1
|
Chen H, Liu B, Xu P, Wang H, Guo X, Liu G, Yuan J. Mechanistic role of environmental toxicants in inducing cellular ferroptosis and its associated diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118269. [PMID: 40344778 DOI: 10.1016/j.ecoenv.2025.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Due to exposure factors such as industrial exhaust, sewage discharge, pesticide runoff, automobile exhaust, and fuel combustion, environmental toxicants are widely present in daily life. Organisms are exposed to these environmental toxicants through contaminated air, food, and drinking water, and these environmental toxicants enter the human body and cause cytotoxicity and diseases through various pathways. As a new cell death mode that is different from cell necrosis, apoptosis, and autophagy, ferroptosis are mainly dysregulation of intracellular iron metabolism, lipid metabolism disorders, and the dysregulation of the antioxidant defense system, leading to lipid peroxidation and ultimately to the rupture of the cell membrane, damage, and cell death. Studies have shown that environmental toxicants induce a series of diseases, such as digestive diseases, urinary diseases, respiratory diseases, neurological disorders, and reproductive diseases, through the above mechanisms. We elaborate the mechanism of common environmental toxicants in inducing ferroptosis and the related systemic diseases mediated through the ferroptosis to provide the theoretical basis for preventing and treating environmental toxicant-related diseases. Nonetheless, our understanding of ferroptosis remains incomplete. For example, mechanisms and methods for the selective control of ferroptosis remain elusive, elucidating these mechanisms and strategies may be critical for leveraging knowledge of ferroptosis to treat related diseases.
Collapse
Affiliation(s)
- Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Bingchun Liu
- Stem Cell Laboratory; Central Laboratory of Organ Transplantation;Inner Mongolia Autonomous Region Engineering Laboratory for Genetic Test and Research of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Gang Liu
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
2
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Zhou D, Huang Z, Liu J, Tan J, Li H, Ai Y. Gastrodia protects HT22 cells from damage caused by oxygen glucose deprivation and reperfusion through inhibiting ferroptosis. Sci Rep 2025; 15:18470. [PMID: 40425648 PMCID: PMC12117028 DOI: 10.1038/s41598-025-03404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Gastrodin (Gas) is a key active ingredients of Gastrodia elata Bl., with applications in treating cardiovascular and neurodegenerative conditions. However, the impact of Gas on neuronal damage caused by cerebral ischemia/reperfusion remains uncertain. A cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established and the viability and apoptosis of HT22 cells were measured using the CCK-8 assay and TUNEL staining. Different kits detected the levels of LDH, Fe2+ and MDA. The levels of ferroptosis-related genes and proteins were evaluated utilizing RT-qPCR and Western blotting. Following OGD/R, there was a decrease in HT22 cell viability and an increase in LDH level and apoptosis rate. Gas (25µM) increased cell viability, decreased LDH, Fe2+, MDA and ACSL4 levels, up-regulated SLC7A11 and GPX4 and ameliorated OGD/R-induced apoptosis (P < 0.01). Ferroptosis inducer Erastin (Era, 10µM) successfully induced ferroptosis in HT22 cells, while Gas treatment attenuated the effect of Era. Era further promoted OGD/R-induced damage and ferroptosis in HT22 cells, whereas Gas inhibited the effect of Era. In conclusion, Gas might provide protection against induced HT22 cell injury caused by OGD/R through inhibiting ferroptosis, shows promising potential for clinical treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Dongyue Zhou
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Zhixuan Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jian Liu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jinlong Tan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yangwen Ai
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China.
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China.
| |
Collapse
|
4
|
Jia H, Liu S, Wang W, He P, Zhao F, Xu X. Microplastic exposure induces preeclampsia-like symptoms via HIF-1α/TFRC-mediated ferroptosis in placental trophoblast cells. Toxicology 2025; 516:154197. [PMID: 40414414 DOI: 10.1016/j.tox.2025.154197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/12/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Microplastic (MP) pollution is an emerging environmental concern with potential health risks, yet its impact on pregnancy remains largely unexplored. This study investigated the effects of polystyrene microplastic (PS-MP) exposure on placental function and its role in preeclampsia (PE) pathogenesis. Pregnant rats were exposed to PS-MP, which induced PE-like symptoms including elevated blood pressure, increased proteinuria, and altered expression of angiogenic factors. Transcriptomic and molecular analyses revealed PS-MP triggered ferroptosis in placental trophoblast cells by activating the HIF-1α/TFRC axis, resulting in iron overload and oxidative stress. PS-MP exposure impaired trophoblast migration, invasion, and angiogenesis; these effects were ameliorated by ferroptosis inhibition. These findings identified PS-MP-induced ferroptosis as a critical mechanism underlying placental dysfunction, highlighting PS-MP as a potential environmental risk factor for PE. Understanding the impact of MP on pregnancy provides crucial insights into their reproductive toxicity and underscores the need for further research on mitigating their effects.
Collapse
Affiliation(s)
- Haoyi Jia
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengyuan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
5
|
Garcia-Gimenez A, Ditcham JE, Azazi DMA, Giotopoulos G, Asby R, Meduri E, Bagri J, Sakakini N, Lopez CK, Narayan N, Beinortas T, Agrawal-Singh S, Fung K, O'Connor D, Mansour MR, Alabed HBR, Jenkins B, Koulman A, Murphy MP, Horton SJ, Huntly BJP, Richardson SE. CREBBP inactivation sensitizes B cell acute lymphoblastic leukemia to ferroptotic cell death upon BCL2 inhibition. Nat Commun 2025; 16:4274. [PMID: 40393984 DOI: 10.1038/s41467-025-59531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a leading cause of death in childhood and outcomes in adults remain dismal. There is therefore an urgent clinical need for therapies that target the highest risk cases. Mutations in the histone acetyltransferase CREBBP confer high-risk and increased chemoresistance in ALL. Performing a targeted drug-screen in isogenic human cell lines, we identify a number of small molecules that specifically target CREBBP-mutated B-ALL, the most potent being the BCL2-inhibitor Venetoclax. Of note, this acts through a non-canonical mechanism resulting in ferroptotic rather than apoptotic cell death. CREBBP-mutated cell lines show differences in cell-cycle, metabolism, lipid composition and response to oxidative stress, predisposing them to ferroptosis, which are further dysregulated upon acquisition of Venetoclax resistance. Lastly, small-molecule inhibition of CREBBP pharmacocopies CREBBP-mutation, sensitizing B-ALL cells, regardless of genotype, to Venetoclax-induced ferroptosis in-vitro and in-vivo, providing a promising drug combination for broader clinical translation in B-ALL.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Jonathan E Ditcham
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Dhoyazan M A Azazi
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - George Giotopoulos
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Ryan Asby
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Eshwar Meduri
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Jaana Bagri
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Nathalie Sakakini
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Cecile K Lopez
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Nisha Narayan
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Tumas Beinortas
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Shuchi Agrawal-Singh
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kent Fung
- University College London Cancer Institute, UCL, London, UK
| | - David O'Connor
- University College London Cancer Institute, UCL, London, UK
| | - Marc R Mansour
- University College London Cancer Institute, UCL, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Husam B R Alabed
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100, Perugia, Italy
| | - Benjamin Jenkins
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Albert Koulman
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Sarah J Horton
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Brian J P Huntly
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge University Hospitals, Cambridge, UK.
| | - Simon E Richardson
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
6
|
Chan KY, Yu Y, Kong Y, Cheng L, Yao R, Yin Chair PS, Wang P, Wang R, Sun WY, He RR, Min J, Wang F, Björklund M. GPX4-dependent ferroptosis sensitivity is a fitness trade-off for cell enlargement. iScience 2025; 28:112363. [PMID: 40330887 PMCID: PMC12053632 DOI: 10.1016/j.isci.2025.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Despite wide variation, each cell type has an optimal size. Maintaining optimal size is essential for cellular fitness and function but the biological basis for this remains elusive. Here, we performed fitness analysis involving genome-wide CRISPR-Cas9 knockout data from tens of human cell lines and identified that cell size influences the essentiality of genes related to mitochondria and membrane repair. These genes also included glutathione peroxidase 4 (GPX4), which safeguards membranes from oxidative damage and prevents ferroptosis-iron-dependent death. Growth beyond normal size, with or without cell-cycle arrest, increased lipid peroxidation, resulting in a ferroptosis-sensitive state. Proteomic analysis revealed cell-cycle-independent superscaling of endoplasmic reticulum, accumulation of iron, and lipidome remodeling. Even slight increases from normal cell size sensitized proliferating cells to ferroptosis as evidenced by deep-learning-based single-cell analysis. Thus, lipid peroxidation may be a fitness trade-off that constrains cell enlargement and contributes to the establishment of an optimal cell size.
