METTL14 suggested the opposite result. Moreover, we revealed that RNA m6A-regulated TOP2B mRNA stability, translation level, and DNA damage during SCNT embryo development. Collectively, our results highlight the crosstalk between RNA m6A and DNA methylation, and the crucial role of RNA m6A during nuclear reprogramming in SCNT embryo development.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
35
|
Pollin G, Mathison AJ, de Assuncao TM, Thomas A, Zeighami L, Salmonson A, Liu H, Urrutia G, Vankayala P, Pandol SJ, Zimmermann MT, Iovanna J, Jin VX, Urrutia R, Lomberk G. EHMT2 Inactivation in Pancreatic Epithelial Cells Shapes the Transcriptional Landscape and Inflammation Response of the Whole Pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584700. [PMID: 38529489 PMCID: PMC10962735 DOI: 10.1101/2024.03.14.584700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation. Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from EHMT2 conditional knockout animals ( EHMT2 fl/fl ) targeted to the exocrine pancreatic epithelial cells ( Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the EHMT2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. The EHMT2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional EHMT2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific EHMT2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the EHMT2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.
Collapse
|
36
|
Jones T, Sigauke RF, Sanford L, Taatjes DJ, Allen MA, Dowell RD. A transcription factor (TF) inference method that broadly measures TF activity and identifies mechanistically distinct TF networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585303. [PMID: 38559193 PMCID: PMC10980006 DOI: 10.1101/2024.03.15.585303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
TF profiler is a method of inferring transcription factor regulatory activity, i.e. when a TF is present and actively regulating transcription, directly directly from nascent sequencing assays such as PRO-seq and GRO-seq. Transcription factors orchestrate transcription and play a critical role in cellular maintenance, identity and response to external stimuli. While ChIP assays have measured DNA localization, they fall short of identifying when and where transcription factors are actively regulating transcription. Our method, on the other hand, uses RNA polymerase activity to infer TF activity across hundreds of data sets and transcription factors. Based on these classifications we identify three distinct classes of transcription factors: ubiquitous factors that play roles in cellular homeostasis, driving basal gene programs across tissues and cell types, tissue specific factors that act almost exclusively at enhancers and are themselves regulated at transcription, and stimulus responsive TFs which are regulated post-transcriptionally but act predominantly at enhancers. TF profiler is broadly applicable, providing regulatory insights on any PRO-seq sample for any transcription factor with a known binding motif.
Collapse
|
37
|
Layden HM, Johnson AE, Hiebert SW. Chemical-genetics refines transcription factor regulatory circuits. Trends Cancer 2024; 10:65-75. [PMID: 37722945 PMCID: PMC10840957 DOI: 10.1016/j.trecan.2023.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
Transcriptional dysregulation is a key step in oncogenesis, but our understanding of transcriptional control has relied on genetic approaches that are slow and allow for compensation. Chemical-genetic approaches have shortened the time frame for the analysis of transcription factors from days or weeks to minutes. These studies show that while DNA-binding proteins bind to thousands of sites, they are directly required to regulate only a small cadre of genes. Moreover, these transcriptional control networks are far more distinct, with much less overlap and interconnectivity than predicted from DNA binding. The identified direct targets can then be used to dissect the mechanism of action of these factors, which could identify ways to therapeutically manipulate these oncogenic transcriptional control networks.
Collapse
Affiliation(s)
- Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna E Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA.
| |
Collapse
|
38
|
Arnold M, Stengel KR. Emerging insights into enhancer biology and function. Transcription 2023; 14:68-87. [PMID: 37312570 PMCID: PMC10353330 DOI: 10.1080/21541264.2023.2222032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Cell type-specific gene expression is coordinated by DNA-encoded enhancers and the transcription factors (TFs) that bind to them in a sequence-specific manner. As such, these enhancers and TFs are critical mediators of normal development and altered enhancer or TF function is associated with the development of diseases such as cancer. While initially defined by their ability to activate gene transcription in reporter assays, putative enhancer elements are now frequently defined by their unique chromatin features including DNase hypersensitivity and transposase accessibility, bidirectional enhancer RNA (eRNA) transcription, CpG hypomethylation, high H3K27ac and H3K4me1, sequence-specific transcription factor binding, and co-factor recruitment. Identification of these chromatin features through sequencing-based assays has revolutionized our ability to identify enhancer elements on a genome-wide scale, and genome-wide functional assays are now capitalizing on this information to greatly expand our understanding of how enhancers function to provide spatiotemporal coordination of gene expression programs. Here, we highlight recent technological advances that are providing new insights into the molecular mechanisms by which these critical cis-regulatory elements function in gene control. We pay particular attention to advances in our understanding of enhancer transcription, enhancer-promoter syntax, 3D organization and biomolecular condensates, transcription factor and co-factor dependencies, and the development of genome-wide functional enhancer screens.
