1
|
Schwartz AV, Chao G, Robinson M, Conley BM, Ahmed Adam MA, Wells GA, Hoang A, Albekioni E, Gallo C, Weeks J, Yunker K, Quichocho G, George UZ, Niesman I, House CD, Turcan Ş, Sohl CD. Catalytically distinct metabolic enzyme isocitrate dehydrogenase 1 mutants tune phenotype severity in tumor models. J Biol Chem 2025; 301:108477. [PMID: 40188944 DOI: 10.1016/j.jbc.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to IDH1 R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis and are associated with distinct epigenetic and transcriptomic consequences, with higher D2HG levels appearing to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brittany M Conley
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Katelyn Yunker
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Computational Science Research Center, San Diego State University, San Diego, California, USA; Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Ingrid Niesman
- Electron Microscope Facility, San Diego State University, San Diego, California, USA
| | - Carrie D House
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA.
| |
Collapse
|
2
|
Gaertner K, Terzioglu M, Michell C, Tapanainen R, Pohjoismäki J, Dufour E, Saari S. Species differences in glycerol-3-phosphate metabolism reveals trade-offs between metabolic adaptations and cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149530. [PMID: 39631556 DOI: 10.1016/j.bbabio.2024.149530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The temperate climate-adapted brown hare (Lepus europaeus) and the cold-adapted mountain hare (Lepus timidus) are closely related and interfertile species. However, their skin fibroblasts display distinct gene expression profiles related to fundamental cellular processes. This indicates important metabolic divergence between the two species. Through targeted metabolomics and metabolite tracing, we identified species-specific variations in glycerol 3-phosphate (G3P) metabolism. G3P is a key metabolite of the G3P shuttle, which transfers reducing equivalents from cytosolic NADH to the mitochondrial electron transport chain (ETC), consequently regulating glycolysis, lipid metabolism, and mitochondrial bioenergetics. Alterations in G3P metabolism have been implicated in multiple human pathologies including cancer and diabetes. We observed that mountain hare mitochondria exhibit elevated G3P shuttle activity, alongside increased membrane potential and decreased mitochondrial temperature. Silencing mitochondrial G3P dehydrogenase (GPD2), which couples the conversion of G3P to the ETC, uncovered its species-specific role in controlling mitochondrial membrane potential and highlighted its involvement in skin fibroblast thermogenesis. Unexpectedly, GPD2 silencing enhanced wound healing and cell proliferation rates in a species-specific manner. Our study underscores the pivotal role of the G3P shuttle in mediating physiological, bioenergetic, and metabolic divergence between these hare species.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland; King Abdullah University of Science and Technology, Makkah, Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jaakko Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Eric Dufour
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Sina Saari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Lin G, Liu Q, Xie C, Ding K, Mo G, Zeng L, Zhang F, Liu R, Lu L, Hong W, Mao Y, Su H, Li S. Upregulated FSP1 by GPD1/1L mediated lipid droplet accumulation enhances ferroptosis resistance and peritoneal metastasis in gastric cancer. Cell Commun Signal 2025; 23:132. [PMID: 40075460 PMCID: PMC11899195 DOI: 10.1186/s12964-025-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
To successfully metastasize, cancer cells must evade detachment induced cell death, known as anoikis. Unraveling the mechanisms that gastric cancer (GC) circumvent anoikis and achieve peritoneal metastasis especially during unanchored growth, could significantly improve patient outcomes. Our study reveals that GC cells exhibit increased lipid peroxidation, MDA production, and cell death during suspension culture, which can be mitigated by the intervention with liproxstatin-1 and ferrostatin-1. We discovered that oleic acid (OA) or adipocytes stimulate lipid accumulation in GC cells, thereby inhibiting lipid peroxidation and cell death. Lipid mass spectrometry confirmed an upregulation of triglyceride synthesis, indicating that the accumulation of lipid droplet may confer resistance to ferroptosis during suspension growth. In vitro assays demonstrated that OA not only induces lipid droplet accumulation but also upregulates the expression of ferroptosis suppressor protein 1 (FSP1), a process that can be abrogated by the double knockout of GPD1/1L genes. Additionally, we have demonstrated that a decrease in the ubiquitination of FSP1 in GC cells upon lipid droplet accumulation, as well as silencing or pharmacological targeting FSP1, promotes ferroptosis and disrupts the peritoneal metastatic potential of GC cells. Collectively, our findings highlight the potential of FSP1 as a promising therapeutic target for metastatic gastric cancer.