Collapse
Affiliation(s)
- Kuan Yoow Chan
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Yini Yu
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Yidi Kong
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Ling Cheng
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Renzhi Yao
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Phoebe Sha Yin Chair
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Ping Wang
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Rong Wang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mikael Björklund
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
7
|
Zhao Q, Wang Y, Ding L, Li Z, Wang M, Huang Y, Cao Q, Sun Y, Guo X. Capsaicin induces ferroptosis via suppression of SLC7A11 activity and upregulation of ACSL4 mediated by AMPK in tongue squamous cell carcinoma. Front Oncol 2025; 15:1532555. [PMID: 40438695 PMCID: PMC12116642 DOI: 10.3389/fonc.2025.1532555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/21/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction The global incidence of tongue squamous cell carcinoma (TSCC) has been steadily increasing. Our previous studies have demonstrated that capsaicin (CAP) promotes apoptosis and inhibits cell migration, thereby exerting anti-TSCC effects. In this study, we aimed to validate whether CAP induces ferroptosis in TSCC and to elucidate the underlying mechanisms. Methods Cell viability in HN6 and CAL27 cells was assessed using CCK-8 assays. Mitochondrial structural changes were observed via transmission electron microscopy (TEM). The levels of malondialdehyde (MDA), Fe2+, reactive oxygen species (ROS), and glutathione (GSH) were measured by the corresponding assay kits. Ferrostatin-1 (Fer-1) was utilized to confirm the involvement of ferroptosis. Western blotting was employed to evaluate the phosphorylation of AMP-activated protein kinase (AMPK), acyl-CoA synthetase long-chain family member 4 (ACSL4), and glutathione peroxidase 4 (GPX4). Additionally, Glutamic acid release was determined using an assay kit. The interaction between BECN1 and solute carrier family 7 member 11 (SLC7A11) was analyzed by co-immunoprecipitation (Co-IP). To elucidate the underlying mechanisms, lentiviral-mediated shRNA knockdown of AMPK was performed, with subsequent in vivo validation. Results CAP significantly suppressed the viability of HN6 and CAL27 cells. TEM analysis revealed mitochondrial damage following CAP treatment. Furthermore, CAP increased levels of MDA, Fe²⁺, and ROS while decreasing GSH; these alterations were reversed by Fer-1 treatment. Western blot analyses indicated that CAP upregulated phosphorylated AMPK and ACSL4 but downregulated GPX4 expression. Moreover, CAP inhibited glutamate release while enhancing BECN1-SLC7A11 binding, suggesting a reduction in SLC7A11 activity through the AMPK/BECN1 pathway. Notably, AMPK inhibition mitigated CAP-induced changes in p-BECN1, ACSL4, MDA, Fe²⁺, GSH, and ROS levels. In vivo experiments corroborated these findings. Discussion Our study demonstrates that CAP activate the AMPK signaling, inhibits the activity of SLC7A11 and increases ACSL4 expression, thereby inducing ferroptosis in TSCC. These findings, supported by in vivo data, highlight CAP's role in triggering ferroptosis as an anti-TSCC mechanism.
Collapse
Affiliation(s)
- Qiwei Zhao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yu Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Long Ding
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Zhuang Li
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Mengyang Wang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yueqing Huang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiushi Cao
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yaqin Sun
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Xiaohong Guo
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
8
|
Liu Y, Wang Q, Hou Z, Gao Y, Li P. Electroacupuncture Inhibits Ferroptosis by Modulating Iron Metabolism and Oxidative Stress to Alleviate Cerebral Ischemia-Reperfusion Injury. J Mol Neurosci 2025; 75:63. [PMID: 40317390 PMCID: PMC12049298 DOI: 10.1007/s12031-025-02355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
Ischemic stroke (IS) is one of the leading causes of mortality and long-term disability worldwide. Electroacupuncture (EA) is commonly used in the treatment of IS, meaning that may reduce cerebral ischemia-reperfusion injury (CIRI). The middle cerebral artery occlusion/reperfusion (MCAO/R) rat models were created by the modified Zea Longa suture method. EA treatment was performed for 7 consecutive days at the acupoints Neiguan (PC6), Shuigou (GV26), and Sanyinjiao (SP6). The neurological function was assessed using the Zausinger six-point neurological deficiency score. The cerebral infarct volume was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Hematoxylin and eosin (HE) staining was employed to observe the pathological changes in brain tissues. Prussian blue staining was employed to investigate iron deposition within the brain tissues. Transmission electron microscopy (TEM) was utilized to examine the morphological characteristics of mitochondria. Simultaneously, flow cytometry was utilized to detect the fluorescence intensity of reactive oxygen species (ROS). Assay kits were employed to measure the levels of Fe2+ and glutathione (GSH). Additionally, western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed to evaluate the expression levels of proteins associated with ferroptosis. Compared with the MCAO/R group, both the MCAO/R + EA and MCAO/R + DFO groups exhibited significant improvements in neurological function following cerebral ischemia-reperfusion (CIR), attenuated the pathological brain tissue injury, and reduced the cerebral infarct volume and iron deposition in brain tissue. Furthermore, both the MCAO/R + EA and MCAO/R + DFO groups displayed a marked reduction in mitochondrial injury. There was a substantial decrease in Fe2+ and ROS levels, accompanied by a notable increase in GSH level and glutathione peroxidase 4 (GPX4) activity. Compared with the MCAO/R group, the levels of ferroportin1 (FPN1) protein and mRNA expression were significantly increased in the MCAO/R + EA and MCAO/R + DFO groups, and the expression levels of transferrin (TF), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1) protein and mRNA, as well as ferritin (FER) protein, were significantly decreased. EA inhibits ferroptosis by modulating iron metabolism and oxidative stress to alleviate CIRI, exerting neuroprotective effects.
Collapse
Affiliation(s)
- Yaoyao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qi Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ziwen Hou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Peng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
9
|
Ye K, Zhao X, Liu L, Ge F, Zheng F, Liu Z, Tian M, Han X, Gao X, Xia Q, Wang D. Comparative Analysis of Human Brain RNA-seq Reveals the Combined Effects of Ferroptosis and Autophagy on Alzheimer's Disease in Multiple Brain Regions. Mol Neurobiol 2025; 62:6128-6149. [PMID: 39710824 DOI: 10.1007/s12035-024-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role. On one hand, it protects neurons by removing β-amyloid and cellular damage products caused by oxidative stress and inflammation. On the other hand, abnormal autophagy is linked to neuronal apoptosis and neurodegeneration. However, the intricate interplay between ferroptosis and autophagy in AD remains insufficiently explored. This study focuses on the roles of ferroptosis and autophagy in AD and their interconnection through bioinformatics analysis, shedding light on the disease. Ferroptosis and autophagy significantly correlate with the development and course of AD. Using PPI network analysis and unsupervised consistency clustering analysis, we uncovered a complex network of interactions between ferroptosis and autophagy during disease progression, demonstrating a significant congruence in their modification patterns. Functional analyses further demonstrated that ferroptosis and autophagy together affect the immunological status and synaptic regulation in hippocampal regions in patients with AD, which significantly impacts the start and progression of the disease.
Collapse
Affiliation(s)
- Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Mengjie Tian
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xinyu Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, Heilongjiang, China.
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
10
|
Zhang E, Wang Y, Zhang H, Li X, Su Y, Cui J, Xu R, Mao X, Sang M, Lin Z, Zhou X. Resveratrol induces ferroptosis in triple-negative breast cancer through NEDD4L-mediated GPX4 ubiquitination and degradation. Free Radic Biol Med 2025; 235:231-247. [PMID: 40316059 DOI: 10.1016/j.freeradbiomed.2025.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/04/2025]
Abstract
Triple-negative breast cancer (TNBC) has no expression on estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), resulting in an ineffective treatment using current therapeutic therapies. As a heterogeneous disease, the notable refractory, high recurrence rate and unfavorable prognosis facilitate some researches to further elaborate novel insights into the biology of TNBC and formulate the precision treatment. Ferroptosis is a unique regulated-cell-death modality characterized by the excessive accumulation of the lipid peroxides on cellular membranes in an iron-dependent manner. Resveratrol (RES), a natural antioxidant that possesses biological activities, has various potential benefits for many diseases through regulating the cell activity. RES has been reported to markedly inhibit the tumor progression, yet its role in ferroptosis pathway of TNBC and the underlying mechanism remain unclear. In this study, we found that RES suppressed cell viabilities, consisting of cell migration, cell colony formation, and induced the cell apoptosis, along with mitochondrial structure damage, intracellular iron overload, increasing reactive oxygen species (ROS) and lipid peroxidation accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion, interestingly, which was reversed by ferroptosis inhibitors. Next, the protein level of GPX4 was significantly suppressed in RES-treated TNBC cells in vitro and in vivo, facilitating the cancer cell ferroptosis. Our data confirm that RES suppresses GPX4 protein by increasing the NEDD4L-mediated ubiquitination attributed from the enhanced interactions between NEDD4L and GPX4 through the inhibition of the ERK1/2/SGK1/NEDD4L/GPX4 pathway in vitro and in vivo. In conclusion, our study identified the mechanism by which RES could exert ferroptosis in TNBC, finally providing a novel strategy for TNBC treatment.