Collapse
Affiliation(s)
- Mirjam Arnold
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristy R. Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
39
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
40
|
Eggers N, Gkountromichos F, Krause S, Campos-Sparr A, Becker P. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res 2023; 51:9039-9054. [PMID: 37602401 PMCID: PMC10516644 DOI: 10.1093/nar/gkad680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Silke Krause
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Peter B Becker
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| |
Collapse
|
41
|
Agarwal V, Inoue F, Schubach M, Martin BK, Dash PM, Zhang Z, Sohota A, Noble WS, Yardimci GG, Kircher M, Shendure J, Ahituv N. Massively parallel characterization of transcriptional regulatory elements in three diverse human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531189. [PMID: 36945371 PMCID: PMC10028905 DOI: 10.1101/2023.03.05.531189] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The human genome contains millions of candidate cis-regulatory elements (CREs) with cell-type-specific activities that shape both health and myriad disease states. However, we lack a functional understanding of the sequence features that control the activity and cell-type-specific features of these CREs. Here, we used lentivirus-based massively parallel reporter assays (lentiMPRAs) to test the regulatory activity of over 680,000 sequences, representing a nearly comprehensive set of all annotated CREs among three cell types (HepG2, K562, and WTC11), finding 41.7% to be functional. By testing sequences in both orientations, we find promoters to have significant strand orientation effects. We also observe that their 200 nucleotide cores function as non-cell-type-specific 'on switches' providing similar expression levels to their associated gene. In contrast, enhancers have weaker orientation effects, but increased tissue-specific characteristics. Utilizing our lentiMPRA data, we develop sequence-based models to predict CRE function with high accuracy and delineate regulatory motifs. Testing an additional lentiMPRA library encompassing 60,000 CREs in all three cell types, we further identified factors that determine cell-type specificity. Collectively, our work provides an exhaustive catalog of functional CREs in three widely used cell lines, and showcases how large-scale functional measurements can be used to dissect regulatory grammar.
Collapse
Affiliation(s)
- Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- mRNA Center of Excellence, Sanofi Pasteur Inc., Waltham, MA 02451, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Max Schubach
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Pyaree Mohan Dash
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Ajuni Sohota
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Galip Gürkan Yardimci
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kircher
- Berlin Institute of Health of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
42
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen A, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528663. [PMID: 36824845 PMCID: PMC9949039 DOI: 10.1101/2023.02.15.528663] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and disease. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 sequences, including differentially accessible cell-type specific regions in the developing cortex and single-nucleotide variants associated with psychiatric disorders. In primary cells, we identified 46,802 active enhancer sequences and 164 disorder-associated variants that significantly alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning, we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes; San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University; Kyoto, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | | | - Scott Norton
- Child Study Center, Yale University; New Haven, CT, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University; New Haven, CT, USA
- Department of Neuroscience, Yale University; New Haven, CT, USA
| | - Alex Pollen
- Department of Neurology, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
43
|
EKLF/Klf1 regulates erythroid transcription by its pioneering activity and selective control of RNA Pol II pause-release. Cell Rep 2022; 41:111830. [PMID: 36543143 PMCID: PMC9879271 DOI: 10.1016/j.celrep.2022.111830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
EKLF/Klf1 is a zinc-finger transcription activator essential for erythroid lineage commitment and terminal differentiation. Using ChIP-seq, we investigate EKLF DNA binding and transcription activation mechanisms during mouse embryonic erythropoiesis. We utilize the Nan/+ mouse that expresses the EKLF-E339D (Nan) variant mutated in its conserved zinc-finger region and address the mechanism of hypomorphic and neomorphic changes in downstream gene expression. First, we show that Nan-EKLF limits normal EKLF binding to a subset of its sites. Second, we find that ectopic binding of Nan-EKLF occurs largely at enhancers and activates transcription through pioneering activity. Third, we find that for a subset of ectopic targets, gene activation is achieved in Nan/+ only by Nan-EKLF binding to distal enhancers, leading to RNA polymerase II pause-release. These results have general applicability to understanding how a DNA binding variant factor confers dominant disruptive effects on downstream gene expression even in the presence of its normal counterpart.
Collapse
|
44
|
Zhao Y. TFSyntax: a database of transcription factors binding syntax in mammalian genomes. Nucleic Acids Res 2022; 51:D306-D314. [PMID: 36200824 PMCID: PMC9825613 DOI: 10.1093/nar/gkac849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
In mammals, transcriptional factors (TFs) drive gene expression by binding to regulatory elements in a cooperative manner. Deciphering the rules of such cooperation is crucial to obtain a full understanding of cellular homeostasis and development. Although this is a long-standing topic, there is no comprehensive database for biologists to access the syntax of TF binding sites. Here we present TFSyntax (https://tfsyntax.zhaopage.com), a database focusing on the arrangement of TF binding sites. TFSyntax maps the binding motif of 1299 human TFs and 890 mouse TFs across 382 cells and tissues, representing the most comprehensive TF binding map to date. In addition to location, TFSyntax defines motif positional preference, density and colocalization within accessible elements. Powered by a series of functional modules based on web interface, users can freely search, browse, analyze, and download data of interest. With comprehensive characterization of TF binding syntax across distinct tissues and cell types, TFSyntax represents a valuable resource and platform for studying the mechanism of transcriptional regulation and exploring how regulatory DNA variants cause disease.
Collapse
Affiliation(s)
- Yongbing Zhao
- To whom correspondence should be addressed. Tel: +1 301 480 5852;
| |
Collapse
|