Collapse
Affiliation(s)
- Guoliang Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Qingnan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengjie Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ke Ding
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Guanghua Mo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lu Zeng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Fan Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - RuiXuan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuling Mao
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haibo Su
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Shuai Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
4
|
Kutsenko Y, Iñiguez LP, Barreda A, Pardo-Marín L, Toval A, Garrigos D, Martínez-Morga M, Pujante S, Ribeiro Do-Couto B, Tseng KY, Cerón JJ, Garaulet M, Wisniewska MB, Irimia M, Ferran JL. Timing of exercise differentially impacts adipose tissue gain in male adolescent rats. Mol Metab 2025; 93:102100. [PMID: 39832562 PMCID: PMC11810837 DOI: 10.1016/j.molmet.2025.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model. METHODS Rats were subjected to one of four conditions during their adolescence: early active phase control or exercise (EAC or EAE; ZT13), and late active phase control or exercise (LAC or LAE; ZT23). The effects of exercise timing were assessed at the level of subcutaneous and visceral adipose tissue transcriptome, body composition, hypothalamic expression of orexigenic and anorexigenic genes, blood serum markers and 24-hour core body temperature patterns. RESULTS We found that late active phase exercise (ZT23) greatly upregulated pathways of lipid synthesis, glycolysis and NADH shuttles in LAE rats, compared to LAC or EAE. Conversely, LAE rats showed notably lower content of adipose tissue. In addition, LAE rats showed signs of impaired FGF21-adiponectin axis compared to other groups. CONCLUSIONS Finally, LAE rats showed higher post-exercise core body temperature compared to other groups. Our results thus indicate that our exercise protocol induced an unusual effect characterized by enhanced lipid synthesis but reduced adipose tissue content in late active phase but not early active phase exercise during adolescence.
Collapse
Affiliation(s)
- Y Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
| | - L P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - A Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
| | - L Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis, Interlab UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - A Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
| | - D Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
| | - M Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
| | - S Pujante
- Faculty of Psychology, University of Murcia, Murcia, 30100, Spain
| | - B Ribeiro Do-Couto
- Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain; Faculty of Psychology, University of Murcia, Murcia, 30100, Spain
| | - K Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 60612, Chicago, Illinois, USA
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - M Garaulet
- Department of Physiology, University of Murcia, IMIB-Arrixaca, 30120, Murcia, Spain
| | - M B Wisniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - M Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, 08003, Spain; Universitat Pompeu Fabra, Barcelona, 08002, Spain; ICREA, Barcelona, 08010, Spain
| | - J L Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain.
| |
Collapse
|
5
|
Pan X, Cracan V. Translocation renal cell carcinoma says no to the Warburg effect. Nat Metab 2025; 7:438-440. [PMID: 39915637 PMCID: PMC11949694 DOI: 10.1038/s42255-025-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
A new study reveals that in drastic contrast to other cancer types, translocation renal cell carcinoma (tRCC) is transcriptionally rewired towards an oxidative phosphorylation (OXPHOS) state, which renders tRCC vulnerable to interventions that promote NADH-reductive stress, highlighting how the maintenance of the optimal redox state in cancer can be therapeutically exploited.