Collapse
Affiliation(s)
- Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China.
| | - Yichao Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Hongli Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Xiaomin Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Yijing Su
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Jianan Cui
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Rui Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Xue Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China
| | - Zenghua Lin
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, PR China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, PR China.
| |
Collapse
|
11
|
Taufani IP, Tasminatun S, Harimurti S, Yang LY, Huang CY, Situmorang JH. Tannic Acid Suppresses Ferroptosis Induced by Iron Salophene Complex in Kidney Cells and Prevents Iron Overload-Induced Liver and Kidney Dysfunction in Rats. Biol Trace Elem Res 2025; 203:2701-2713. [PMID: 39207654 DOI: 10.1007/s12011-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Iron toxicity intricately links with ferroptosis, a unique form of cell death, and is significantly influenced by lipid peroxidation. Despite its critical role in various diseases and drug development, the association between iron toxicity and ferroptosis remains relatively unexplored. Accidental iron ingestion has emerged as a growing concern, resulting in a spectrum of symptoms ranging from gastrointestinal discomfort to severe outcomes, including mortality. This research introduces tannic acid (TA), which contains numerous phenol groups, as a powerful antiferroptotic agent. In male Wistar rats, even a modest dose of TA (7.5 mg/kg) significantly curtailed thiobarbituric acid reactive substances (TBARS), a well-established indicator of lipid peroxidation, and mitigated iron accumulation induced by ferrous sulfate (FeSO4) in the liver and kidney. The evidence supporting TA's protective function against iron-triggered liver and kidney dysfunction was substantiated by assessing specifically the levels of blood urea nitrogen (BUN) and alanine aminotransferase (ALT). In cell models using ferroptosis inducers such as iron-salophene (FeSP) and RAS-selective lethal 3 (RSL3), tannic acid (TA) exhibited superior protective capabilities compared to the traditional iron chelator, deferoxamine (DFO). Nrf2 and HO-1, regulators of antioxidant defense genes, are implicated in controlling ferroptosis. The expression of Nrf2 and HO-1 increased with TA treatment in the presence of FeSP, indicating their role in reducing lipid ROS levels. Additionally, TA significantly reduced the heightened levels of COX2, a marker associated with ferroptosis. In summary, the remarkable antiferroptosis activity of TA is likely due to its combined iron-chelating and antioxidant properties. With its safety profile for oral consumption, TA may offer benefits in cases of accidental iron ingestion and conditions like hemochromatosis.
Collapse
Affiliation(s)
- Indra Putra Taufani
- Graduate Institute of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Pharmacist Profession Education, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Sri Tasminatun
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Sabtanti Harimurti
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General, Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Jiro Hasegawa Situmorang
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.
| |
Collapse
|
12
|
Khanal V, Carroll M, Carter J, Zhong Y, Chikkamagaluru S, Sato A, Allen R, Wankhade U, Dole N. Lipocalin-2 Regulates Osteocyte Ferroptosis and Osteocyte-Osteoblast Crosstalk via Wnt Signaling to Control Bone Formation. RESEARCH SQUARE 2025:rs.3.rs-6430607. [PMID: 40343339 PMCID: PMC12060985 DOI: 10.21203/rs.3.rs-6430607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Osteoporosis is a multifactorial disease, and emerging evidence suggests that iron overload contributes to its progression. Here, we identify Lipocalin-2 (LCN2), a cytokine secreted by bone cells with endocrine effects on other tissues, as a local regulator of osteocyte iron metabolism and a mediator of skeletal deterioration. Our findings reveal that LCN2 promotes iron accumulation, mitochondrial dysfunction, and ferroptosis in osteocytes in a process dependent on LCN2 receptor SLC22A17. Genetic ablation of Lcn2 (Dmp1-Cre; Lcn2 fl/fl ) in osteocytes mitigates their ferroptotic vulnerability by preserving mitochondrial integrity and limiting iron overload. Remarkably, LCN2 deletion enhances osteocyte dendricity and lacunocanalicular network, supporting their function in bone remodeling. Mechanistically, we demonstrate that Lcn2 ablation in osteocytes decreases DKK1 and SOST expression in bone, leading to increased Wnt/β-catenin signaling and osteoblast-driven bone formation. Using in vitro and in vivo approaches, we establish the LCN2-SLC22A17 axis as a key pathway linking iron homeostasis, osteocyte dysfunction, and skeletal remodeling. These findings provide insight into a previously unrecognized mechanism underlying iron-driven bone loss and suggest that targeting LCN2 could offer therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Ying Zhong
- University of Arkansas for Medical Sciences
| | | | - Amy Sato
- University of Arkansas for Medical Sciences
| | - Ryan Allen
- University of Arkansas for Medical Sciences
| | | | - Neha Dole
- University of Arkansas for Medical Sciences
| |
Collapse
|
13
|
Song L, Gao F, Man J. Ferroptosis: the potential key roles in idiopathic pulmonary fibrosis. Eur J Med Res 2025; 30:341. [PMID: 40296070 PMCID: PMC12036158 DOI: 10.1186/s40001-025-02623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by recurrent injury to alveolar epithelial cells, epithelial-mesenchymal transition, and fibroblast activation, which leads to excessive deposition of extracellular matrix (ECM) proteins. However, effective preventative and therapeutic interventions are currently lacking. Ferroptosis, a unique form of iron-dependent lipid peroxidation-induced cell death, exhibits distinct morphological, physiological, and biochemical features compared to traditional programmed cell death. Recent studies have revealed a close relationship between iron homeostasis and the pathogenesis of pulmonary interstitial fibrosis. Ferroptosis exacerbates tissue damage and plays a crucial role in regulating tissue repair and the pathological processes involved. It leads to recurrent epithelial injury, where dysregulated epithelial cells undergo epithelial-mesenchymal transition via multiple signaling pathways, resulting in the excessive release of cytokines and growth factors. This dysregulated environment promotes the activation of pulmonary fibroblasts, ultimately culminating in pulmonary fibrosis. This review summarizes the latest advancements in ferroptosis research and its role in the pathogenesis and treatment of IPF, highlighting the significant potential of targeting ferroptosis for IPF management. Importantly, despite the rapid developments in this emerging research field, ferroptosis studies continue to face several challenges and issues. This review also aims to propose solutions to these challenges and discusses key concepts and pressing questions for the future exploration of ferroptosis.
Collapse
Affiliation(s)
- Longfei Song
- Department of Rehabilitation Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428 Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Fusheng Gao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China
| | - Jun Man
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong Second Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang City, 261041, Shandong Province, China.
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, No. 4948, Shengli East Street, Kuiwen District, Weifang City, 261041, Shandong Province, China.
| |
Collapse
|
14
|
Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of Labile Iron Predisposes Chemotherapy Resistant Cancer Cells to Ferroptosis. Int J Mol Sci 2025; 26:4193. [PMID: 40362430 PMCID: PMC12072162 DOI: 10.3390/ijms26094193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Despite centuries of research, metastatic cancer remains incurable due to resistance to all conventional cancer therapeutics. Alternative strategies leveraging non-proliferative vulnerabilities in cancer are required to overcome cancer recurrence. Ferroptosis is an iron dependent cell death pathway that has shown promising pre-clinical activity in several contexts of therapeutic resistant cancer. However, ferroptosis sensitivity is highly variable across tissue types and cell states, posing a challenge for clinical translation. We describe a convergent phenotype induced by chemotherapy where cells surviving chemotherapy have dysregulated iron homeostasis, regardless of initial cell type or chemotherapy used. Elevated labile iron levels are counteracted by NRF2 signaling, yet the resulting antioxidant programs do not alleviate the labile iron burden. Selectively inhibiting GPX4 leads to uniform susceptibility to ferroptosis in surviving cells, highlighting the common reliance on lipid peroxidation defenses. Cellular iron dysregulation is a vulnerability of chemoresistant cancer cells that can be leveraged by triggering ferroptosis.
Collapse
Affiliation(s)
- Luke V. Loftus
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Louis T. A. Rolle
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bowen Wang
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J. Pienta
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Pathobiology Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Luo G, Ma Y, Chen C, Hu Y, Yan C, Wang D, Wang C, Wang Y, Yu X, Sibirny A, Yuan J, Kang Y. CVF1 Promotes Invasive Candida albicans Infection via Inducing Ferroptosis. J Fungi (Basel) 2025; 11:342. [PMID: 40422675 DOI: 10.3390/jof11050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Recent studies have shown that several pathogens manipulate ferroptosis in host cells to aid their dissemination and enhance pathogenicity. While bacterial virulence factors capable of inducing ferroptosis have been identified, no such factors have been reported for human fungal pathogens thus far. Candida albicans, a most common human pathogenic fungus causing invasive fungal diseases, has recently been found to be able to induce ferroptosis in macrophages. Whether specific virulence factors induce ferroptosis in host cells that promote C. albicans pathogenicity remains to be defined. Here, we identify CVF1 as a critical virulence gene of C. albicans that is required for systemic fungal infection. Moreover, the CVF1 gene can significantly promote macrophage death. Using a macrophage infection model combined with the addition of cell death inhibitors, we show that the CVF1-induced death of macrophages is attributed to ferroptosis. More importantly, CVF1 is sufficient to trigger ferroptosis to promote C. albicans dissemination and pathogenicity in vivo. This study highlights a mechanism by which a virulence factor from a human fungal pathogen regulates ferroptosis in host cells, supporting the concept that human pathogenic fungi harbor specific virulence factors to manipulate ferroptosis in host cells for their invasive infection.
Collapse
Affiliation(s)
- Gang Luo
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang 561113, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yongman Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Chunyi Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yudie Hu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang 561113, China
| | - Chunchun Yan
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang 561113, China
| | - Di Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Cong Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Yanyan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Xichen Yu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guiyang 561113, China
| | - Andriy Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Jun Yuan
- Department of Laboratory Medicine, Guiyang Second People's Hospital, Guiyang 550081, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
16
|
Zheng P, Hu Z, Shen Y, Gu L, Ouyang Y, Duan Y, Ji G, Dong B, Lin Y, Wen T, Tian Q, Hou Y, Zhou Q, Sun X, Chen X, Wang KL, Luo S, Wu S, Sun Y, Li M, Xiao L, Wu Q, Meng Y, Liu G, Wang Z, Bai X, Duan S, Ding Y, Bi Y, Wang Y, Li G, Liu X, Lu Z, Wu X, Tang Z, Xu D. PSAT1 impairs ferroptosis and reduces immunotherapy efficacy via GPX4 hydroxylation. Nat Chem Biol 2025:10.1038/s41589-025-01887-3. [PMID: 40281343 DOI: 10.1038/s41589-025-01887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Tumor cells adapt to the inflammatory tumor microenvironment (TME) and develop resistance to immunotherapy, with ferroptosis being a major form of tumor cell death. However, the mechanisms by which tumor cells coordinate TME stimuli and their unique metabolic traits to evade ferroptosis and develop resistance to immunotherapy remain unclear. Here we showed that interferon-γ (IFNγ)-activated calcium/calmodulin-dependent protein kinase II phosphorylates phosphoserine aminotransferase 1 (PSAT1) at serine 337 (S337), allowing it to interact with glutathione peroxidase 4 (GPX4) and stabilize the protein, counteracting ferroptosis. PSAT1 elevates GPX4 stability by promoting α-ketoglutarate-dependent PHD3-mediated GPX4 proline 159 (P159) hydroxylation, disrupting its binding to HSC70 and inhibiting autophagy-mediated degradation. In mice, reconstitution of PSAT1 S337A or GPX4 P159A promotes ferroptosis and suppresses triple-negative breast cancer (TNBC) progression. Blocking PSAT1 pS337 with CPP elevates IFNγ-induced ferroptosis and enhances the efficacy of programmed cell death protein 1 (PD-1) antibodies in TNBC. Additionally, PSAT1-mediated GPX4 hydroxylation correlates with poor immunotherapy outcomes in patients with TNBC, highlighting PSAT1's noncanonical role in suppressing ferroptosis and immunotherapy sensitivity.
Collapse
Affiliation(s)
- Peixiang Zheng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiqiang Hu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuli Shen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Lina Gu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuran Duan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guimei Ji
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Bofei Dong
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yanni Lin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ting Wen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qi Tian
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yueru Hou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiqi Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuening Sun
- Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Min Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zheng Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Bi
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Yuhao Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Gaopeng Li
- Department of Colorectal Surgery and Oncology of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoguang Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaohong Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Daqian Xu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Lee WC, Dixon SJ. Mechanisms of ferroptosis sensitization and resistance. Dev Cell 2025; 60:982-993. [PMID: 40199240 DOI: 10.1016/j.devcel.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/08/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025]
Abstract
Ferroptosis is an iron-dependent and oxidative form of non-apoptotic cell death with roles in development, homeostasis, and disease. Ferroptosis sensitivity can vary between cells, often for reasons that are not well understood. In this perspective, we describe the core ferroptosis mechanism and outline how changes in iron, redox, and lipid metabolism can alter ferroptosis sensitivity. We propose the concept of a ferroptosis sensitivity-resistance continuum to describe how different intrinsic and extrinsic factors interact to push cells toward a more ferroptosis-sensitive or ferroptosis-resistant state, with effects on development and diseases such as cancer.
Collapse
Affiliation(s)
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Yin H, Chen Q, Gao S, Shoucair S, Xie Y, Habib JR, He T, Gan W, Wang J, Zhang L, Xu H, Shi C, He J, Wang W, Jin Y, Goggins MG, Liu L, Lou W, Wu W, Yu J, Pu N. The Crosstalk with CXCL10-Rich Tumor-Associated Mast Cells Fuels Pancreatic Cancer Progression and Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417724. [PMID: 39965084 PMCID: PMC11984875 DOI: 10.1002/advs.202417724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, necessitating approaches to improve prognosis. As the mediator of allergic process, mast cells have been found in various cancers and are associated with survival. However, the biological behaviors of tumor-associated mast cells (TAMCs) remain unclear. Herein, an excessive infiltration of TAMCs in PDAC is demonstrated, which apparently associated with poor survival in PDAC patients. PDAC cells are found to recruit CXCR2+ MCs into TME, and then inhibited MCs ferroptosis, and maintained their proliferation. Concomitantly, the tumor-derived exosome miR-188-5p activated the PTEN/AKT/GSK3β signaling, further stabilized transcriptional factor ERG by inhibiting its ubiquitin degradation, and finally enhanced the transcription of cxcl10 within TAMCs. In reverse, TAMCs-derived CXCL10 reversely promoted tumor epithelial-mesenchymal transition and induced immunosuppressive tumor microenvironment by recruiting CXCR3+ Tregs. Sodium cromoglycate (SCG) is a membrane stabilizer for MCs and confirmed as an effective and widely used agent to block TAMCs-derived CXCL10 and further sensitize the therapeutic efficacy of anti-PD-1 antibody plus gemcitabine for PDAC. These findings illuminate a critical and innovative crosstalk between TAMCs and PDAC cells that promote PDAC progression, and SCG sensitizes PDAC to the current immuno-chemotherapy, which reveals its potential to be a valuable adjuvant for PDAC patients.
Collapse
Affiliation(s)
- Hanlin Yin
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Qiangda Chen
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Shanshan Gao
- Department of RadiologyZhongshan HospitalFudan UniversityShanghai200032China
- Departments of Medicine, Oncology and SurgeryJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Sami Shoucair
- Departments of Medicine, Oncology and SurgeryJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Yuqi Xie
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Joseph R. Habib
- Department of SurgeryNew York University School of Medicine and NYU‐Langone Medical CenterNew YorkNY10016USA
| | - Taochen He
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Wei Gan
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Juan Wang
- HANGZHOU CHEXMED TECHNOLOGY CO., LTDHangzhou310000China
| | - Lei Zhang
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Huaxiang Xu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenye Shi
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Junyi He
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenquan Wang
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Yun Jin
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunming650500China
| | - Michael G Goggins
- Departments of Medicine and PathologyThe Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Liang Liu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenhui Lou
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenchuan Wu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Jun Yu
- Departments of Medicine, Oncology and SurgeryJohns Hopkins University School of MedicineBaltimoreMD21287USA
- Pancreas CenterTianjin Medical University Cancer Institute & HospitalTianjin Medical UniversityTianjin300060China
| | - Ning Pu
- Department of Pancreatic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
19
|
Chen J, Feng M, Zhang T, Zhong M, Wang Y, Zhang Q, Sun Y. Integrative bioinformatics analysis reveals CGAS as a ferroptosis-related signature gene in sepsis and screens the potential natural inhibitors of CGAS. Int J Biol Macromol 2025; 297:139778. [PMID: 39805448 DOI: 10.1016/j.ijbiomac.2025.139778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sepsis is a fatal organ dysfunction characterized by the simultaneous hyperinflammation and immunosuppression. Nowadays, the early precision intervention of sepsis is challenging. Ferroptosis is involved in the development of sepsis. The current study aimed to find out the signature genes of sepsis with network topology analysis and machine learning, and further provide the potential natural compounds for sepsis with virtual screening and in vitro validation. In this study, five genes namely CGAS, DPP4, MAPK14, PPARG and TXN were identified as ferroptosis-related signature genes for sepsis by network topological analysis, machine learning algorithms, and external datasets verification. The results of immune infiltration analysis confirmed these genes were significantly associated with the infiltration abundance of some immune cells including neutrophil, macrophage, plasmacytoid dendritic cell and activated dendritic cell. Moreover, coniferin, 5-O-caffeoylshikimic acid, and psoralenoside were initially identified as the natural inhibitors of CGAS by virtual screening. However, further in vitro study on macrophages revealed coniferin and psoralenoside had better inhibitory activities on CGAS. In summary, the present study pointed out the importance of CGAS in sepsis, and discovered novel natural inhibitors of CGAS.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Tianyao Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
20
|
Tang X, Mo D, Jiang N, Kou Y, Zhang Z, Peng R, Mao X, Wang R, Wang Y, Yan F. Polysaccharides from maggot extracts suppressed colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway. Int J Biol Macromol 2025; 296:139734. [PMID: 39798758 DOI: 10.1016/j.ijbiomac.2025.139734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials. ME in this study were composed of glucose, mannose, galactose, arabinose and xylose. ME dose-and time-dependently inhibited viability and obviously induced G0/G1 phase arrest in human colon cancer cells. Additionally, Proteomics and western blotting proved that ME suppressed the expression of GPX4 and increased the expression of HMOX1 in vivo and vitro. ME promoted ferroptosis in HCT116 and LOVO cells, reversing ROS, lipid peroxidation and GSSG/GSH radio level. In general, the findings stated that the polysaccharides provided effects of inducing colon cancer ferroptosis, uncovering potential function of ME from maggot as a candidate compound.