Collapse
Affiliation(s)
- Xingxiu Pan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Cheng C, Zha Q, Sun L, Cui T, Guo X, Xing C, Chen Z, Ji C, Liang S, Tao S, Chu J, Wu C, Chu Q, Gu X, Zhang N, Fu Y, Deng S, Zhu Y, Wang J, Liu Y, Liu L. VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8 +T cells function in the HCC microenvironment. Signal Transduct Target Ther 2025; 10:26. [PMID: 39848960 PMCID: PMC11758394 DOI: 10.1038/s41392-024-02120-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
CD8+T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8+T cells suppression in hepatocellular carcinoma (HCC). Our findings reveal that VCP suppresses the activation, expansion, and cytotoxic capacity of CD8+T cells both in vitro and in vivo, significantly contributing to the immunosuppressive nature of the TME. Mechanistically, VCP stabilizes the expression of glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L), leading to the accumulation of glycerol-3-phosphate (G3P), a downstream metabolite of GPD1L. The accumulated G3P diffuses into the TME and directly interacts with SRC-family tyrosine kinase LCK, a critical component of the T-cell receptor (TCR) signaling pathway in CD8+T cells. This interaction heightens the phosphorylation of Tyr505, a key inhibitory residue, ultimately reducing LCK activity and impairing downstream TCR signaling. Consequently, CD8+T cells lose their functional capacity, diminishing their ability to fight against HCC. Importantly, we demonstrated that targeting VCP in combination with anti-PD1 therapy significantly suppresses HCC tumor growth and restores the anti-tumor function of CD8+T cells, suggesting synergistic therapeutic potential. These findings highlight a previously unrecognized mechanism involving VCP and G3P in suppressing T-cell-mediated immunity in the TME, positioning VCP as a promising upstream target for enhancing immunotherapy in HCC.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Zhengxiang Chen
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shuhang Liang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Ning Zhang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| |
Collapse
|
7
|
Huang C, Xue L, Lin X, Shen Y, Wang X. Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression. DNA Cell Biol 2024; 43:605-618. [PMID: 39504115 DOI: 10.1089/dna.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women. This study aims to explore the molecular mechanism of lactate secreted by CC cells modulating macrophage polarization in CC via histone lactylation. Normal cervical epithelium (NCE), low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), and cervical squamous cell carcinoma (CESC) were collected to assess H3K18la level and macrophage infiltration. Macrophages were incubated with SiHa cell-derived conditioned medium to detect M1 and M2 markers. NCE, HSIL, and CESC samples were used for ChIP-seq of H3K18la. Histone lactylation-dirven GPD2 was knocked down in macrophages. Compared to NCE, H3K18la level and M2 macrophage abundance were increased in LSIL, HSIL, and CESC. Lactate secreted by CC cells upregulated H3K18la and M2 markers but downregulated M1 markers in macrophages. ChIP-seq revealed that upregulated pathways in HSIL vs. NCE and CESC vs. HSIL were commonly enriched in lipid metabolism. Notably, lactate upregulated H3K18la-modified GPD2 expression in macrophages, and GPD2 knockdown reversed lactate induction to M2 macrophages. Collectively, lactate secreted by CC cells upregulates GPD2 via histone lactylation, thereby promoting M2 macrophage polarization in CC. This study provides new insights into the role of histone lactylation in macrophage polarization in the malignant transformation of CC.
Collapse
Affiliation(s)
- Chenlingzi Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lujiadai Xue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinzi Lin
- Department of Obstetrics and Gynecology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
9
|
Lorentzen GM, Łaniewski P, Cui H, Mahnert ND, Mourad J, Borst MP, Willmott L, Chase DM, Roe DJ, Herbst-Kralovetz MM. Cervicovaginal Metabolome and Tumor Characteristics for Endometrial Cancer Detection and Risk Stratification. Clin Cancer Res 2024; 30:3073-3087. [PMID: 38687603 PMCID: PMC11247321 DOI: 10.1158/1078-0432.ccr-23-2934] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Endometrial cancer is highly prevalent and lacking noninvasive diagnostic techniques. Diagnosis depends on histological investigation of biopsy samples. Serum biomarkers for endometrial cancer have lacked sensitivity and specificity. The objective of this study was to investigate the cervicovaginal environment to improve the understanding of metabolic reprogramming related to endometrial cancer and identify potential biomarker candidates for noninvasive diagnostic and prognostic tests. EXPERIMENTAL DESIGN Cervicovaginal lavages were collected from 192 participants with endometrial cancer (n = 66) and non-malignant conditions (n = 108), and global untargeted metabolomics was performed. Using the metabolite data (n = 920), we completed a multivariate biomarker discovery analysis. RESULTS We analyzed grade 1/2 endometrioid carcinoma (n = 53) and other endometrial cancer subtypes (n = 13) to identify shared and unique metabolic signatures between the subtypes. When compared to non-malignant conditions, downregulation of proline (P < 0.0001), tryptophan (P < 0.0001), and glutamate (P < 0.0001) was found among both endometrial cancer groups, relating to key hallmarks of cancer including immune suppression and redox balance. Upregulation (q < 0.05) of sphingolipids, fatty acids, and glycerophospholipids was observed in endometrial cancer in a type-specific manner. Furthermore, cervicovaginal metabolites related to tumor characteristics, including tumor size and myometrial invasion. CONCLUSIONS Our findings provide insights into understanding the endometrial cancer metabolic landscape and improvement in diagnosis. The metabolic dysregulation described in this article linked specific metabolites and pathophysiological mechanisms including cellular proliferation, energy supply, and invasion of neighboring tissues. Furthermore, cervicovaginal metabolite levels related to tumor characteristics, which are used for risk stratification. Overall, development of noninvasive diagnostics can improve both the acceptability and accessibility of diagnosis.
Collapse
Affiliation(s)
- Georgia M. Lorentzen
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
| | - Haiyan Cui
- UA Cancer Center, University of Arizona, Tucson, Arizona.
| | - Nichole D. Mahnert
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- Banner–University Medical Center, Phoenix, Arizona.
| | - Jamal Mourad
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- Banner–University Medical Center, Phoenix, Arizona.
| | - Matthew P. Borst
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- Banner–University Medical Center, Phoenix, Arizona.
| | | | | | - Denise J. Roe
- UA Cancer Center, University of Arizona, Tucson, Arizona.
- Department of Epidemiology & Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona.
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- Department of Basic Medical Sciences, College of Medicine–Phoenix, University of Arizona, Phoenix, Arizona.
- UA Cancer Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
10
|
Ohara Y, Craig AJ, Liu H, Yang S, Moreno P, Dorsey TH, Cawley H, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Ambs S, Hussain SP. LMO3 is a suppressor of the basal-like/squamous subtype and reduces disease aggressiveness of pancreatic cancer through glycerol 3-phosphate metabolism. Carcinogenesis 2024; 45:475-486. [PMID: 38366633 PMCID: PMC11229528 DOI: 10.1093/carcin/bgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) encompasses diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, each exhibiting distinct characteristics, with the latter known for its aggressiveness. We employed an integrative approach combining transcriptome and metabolome analyses to pinpoint potential genes contributing to the basal-like/squamous subtype differentiation. Applying this approach to our NCI-UMD-German and a validation cohort, we identified LIM Domain Only 3 (LMO3), a transcription co-factor, as a candidate suppressor of the basal-like/squamous subtype. Reduced LMO3 expression was significantly associated with higher pathological grade, advanced disease stage, induction of the basal-like/squamous subtype and decreased survival among PDAC patients. In vitro experiments demonstrated that LMO3 transgene expression inhibited PDAC cell proliferation and migration/invasion, concurrently downregulating the basal-like/squamous gene signature. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program linked to elevated LMO3 and the classical/progenitor subtype, characterized by enhanced lipogenesis and suppressed amino acid metabolism. Notably, glycerol 3-phosphate (G3P) levels positively correlated with LMO3 expression and associated with improved patient survival. Furthermore, glycerol-3-phosphate dehydrogenase 1 (GPD1), a crucial enzyme in G3P synthesis, showed upregulation in LMO3-high and classical/progenitor PDAC, suggesting its potential role in mitigating disease aggressiveness. Collectively, our findings suggest that heightened LMO3 expression reduces transcriptome and metabolome characteristics indicative of basal-like/squamous tumors with decreased disease aggressiveness in PDAC patients. The observations describe LMO3 as a candidate for diagnostic and therapeutic targeting in PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Surgical Oncology, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
12
|
Fei X, Du X, Wang J, Liu J, Gong Y, Zhao Z, Cao Z, Fu Q, Zhu Y, Dong L, Dong B, Pan J, Sun W, Xie S, Xue W. Precise diagnosis and risk stratification of prostate cancer by comprehensive serum metabolic fingerprints: a prediction model study. Int J Surg 2024; 110:1450-1462. [PMID: 38181121 PMCID: PMC10942223 DOI: 10.1097/js9.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES Prostate cancer (PCa) is one of the most common malignancies in men worldwide and has caused increasing clinical morbidity and mortality, making timely diagnosis and accurate staging crucial. The authors introduced a novel approach based on mass spectrometry for precise diagnosis and stratification of PCa to facilitate clinical decision-making. METHODS Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of trace blood samples was combined with machine learning algorithms to construct diagnostic and stratification models. A total of 367 subjects, comprising 181 with PCa and 186 with non-PCa were enrolled. Additional 60 subjects, comprising 30 with PCa and 30 with non-PCa were enrolled as an external cohort for validation. Subsequent metabolomic analysis was carried out using Autoflex MALDI-TOF, and the mass spectra were introduced into various algorithms to construct