Collapse
Affiliation(s)
- Xun Tang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China; State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Dongping Mo
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
| | - Ning Jiang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yingying Kou
- Good Clinical Practice Office, the Affiliated Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Zhe Zhang
- Department of Pathology, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Rui Peng
- Department of General Surgery, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xuelian Mao
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Feng Yan
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China.
| |
Collapse
|
21
|
Wang M, Wang L, Sun H, Yuan H, Li Y. Mechanisms of ferroptosis and glucagon-like peptide-1 receptor agonist in post-percutaneous coronary intervention restenosis. Mol Cell Biochem 2025; 480:1465-1480. [PMID: 39283562 DOI: 10.1007/s11010-024-05118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 02/21/2025]
Abstract
Cardiovascular disease (CVD) claims millions of lives every year, with atherosclerotic cardiovascular disease (ASCVD) being the main cause. ASCVD treatment includes drug therapy, lifestyle intervention, and Percutaneous Coronary Intervention (PCI) all of which significantly enhance cardiovascular function and reduce mortality. However, hyperplasia can lead to vascular obstruction, worsen angina symptoms, or even cause heart disease, affecting patients' long-term prognosis. Therefore, finding effective ways to combat hyperplasia is crucial for cardiovascular therapy. In recent years, ferroptosis has gained attention as a new form of cell death closely associated with several diseases, including cardiovascular diseases. It involves complex metabolic processes critical for cellular homeostasis and normal function. Abnormal proliferation and phenotypic transformation of vascular smooth muscle cells (VSMC) are crucial mechanisms underlying cardiovascular disease development. Inhibiting ferroptosis in VSMC has the potential to significantly reduce neointima proliferation. Glucagon-like peptide-1 receptor agonist (GLP-1RA) constitutes a widely employed class of hypoglycemic agents with direct implications for the cardiovascular system, mitigating adverse cardiovascular events. Research indicates that the stimulation of GLP-1 holds promise as a therapeutic strategy in mitigating cardiovascular events such as restenosis. Hence, investigating the potential of GLP-1RA as a treatment option for cardiovascular ailments carries immense clinical significance.
Collapse
Affiliation(s)
- Miao Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huanxin Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No.59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
22
|
Puente-Cobacho B, Esteo C, Altea-Manzano P, Garcia-Perez JL, Quiles JL, Sanchez-Rovira P, Martín-Salvago MD, Molina-Jiménez L, Luque RJ, Fendt SM, Vera-Ramirez L. De novo lipogenesis protects dormant breast cancer cells from ferroptosis and promotes metastasis. Redox Biol 2025; 80:103480. [PMID: 39787900 PMCID: PMC11764609 DOI: 10.1016/j.redox.2024.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dormant disseminated tumor cells (DTCs) remain viable for years to decades before establishing a clinically overt metastatic lesion. DTCs are known to be highly resilient and able to overcome the multiple biological hurdles imposed along the metastatic cascade. However, the specific metabolic adaptations of dormant DTCs remain to be elucidated. Here, we reveal that dormant DTCs upregulate de novo lipogenesis and favor the activation and incorporation of monounsaturated fatty acids (MUFAs) to their cellular membranes through the activation of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3). Pharmacologic inhibition of de novo lipogenesis or genetic knockdown of ACSL3 results in lipid peroxidation and non-apoptotic cell death through ferroptosis. Clinically, ACSL3 was found to be overexpressed in quiescent DTCs in the lymph nodes of breast cancer patients and to significantly correlate with shorter disease-free and overall survival. Our work provides new insights into the molecular mechanisms enabling the survival of dormant DTCs and supports the use of de novo lipogenesis inhibitors to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Cintia Esteo
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | | | | | | | - Rafael J Luque
- Pathological Anatomy Unit, University Hospital of Jaén, Jaén, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
23
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
24
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 222 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
25
|
Martin M, Kumar R, Buchkovich NJ, Norbury CC. HCMV infection downregulates GPX4 and stimulates lipid peroxidation but does not induce ferroptosis. J Virol 2025; 99:e0185124. [PMID: 39772623 PMCID: PMC11852782 DOI: 10.1128/jvi.01851-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Human cytomegalovirus (HCMV) modulates numerous cellular pathways to facilitate infection, including key components in cellular iron homeostasis. Iron is essential to many cellular processes but, if present in excess, drives cell death through ferroptosis. Ferroptosis is a process that is dependent upon the accumulation of oxidatively damaged phospholipids (lipid peroxides); when these lipid peroxides accumulate in membranes, this culminates in plasma membrane rupture and eventual cell lysis. Here, we demonstrate that HCMV infection downregulates the expression of a key modulator of lipid peroxidation, glutathione peroxidase 4 (GPX4). HCMV infection also markedly increased levels of lipid peroxides within infected cells. Despite the marked downregulation of GPX4 by HCMV, further inhibition of GPX4 impaired virus replication. Interestingly, overexpression of GPX4 did not reduce the production of lipid peroxides within infected cells. In contrast, lipid peroxide levels were reduced by treatment with ferrostatin-1, a ferrous iron-dependent scavenger of alkoxyl radicals, indicating a role for iron in the production of lipid peroxides. HCMV-infected cells became less sensitive to GPX4 inhibition as infection progressed, requiring substantially higher levels of GPX4 inhibitors to induce ferroptosis compared to uninfected cells. This observed difference in sensitivity to ferroptosis upon infection correlated with a large increase in lipid production by infected cells. Therefore, the marked stimulation of lipid peroxidation by HCMV likely proceeds through a pathway that is independent of GPX4 regulation, but the ability of lipid peroxides to stimulate ferroptosis by modulating plasma membrane rupture is likely blunted by the massive increase in lipid production during HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) infection is intimately linked with countless host cell pathways that are modulated in a coordinated fashion to facilitate infection. Here, we describe HCMV-induced regulation of lipid peroxidation, a precursor of the iron-regulated cell death pathway known as ferroptosis, during human cytomegalovirus infection. These studies reveal hitherto unidentified changes in metabolism mediated by HCMV that decrease sensitivity to ferroptosis, despite increases in lipid peroxidation and transient increases in intracellular iron levels in infected cells.
Collapse
Affiliation(s)
- Madison Martin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Rinki Kumar
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas J. Buchkovich
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
26
|
Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem 2025; 13:1543455. [PMID: 40070406 PMCID: PMC11893434 DOI: 10.3389/fchem.2025.1543455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Oxidative stress is considered as the root-cause of different pathological conditions. Transition metals, because of their redox-active states, are capable of free radical generation contributing oxidative stress. Hemoglobin and myoglobin are two major heme proteins, involved in oxygen transport and oxygen storage, respectively. Heme prosthetic group of heme proteins is a good reservoir of iron, the most abundant transition metal in human body. Although iron is tightly bound in the heme pocket of these proteins, it is liberated under specific circumstances yielding free ferrous iron. This active iron can react with H2O2, a secondary metabolite, forming hydroxyl radical via Fenton reaction. Hydroxyl radical is the most harmful free radical among all the reactive oxygen species. It causes oxidative stress by damaging lipid membranes, proteins and nucleic acids, activating inflammatory pathways and altering membrane channels, resulting disease conditions. In this review, we have discussed how heme-irons of hemoglobin and myoglobin can promote oxidative stress under different pathophysiological conditions including metabolic syndrome, diabetes, cardiovascular, neurodegenerative and renal diseases. Understanding the association of heme proteins to oxidative stress may be important for knowing the complications as well as therapeutic management of different pathological conditions.
Collapse
Affiliation(s)
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
27
|
Fernández-Acosta R, Vintea I, Koeken I, Hassannia B, Vanden Berghe T. Harnessing ferroptosis for precision oncology: challenges and prospects. BMC Biol 2025; 23:57. [PMID: 39988655 PMCID: PMC11849278 DOI: 10.1186/s12915-025-02154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of diverse molecular mechanisms of regulated cell death has opened new avenues for cancer therapy. Ferroptosis, a unique form of cell death driven by iron-catalyzed peroxidation of membrane phospholipids, holds particular promise for targeting resistant cancer types. This review critically examines current literature on ferroptosis, focusing on its defining features and therapeutic potential. We discuss how molecular profiling of tumors and liquid biopsies can generate extensive multi-omics datasets, which can be leveraged through machine learning-based analytical approaches for patient stratification. Addressing these challenges is essential for advancing the clinical integration of ferroptosis-driven treatments in cancer care.
Collapse
Affiliation(s)
- Roberto Fernández-Acosta
- Cell Death Signaling lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Iuliana Vintea
- Cell Death Signaling lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biobix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Ine Koeken
- Cell Death Signaling lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Behrouz Hassannia
- Cell Death Signaling lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Cell Death Signaling lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Huang S, Sun J, Shen C, He G. Dietary and nutritional interventions for human diseases: their modulatory effects on ferroptosis. Food Funct 2025; 16:1186-1204. [PMID: 39866046 DOI: 10.1039/d4fo05606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A balanced diet is essential for maintaining human health. Increasing evidence suggests that dietary and nutritional interventions contribute to disease management and are associated with reduced healthcare costs and economic burden. Ferroptosis, a novel type of regulated cell death (RCD) driven by lipid peroxidation, has been shown to be involved in various pathological conditions, including diabetes, ischemia/reperfusion (I/R) injury, inflammation-related diseases, and cancer. Therefore, specifically targeting the uncontrolled ferroptosis process may offer new therapeutic opportunities. Of note, certain interventions, such as small-molecule compounds, natural products, herbal medicines, and non-pharmacological approaches, have been reported to prevent and treat multiple human diseases by reversing the dysregulation of ferroptosis. In this review, we present the key molecular mechanisms that regulate ferroptosis. Importantly, interventions targeting ferroptosis are summarized from the perspective of dietary patterns, food and nutrients. By understanding these advances, innovative ideas can be provided for individualized dietary interventions and treatment strategies.
Collapse
Affiliation(s)
- Shiqiong Huang
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| | - Ji Sun
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua 418000, China.
| | - Gefei He
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
| |
Collapse
|
29
|
Li R, Wang X, Zhang J, Hu Y, Yang Y, Zhang Y, Li B, Shen M, Wang C, Yang Y, Song X, Ren L, Zhang L. HIF-1α/HO-1-Mediated Ferroptosis Participates in Polystyrene Nanoplastics-Induced Intergenerational Cardiotoxicity. NANO LETTERS 2025; 25:2226-2235. [PMID: 39881441 DOI: 10.1021/acs.nanolett.4c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity. Key features of ferroptosis, including Fe2+ accumulation, mitochondrial injury, oxidative stress, GPX4 downregulation, and FTH1, ACSL4, and SLC7A11 upregulation, were detected. Furthermore, PS-NP treatment upregulated the expressions of HIF-1α and HO-1, and PS-NP-induced ferroptosis can be alleviated by inhibition of HIF-1α using si-HIF-1α. This study provided an insightful reference for the intergenerational cardiotoxicity assessment of PS-NP.
Collapse
Affiliation(s)
- Ruiqiong Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- School of Nursing, Peking University, Beijing 100191, China
| | - Xifeng Wang
- Department of Critical Care Medicine, Yu Huang Ding Hospital, Qingdao University, Yantai 264000, China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai 264003, China
| | - Yinchu Hu
- School of Nursing, Peking University, Beijing 100191, China
| | - Yuxin Yang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meidi Shen
- School of Nursing, Peking University, Beijing 100191, China
| | - Chongkun Wang
- School of Nursing, Peking University, Beijing 100191, China
| | - Yuanyuan Yang
- School of Nursing, Peking University, Beijing 100191, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Histology and Embryology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
30
|
Wang K, Wang L, Wu C, Chen H, Cai D, Lu L, Liu X, Jiao Z. Lycopene Ameliorates Polycystic Ovary Syndrome in Rats by Inhibiting Ovarian Ferroptosis Through Activation of the AMPK/Nrf2 Pathway. J Biochem Mol Toxicol 2025; 39:e70158. [PMID: 39871526 DOI: 10.1002/jbt.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA. Different doses of LYC were injected intraperitoneally in PCOS rats, the estrous cycle was recorded. The histopathological damage of ovary in PCOS rats was observed by HE staining, testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels were examined by ELISA kits. Transmission electron microscopy, prussian blue staining, biochemical kits to determine ferroptosis. Immunohistochemistry and Western blot to assess the levels of ferroptosis-related and AMPK/Nrf2 pathway-related proteins to explore whether LYC affects ferroptosis in PCOS through this pathway. PCOS rats had significantly higher body weights, ovarian weights and ovarian indices, and disorganized estrous cycles, which were dose-dependently ameliorated by LYC. In addition, LYC significantly ameliorated the histopathological damage of ovary in PCOS rats and restored the normal secretion of T, E2, LH, and FSH. LYC attenuates iron deposition in PCOS ovarian tissues, reduces iron and ROS levels, and inhibits ferroptosis. Notably, LYC activated the AMPK/Nrf2 pathway, and AMPK inhibitor intervention attenuated the therapeutic effect of LYC in PCOS rats, suggesting that LYC acts through the AMPK/Nrf2 pathway. LYC attenuates estrous cycle disruption, ameliorates pathological impairments, and inhibits ferroptosis in PCOS rats by modulating the AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lin Wang
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengyong Wu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongxiang Chen
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Donghui Cai
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linglan Lu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuli Liu
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhen Jiao
- Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
31
|
Zeng Y, Gan J, Cheng J, Wei C, Zhu X, Wei S, Pang L. Identification of important genes related to ferroptosis in early missed abortion based on WGCNA. Sci Rep 2025; 15:715. [PMID: 39753825 PMCID: PMC11698874 DOI: 10.1038/s41598-024-84135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Early missed abortion is defined as a pregnancy of ≤ 12 weeks in which there is a cessation of life in the developing embryo or fetus, leading to its retention within the uterine cavity without being spontaneously expelled promptly. This condition is commonly observed and significantly impacts human reproductive health. This study aimed to identify key genes related to ferroptosis that could serve as novel biomarkers for early missed abortion. Findings from gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicate a correlation between iron- DEFRGS in key modules and the p53 signaling, mitophagy-animal, and protein digestion and absorption pathways. An analysis of the protein-protein interaction (PPI) network was conducted on DEFRGs, identifying five central genes (TP53, EZH2, TIMP1, SLC3A2, and GABARAPL2) using STRING and Cytohubba ROC curves. The expression of pivotal genes in both the missed-abortion and control groups was verified by RT-qPCR. CIBERSORT analysis revealed a notable increase in the infiltration levels of CD8 + T lymphocytes and M2 macrophages among individuals in the early missed abortion group. Additionally, a ceRNA network was constructed to predict interactions between mRNA, miRNA, and lncRNA of the central genes. However, the interacting miRNAs predicted for SLC3A2 in the miRanda, miRDB, and TargetScan databases were limited to hsa-miR-661 and hsa-miR-4311, with no interacting lncRNAs found in the spongeScan database. This research has identified novel genes that could be targeted for the early detection and management of missed abortions.
Collapse
Affiliation(s)
- Yulu Zeng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiayi Gan
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinlian Cheng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Changqiang Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangyun Zhu
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shisi Wei
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, Guangxi, China.
| |
Collapse
|
32
|
Wang L, Zou G, Yan Y, Shi R, Guo Y, Zhang M, Lu L, Dong K. Idebenone Protects Photoreceptors Impaired by Oxidative Phosphorylation Disorder in Retinal Detachment. Invest Ophthalmol Vis Sci 2025; 66:17. [PMID: 39774627 PMCID: PMC11721677 DOI: 10.1167/iovs.66.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Oxidative phosphorylation (OXPHOS) is an aerobic metabolic mechanism, and its dysfunction plays an important role in the pathological changes of ischemic diseases. However, systematic studies on the occurrence of retinal detachment (RD) are lacking. Methods Single-cell RNA sequencing (scRNA-seq) of the human retina was performed to detect the metabolic changes of various retinal cells after RD. In this study, animal experiments were conducted to explore the OXPHOS activity after RD. In addition, idebenone, a coenzyme Q10 (CoQ10) analog currently used to treat Leber hereditary optic neuropathy (LHON), was used to improve the OXPHOS disorder in experimental RD model. Results ScRNA-seq revealed abnormal energy metabolism and OXPHOS pathways in retinal cells after RD. Adenosine triphosphate (ATP) and reactive oxygen species (ROS) are the main products of OXPHOS, the mouse RD model indicated that the rise in ROS levels may have a greater impact on photoreceptors in the early stage, whereas decreased ATP synthesis was observed in the later stage; these changes threaten the function and morphology of the retina. Idebenone was administered to model mice intragastrically, leading to reduced ROS levels in the early stage post-RD and improved ATP synthesis in the later stage, which was closely related to the maintenance of mitochondrial morphology. Conclusions OXPHOS disorder leads to photoreceptor degeneration after RD, which can be alleviated by improving OXPHOS function.
Collapse
Affiliation(s)
- Lisong Wang
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Gaocheng Zou
- Department of Ophthalmology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yuanye Yan
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Ronghua Shi
- Core Facility Center for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yue Guo
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Mei Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Li Lu
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Kai Dong
- Department of Ophthalmology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, China
| |
Collapse
|
33
|
Gao K, Lv L, Li Z, Wang C, Zhang J, Qiu D, Xue H, Xu Z, Tan G. Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis. Phytother Res 2025; 39:162-188. [PMID: 39513459 DOI: 10.1002/ptr.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
Collapse
Affiliation(s)
- Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longlong Lv
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenmoji Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiahao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Wang M, Prachyathipsakul T, Wisniewski CA, Xiong C, Goel S, Goel HL, Karner ER, Mukhopadhyay D, Gupta P, Majee A, Thayumanavan S, Mercurio AM. Therapeutic induction of ferroptosis in tumors using PD-L1 targeting antibody nanogel conjugates. Cell Chem Biol 2024; 31:2039-2051.e6. [PMID: 39603241 DOI: 10.1016/j.chembiol.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Although programmed cell death ligand 1 (PD-L1) is best known for its role in immune suppression, tumor-intrinsic functions are emerging. Here, we report that tumor cells that express PD-L1 are sensitive to ferroptosis inducers such as imidazole ketone erastin (IKE). PD-L1 promotes ferroptosis sensitivity because it suppresses SLC7A11 expression and diminishes glutathione levels. Although the use of anti-PD-L1 antibody drug conjugates (ADCs) could be effective for the delivery of ferroptosis inducers to specific tumor populations, the chemistry of most ferroptosis inducers precludes their incorporation in ADCs. To overcome this challenge, we synthesized an antibody nanogel conjugate (ANC) comprised of an anti-PD-L1 antibody conjugated to a nanogel encapsulated with IKE. This ANC targets PD-L1-expressing cells in vitro and in vivo and induces ferroptosis, resulting in tumor suppression. Importantly, this approach is superior to systemic administration of IKE because it enables enhanced delivery of IKE specifically to tumor cells and it requires lower drug doses for efficacy.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Christi A Wisniewski
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emmet R Karner
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Aniket Majee
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
35
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
36
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
37
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
38
|