different models. RESULTS Serum metabolic fingerprints were successfully obtained from 181 patients with PCa and 186 patients with non-PCa. The diagnostic model based on the eight signals demonstrated a remarkable area under curve of 100% and was validated in the external cohort with the area under curve of 87.3%. Fifteen signals were selected for enrichment analysis, revealing the potential metabolic pathways that facilitate tumorigenesis. Furthermore, the stage prediction model with an overall accuracy of 85.9% precisely classified subjects with localized disease and those with metastasis. The risk stratification model, with an overall accuracy of 89.6%, precisely classified the subjects as low-risk and high-risk. CONCLUSIONS Our study facilitated the timely diagnosis and risk stratification of PCa and provided new insights into the underlying mechanisms of metabolic alterations in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Zejun Zhao
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhibin Cao
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, People’s Republic of China
| | - Qibo Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, People’s Republic of China
| | | | | | | | | | - Wenshe Sun
- Department of Urology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine
| | | |
Collapse
|
13
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Differential Gene Expression Analysis of Human Ovarian Follicular Cumulus and Mural Granulosa Cells Under the Influence of Insulin in IVF Ovulatory Women and Polycystic Ovary Syndrome Patients Through Network Analysis. Endocr Res 2024; 49:22-45. [PMID: 37874895 DOI: 10.1080/07435800.2023.2272629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a commonly occurring reproductive disorder among the reproductive-aged women. Its global occurrence varies based on diagnostic guidelines, ethnicities, and locations of concern. Insulin resistance (IR) is commonly observed around 65-70% of women diagnosed with PCOS, representing a prevalent association. Consequently, the study was designed with an objective of illustrating the effect of insulin on mural and cumulus granulosa cells (GCs) of PCOS patients in comparison to normal ovulating women. METHODOLOGY This study is a case-control design, wherein a total of 80 participants were recruited meeting criterion of inclusion and exclusion, divided into 8 groups with each group consisting of 10 samples. The process involves the isolation and culturing of mural granulosa cells (MGC) and cumulus granulosa cells (CGC) with and without exposure to insulin. The proteins released by untreated GCs and insulin-treated GCs were extracted, and complex protein mixtures were digested with trypsin, followed by tandem mass spectrometry analysis and data processing using bioinformatics. RESULTS We found 595 proteins in both control and PCOS samples, of which 310 were contributed by MGCs and 285 by CGCs. The PCOS MGCs expressed 20%, both the normal MGCs and CGCs have equal representation of 16% by each, whereas the PCOS CGCs proteins contributed 15% of the total of the proteomic expression. However, the poor expression observed with the Insulin exposure, the Insulin treated PCOS CGCs contributes 13%, PCOS MGCs contributes 8%. The normal MGCs upon the Insulin treatment give 8% then and there only 4% of proteins expressed by normal CGCs after Insulin treatment. The Venn analysis widened on their precise expression topographies. The examination of strings exhibited important protein-protein interaction pathways. CONCLUSION This is a pioneering investigation aimed to establish the link between hyperinsulinemia in localized follicular GCs and PCOS mechanisms by comparing them to control group. The examination of various attributes, mechanisms, and traits shown by genes and proteins in individuals with PCOS compared to control populations, alongside the investigation of the dynamics of these genes and proteins following exposure to insulin, holds promise for the formulation of novel hypotheses and strategies in the identification of new biomarkers.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | - Reema Sircar
- Gynaecology, Indira IVF Hospital, Dehradun, India
| | - Ritu Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| | - Hari Om Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| |
Collapse
|
14
|
Luo Z, Chen Z, Hu J, Ding G. Interplay of lipid metabolism and inflammation in podocyte injury. Metabolism 2024; 150:155718. [PMID: 37925142 DOI: 10.1016/j.metabol.2023.155718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|