Zeng X, Shu B, Zeng Q, Wang X, Li K, Wu J, Luo J. A bibliometric and visualization analysis of global research status and frontiers on autophagy in cardiomyopathies from 2004 to 2023. Int J Surg 2024; 110:7687-7700. [PMID: 38990309 PMCID: PMC11634079 DOI: 10.1097/js9.0000000000001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Autophagy is intimately associated with the development of cardiomyopathy and has received widespread attention in recent years. However, no relevant bibliometric analysis is reported at present. In order to summarize the research status of autophagy in cardiomyopathy and provide direction for future research, we conducted a comprehensive, detailed, and multidimensional bibliometric analysis of the literature published in this field from 2004 to 2023. METHODS All literatures related to autophagy in cardiomyopathy from 2004 to 2023 was collected from the Web of Science Core Collection, and annual papers, global publication trends, and proportion charts were analyzed and plotted using GraphPad price v8.0.2. In addition, CtieSpace [6.2.4R (64-bit) Advanced Edition] and VOSviewer (1.6.18 Edition) were used to analyze and visualize these data. RESULTS Two thousand two hundred seventy-nine papers about autophagy in cardiomyopathy were accessed in the Web of Science Core Collection over the last 20 years, comprising literatures from 70 countries and regions, 2208 institutions, and 10 810 authors. China contributes 56.32% of the total publications, substantially surpassing other countries, while the United States is ranked first in frequency of citations. Among the top 10 authors, six are from China, and four are from the United States. Air Force Military Medical University was the institution with the highest number of publications, while the Journal of Molecular and Cellular Cardiology (62 articles, 2.71% of the total) was the journal with the highest number of papers published in the field. Clustering of co-cited references and temporal clustering analysis showed that ferroptosis, hydrogen sulfide mitophagy, lipid peroxidation, oxidative stress, and SIRT1 are hot topics and trends in the field. The principal keywords are oxidative stress, heart, and heart failure. CONCLUSION The research on autophagy in cardiomyopathy is in the developmental stage. This represents the first bibliometric analysis of autophagy in cardiomyopathy, revealing the current research hotspots and future research directions in this field.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine
| | - Bin Shu
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Qingfeng Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine
| | - Xianggui Wang
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Kening Li
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Jincheng Wu
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Jianping Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| |
Collapse
|
39
|
Yin X, Yan C, Weng B, Luo H, Cai C. Nuclear factor erythroid 2-related factor 2 alleviates lung endothelial cells injury by inhibition of ferroptosis. Transl Pediatr 2024; 13:1985-1993. [PMID: 39649645 PMCID: PMC11621898 DOI: 10.21037/tp-24-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Background In recent years, the survival rate of preterm infants has significantly improved due to the application of pulmonary surfactant (PS) and advancements in lung-protective mechanical ventilation strategies. However, this has been accompanied by an increased incidence of complications, particularly lung diseases triggered by elevated reactive oxygen species (ROS) induced by hyperoxia. The primary mechanism of hyperoxic lung injury (HLI) involves the excessive production of ROS within cells and the aggregation of inflammatory cells. Currently, no effective prevention or treatment methods are available. Ferroptosis, a newly identified form of cell death, is closely linked to ROS accumulation and is likely involved in HLI. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates both HLI and ferroptosis, and targeting Nrf2 to inhibit ferroptosis may represent a key therapeutic approach for treating HLI. This study aimed to investigate the involvement of ferroptosis in HLI and to elucidate the regulatory role of Nrf2. Methods We employed the human pulmonary microvascular endothelial cell (HPMEC) model of hyperoxia exposure and corresponding intervention groups. Mitochondrial morphological alterations within HPMECs exposed to hyperoxia and various control groups were examined using transmission electron microscopy (TEM). Cell viability was assessed via the Cell Counting Kit-8 (CCK-8) assay, whereas intracellular ROS levels were quantified using the dichlorodihydrofluorescein diacetate (DCFH-DA) probe. Furthermore, the expression levels of GPX4 and Nrf2 were analyzed through quantitative polymerase chain reaction (qPCR) and western blot techniques. Results Relative to the control group, the HPMECs subjected to hyperoxic conditions exhibited diminished viability, heightened ROS levels, decreased GPX4 expression, and increased Nrf2 expression. These cells also demonstrated mitochondrial morphological alterations characteristic of ferroptosis, including reduced mitochondrial cristae and shrinkage. The application of a ferroptosis inhibitor mitigated cellular damage, lipid peroxidation, and the morphological manifestations of mitochondrial ferroptosis, whereas Nrf2 inhibitor ML385 reversed this effect. Conclusions Ferroptosis appears to contribute to the pathogenesis of HLI, with Nrf2 serving a protective function by mitigating ferroptosis.
Collapse
Affiliation(s)
- Xiaotong Yin
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongbing Yan
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Weng
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Luo
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Chen K, Wang S. New insights into FGF21 alleviates diabetic cardiomyopathy by suppressing ferroptosis: a commentary. Cardiovasc Diabetol 2024; 23:424. [PMID: 39593068 PMCID: PMC11590201 DOI: 10.1186/s12933-024-02519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes characterized by myocardial hypertrophy, fibrosis, and impaired cardiac function. Fibroblast growth factor 21 (FGF21) has emerged as a promising therapeutic target due to its antifibrotic, antioxidant, and anti-inflammatory properties. Our commentary summarizes and affirms the recent study by Wang et al., which demonstrates the significant role of ferroptosis in DCM pathogenesis. FGF21 has shown promise as a therapeutic target for DCM, potentially inhibiting ferroptosis, mitigating oxidative damage, and protecting cardiomyocyte function. Mechanistically, the study identified ATF4 as an upstream regulator of FGF21 in DCM, revealing that FGF21 directly interacts with ferritin and extends its half-life, thus inhibiting ferroptosis in DCM. These findings provide a theoretical basis for understanding the pathogenesis and treatment of DCM. Our commentary suggests that future studies should explore the role of non-cardiomyocyte cell types in DCM, verify findings with clinical samples, and address comprehensive methods for ferroptosis detection. Additionally, we discuss the clinical application and future potential of FGF21-based therapies for DCM. Such efforts may contribute to advancing DCM diagnosis and treatment, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
41
|
Xiao H, Chen C, Yuan X, Yang L, Zheng Y, Yuan J, Huang S, Liang J, Yuan S, Li M, Wang J. Gingerenone A induces ferroptosis in colorectal cancer via targeting suppression of SLC7A11 signaling pathway. Biomed Pharmacother 2024; 180:117529. [PMID: 39393329 DOI: 10.1016/j.biopha.2024.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common and fatal diseases, yet effective therapeutic drugs are lacking in clinical settings. Gingerenone A (GA) is an active compound derived from ginger, has demonstrated anti-tumor properties. However, the efficacy of GA against CRC and its primary mechanism of action remain unclear. MATERIALS AND METHODS MTT assay and colony formation assay were employed to evaluate cell viability. Transwell assays were utilized to assess the migratory and invasive capabilities of the cells. The effects of GA on ferroptosis related proteins were analyzed using Western blot. Levels of glutathione (GSH), malondialdehyde (MDA), Fe2+, and 4-hydroxynonenal (4-HNE) levels were measured with a biochemical index determination kit. Cellular reactive oxygen species (ROS) were quantified using flow cytometry. CETSA, pull-down, and co-immunoprecipitation (Co-IP) assays confirmed the interactions between GA and SLC7A11, as well as the ubiquitination promoted by SLC7A11. A xenograft mouse model was employed to validate the anticancer effect of GA in vivo. RESULTS We observed that GA significantly suppressed proliferation in human CRC cells. Additionally, GA treatment inhibited the migration, invasion, and colony formation of CRC cells. Subsequently, through the use of specific inhibitors, we discovered that the suppression of CRC cells by GA was dependent on ferroptosis rather than autophagy or apoptosis. Previous research has demonstrated that GA treatment significantly triggers ferroptosis. Mechanistically, GA treatment promotes the degradation of the SLC7A11 protein, which plays a crucial role in ferroptosis. Notably, the knockdown of SLC7A11 abolished the detrimental effects of GA on the proliferation of CRC cells and reversed GA-induced ferroptosis in CRC cells both in vivo and in vitro. Further research has shown that GA can directly bind to the SLC7A11 protein and promote its ubiquitination. CONCLUSION Our research provides compelling evidence that GA may serve as a potential agent for suppressing the progression of CRC by inducing ferroptosis and promoting the ubiquitination and degradation of SLC7A11.
Collapse
Affiliation(s)
- Hongyu Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of General Surgery, Chongqing General Hospital, Chongqing 400013, China
| | - Chen Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| | - Xin Yuan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Limei Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yun Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jin Yuan
- Pu'er Traditional Chinese Medicine Hospital in Yunnan Province, Puer, Yunnan 665099, China
| | - Song Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shengliang Yuan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Gaozhou People's Hospital, Guangdong Medical University, Gaozhou, Guangdong 525200, China.
| | - Meifen Li
- Guangdong Women and Children Hospital, Guangzhou 511400, PR China.
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
42
|
Ghalwash AA, El-Gohary RM, El Amrousy D, Morad LM, Kassem SS, Hegab II, Okasha AH. The gut microbiota metabolite trimethylamine-N-oxide in children with β-thalassemia: potential implication for iron-induced renal tubular dysfunction. Pediatr Res 2024:10.1038/s41390-024-03639-w. [PMID: 39448817 DOI: 10.1038/s41390-024-03639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Renal tubular dysfunction is common in transfusion-dependent β thalassemia (β-TM). Iron overload, chronic anemia, and hypoxia are precipitating factors for renal insult. However, gut microbiota engagement in the renal insult has not been explored. Our work aimed to assess the potential link between iron overload, gut leakage/dysbiosis, and kidney dysfunction in these children. METHODS We enrolled 40 children with β-TM and 40 healthy controls. Gut leakage/dysbiosis biomarkers (trimethylamine-N-oxide [TMAO] and fecal short-chain fatty acids [SCFAs]), oxidative stress and inflammatory biomarkers, TMAO-regulated proteins such as serum sirtuin 1 (S.SIRT1) and serum high mobility box group-1 (S.HMGB1), and tubular dysfunction biomarkers were assessed. Correlations and regression analysis were performed to assess the relation between different parameters. RESULTS Iron overload, redox imbalance, and generalized inflammation were evident in children with β-TM. Renal tubular dysfunction biomarkers and S.TMAO were significantly elevated in the patient group. Furthermore, fecal SCFAs were significantly lower with upregulation of the investigated genes in the patient group. The correlation studies affirmed the close relationship between circulating ferritin, TMAO, and renal dysfunction and strongly implicated SIRT1/HMGB1 axis in TMAO action. CONCLUSIONS Gut dysbiosis may have a role in the pathogenesis of renal injury in children with β-TM. IMPACT Renal tubular dysfunction is a prominent health issue in β thalassemia major (β-TM). Iron overload, chronic anemia, and hypoxia are known precipitating factors. However, gut microbiota engagement in renal insult in these patients has not yet been explored. We aimed to assess potential link between iron overload, gut leakage/dysbiosis, and kidney dysfunction in β-TM children and to highlight the SIRT1/HMGB1 axis, a signal motivated by the gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO), involvement in such insults. We found that gut leakage/dysbiosis may have a role in kidney dysfunction in β-TM children by exacerbating the iron-motivated oxidative stress, inflammation, ferroptosis, and modulating SIRT1/HMGB1 axis.
Collapse
Affiliation(s)
- Asmaa A Ghalwash
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Lamia M Morad
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaima S Kassem
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa H Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
43
|
Xiong Y, Tan L, Chan WK, Yin ES, Donepudi SR, Ding J, Wei B, Tran B, Martinez S, Mahmud I, Stewart HI, Hermanson DJ, Weinstein JN, Lorenzi PL. Ultra-Fast Multi-Organ Proteomics Unveils Tissue-Specific Mechanisms of Drug Efficacy and Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615060. [PMID: 39386681 PMCID: PMC11463356 DOI: 10.1101/2024.09.25.615060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Rapid and comprehensive analysis of complex proteomes across large sample sets is vital for unlocking the potential of systems biology. We present UFP-MS, an ultra-fast mass spectrometry (MS) proteomics method that integrates narrow-window data-independent acquisition (nDIA) with short-gradient micro-flow chromatography, enabling profiling of >240 samples per day. This optimized MS approach identifies 6,201 and 7,466 human proteins with 1- and 2-min gradients, respectively. Our streamlined sample preparation workflow features high-throughput homogenization, adaptive focused acoustics (AFA)-assisted proteolysis, and Evotip-accelerated desalting, allowing for the processing of up to 96 tissue samples in 5 h. As a practical application, we analyzed 507 samples from 13 mouse tissues treated with the enzyme-drug L-asparaginase (ASNase) or its glutaminase-free Q59L mutant, generating a quantitative profile of 11,472 proteins following drug treatment. The MS results confirmed the impact of ASNase on amino acid metabolism in solid tissues. Further analysis revealed broad suppression of anticoagulants and cholesterol metabolism and uncovered numerous tissue-specific dysregulated pathways. In summary, the UFP-MS method greatly accelerates the generation of biological insights and clinically actionable hypotheses into tissue-specific vulnerabilities targeted by ASNase.
Collapse
|
44
|
Nguyen TPM, Woods SL, Secombe KR, Tang S, Elz AS, Ayton S, Finnie J, Nagpal A, Pouliot N, Bowen JM. Ferroptosis - a potential feature underlying neratinib-induced colonic epithelial injury. Cancer Chemother Pharmacol 2024; 94:493-505. [PMID: 39002022 PMCID: PMC11438713 DOI: 10.1007/s00280-024-04699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.
Collapse
Affiliation(s)
- Triet P M Nguyen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Susan L Woods
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kate R Secombe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Aurelia S Elz
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Finnie
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Aadya Nagpal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Normand Pouliot
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joanne M Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
45
|
Zhang Y, Hu K, Shang Z, Yang X, Cao L. Ferroptosis: Regulatory mechanisms and potential targets for bone metabolism: A review. Medicine (Baltimore) 2024; 103:e39158. [PMID: 39331895 PMCID: PMC11441915 DOI: 10.1097/md.0000000000039158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/10/2024] [Indexed: 09/29/2024] Open
Abstract
Bone homeostasis is a homeostasis process constructed by osteoblast bone formation and osteoclast bone resorption. Bone homeostasis imbalance and dysfunction are the basis for the development of various orthopedic diseases such as osteoporosis, osteoarthritis, and steroid-induced avascular necrosis of femoral head. Previous studies have demonstrated that ferroptosis can induce lipid peroxidation through the generation of reactive oxygen species, activate a number of signaling pathways, and participate in the regulation of osteoblast bone formation and osteoclast bone resorption, resulting in bone homeostasis imbalance, which is an important factor in the pathogenesis of many orthopedic diseases, but the mechanism of ferroptosis is still unknown. In recent years, it has been found that, in addition to iron metabolism and intracellular antioxidant system imbalance, organelle dysfunction is also a key factor affecting ferroptosis. This paper takes this as the starting point, reviews the latest literature reports at home and abroad, elaborates the pathogenesis and regulatory pathways of ferroptosis and the relationship between ferroptosis and various organelles, and summarizes the mechanism by which ferroptosis mediates bone homeostasis imbalance, with the aim of providing new directions for the research related to ferroptosis and new ideas for the prevention and treatment of bone and joint diseases.
Collapse
Affiliation(s)
- Yongjie Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangyi Hu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhengya Shang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaorui Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linzhong Cao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
46
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Su F, Descher H, Bui-Hoang M, Stuppner H, Skvortsova I, Rad EB, Ascher C, Weiss A, Rao Z, Hohloch S, Koeberle SC, Gust R, Koeberle A. Iron(III)-salophene catalyzes redox cycles that induce phospholipid peroxidation and deplete cancer cells of ferroptosis-protecting cofactors. Redox Biol 2024; 75:103257. [PMID: 38955113 PMCID: PMC11263665 DOI: 10.1016/j.redox.2024.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 μM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hubert Descher
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Minh Bui-Hoang
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ira Skvortsova
- EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ehsan Bonyadi Rad
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Zhigang Rao
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Solveigh C Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
48
|
Vera M, Barahona MJ, Nova-Lamperti E, Nualart F, Ferrada L. The phenol red compound: A potential artifact in pharmacological induction of ferroptosis. Free Radic Biol Med 2024; 222:397-402. [PMID: 38944214 DOI: 10.1016/j.freeradbiomed.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Phenol red (PR) is a commonly used compound in culture media as a pH indicator. However, it is unknown whether this compound can interfere with the pharmacological induction of ferroptosis. Here, using high-content live-cell imaging death analysis, we determined that the presence of PR in the culture medium preconditioned normal and tumor cells to ferroptosis induced by system xc- inhibition mediated by imidazole ketone erastin (IKE) or GPX4 blockade in response to RSL-3, but had no significant effects against treatment with the endoperoxide FINO2. Mechanistically, we revealed that PR decreases the levels of the antiferroptotic genes Slc7a11, Slc3a2, and Gpx4, while promoting the overexpression de Acls4, a key inducer of ferroptosis. Additionally, through superresolution analysis, we determined that the presence of PR mislocalizes the system xc- from the plasma membrane. Thus, our results show that the presence of PR in the culture medium can be a problematic artifact for the accurate interpretation of cell sensitivity to IKE or RSL-3-mediated ferroptosis induction.
Collapse
Affiliation(s)
- Matías Vera
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepción, Concepción, Chile; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - María José Barahona
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile; Laboratory of Physiology of Appetite, FIDELA, Faculty of Medicine and Science, Universidad San Sebastián, Concepción Campus, Concepción, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepción, Concepción, Chile; Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
49
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
50
|
Liang FG, Zandkarimi F, Lee J, Axelrod JL, Pekson R, Yoon Y, Stockwell BR, Kitsis RN. OPA1 promotes ferroptosis by augmenting mitochondrial ROS and suppressing an integrated stress response. Mol Cell 2024; 84:3098-3114.e6. [PMID: 39142278 PMCID: PMC11373561 DOI: 10.1016/j.molcel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Ferroptosis, an iron-dependent form of nonapoptotic cell death mediated by lipid peroxidation, has been implicated in the pathogenesis of multiple diseases. Subcellular organelles play pivotal roles in the regulation of ferroptosis, but the mechanisms underlying the contributions of the mitochondria remain poorly defined. Optic atrophy 1 (OPA1) is a mitochondrial dynamin-like GTPase that controls mitochondrial morphogenesis, fusion, and energetics. Here, we report that human and mouse cells lacking OPA1 are markedly resistant to ferroptosis. Reconstitution with OPA1 mutants demonstrates that ferroptosis sensitization requires the GTPase activity but is independent of OPA1-mediated mitochondrial fusion. Mechanistically, OPA1 confers susceptibility to ferroptosis by maintaining mitochondrial homeostasis and function, which contributes both to the generation of mitochondrial lipid reactive oxygen species (ROS) and suppression of an ATF4-mediated integrated stress response. Together, these results identify an OPA1-controlled mitochondrial axis of ferroptosis regulation and provide mechanistic insights for therapeutically manipulating this form of cell death in diseases.
Collapse
Affiliation(s)
- Felix G Liang
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Jaehoon Lee
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua L Axelrod
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan Pekson
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Richard N Kitsis
- Departments of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|