1
|
Li D, Qian L, Du Y, Liu L, Sun Z, Han Y, Guo X, Shen C, Zhang Z, Liu X. METTL14-mediated m 6A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis. Epigenetics 2025; 20:2462898. [PMID: 39916577 PMCID: PMC11810098 DOI: 10.1080/15592294.2025.2462898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/01/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
Although N6-methyladenosine (m6A) may be related to the pathogenesis of fibrotic process, the mechanism of m6A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m6A modification. The expressions of identified m6A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m6A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m6A methylation in IPF. Among the m6A regulators, the expression of METTL14 decreased in IPF. The m6A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m6A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m6A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m6A modifications in aging-related IPF.
Collapse
Affiliation(s)
- Dan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Qian
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Du
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziyue Sun
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongkang Han
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiangrui Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Shen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zheng Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuejun Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Wang K, Sun Z. The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review). Mol Med Rep 2025; 32:199. [PMID: 40376996 DOI: 10.3892/mmr.2025.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Abdominal aortic aneurysm (AAA) is a type of cardiovascular disease. Sudden aortic rupture and subsequent bleeding are the main causes of mortality due to AAA. N6‑methyladenosine (m6A) methylation, the most common epitranscriptomic modification in eukaryotic mRNAs, has a key role in the regulation of gene expression. m6A methylation markedly influences the development and progression of AAA. The present review highlights the mechanism of m6A methylation in AAA, including current research progress and future prospects. From a mechanistic perspective, m6A methylation exerts its influence on AAA‑related genes by modulating the post‑transcriptional levels of RNA, thereby impacting the pathological process of AAA. In terms of clinical applications, the mechanisms by which m6A methylation regulators influence their development and progression in AAA involve multiple target genes and signaling pathways. These regulatory factors affect inflammatory immunomodulation, cell proliferation, apoptosis and endogenous processes by modulating the m6A modification status of target genes and the activity of immune‑related signaling pathways. Therefore, for the prevention and treatment of AAA, current therapeutic strategies should comprehensively consider the interactions and synergistic regulation among m6A methylation regulators to reveal the integrated effects of the entire regulatory network in AAA development. Consequently, a more comprehensive understanding of the precise mechanisms of m6A methylation in AAA should be attained, which will support the development of innovative therapeutic strategies aimed at m6A methylation and establish a basis for the early diagnosis and treatment of AAA.
Collapse
Affiliation(s)
- Keyu Wang
- Department of Hepatobiliary and Vascular Surgery, Jining Third People's Hospital, Jining, Shandong 272100, P.R. China
| | - Ziqiang Sun
- Department of Vascular Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
3
|
Yang X, Wei L, Zhong S, Wang Q, Zhang Y, Zhang Y, Yu A. Liquid-liquid phase separation of RBM33 facilitates hippocampus aging by inducing microglial senescence by activating CDKN1A. Int J Biol Macromol 2025; 310:142986. [PMID: 40216137 DOI: 10.1016/j.ijbiomac.2025.142986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Microglia play an important role in hippocampus-dependent memory and cognitive function. Microglial aging contributes to hippocampal aging and influences neurodegenerative diseases, although the underlying mechanisms remain unclear. RBM33 was highly expressed in the hippocampus of naturally aged mice and senescent microglia. Hippocampus-specific genetic deletion of RBM33 alleviated age-related declines in learning and memory in aged RBM33 knockout (RBM33-/-) mice. In contrast, hippocampus-specific overexpression of RBM33 exacerbated these declines in aged RBM33 overexpression (RBM33Tg) mice, indicating that RBM33 acts as an age-promoting factor in the hippocampus. Mechanistically, RBM33 forms liquid-liquid phase separation (LLPS) both in vitro and in cells. RBM33 LLPS is required for its binding to the CDKN1A (p21cip1) promoter in a non-canonical transcriptional regulatory manner, leading to hippocampus-dependent declines in learning and memory by inducing microglial senescence. This study reveals that the RBM33 LLPS/ p21cip1 axis facilitates brain aging by inducing microglial senescence. Targeting the RBM33 LLPS/ p21cip1 axis may represent a therapeutic strategy to mitigate microglia senescence-mediated brain aging and hippocampus-dependent cognitive decline.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of Clinical Laboratory, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China; Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Lin Wei
- Department of Clinical Laboratory, Taihe Hospital, The Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Saifeng Zhong
- Department of Clinical Laboratory, Shaoyang central hospital, The Affiliated Hospital of Nanhua University, Shaoyang 422000, China
| | - Qiguang Wang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Yujun Zhang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Aiqing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University/Department of Laboratory Medicine of School of Medicine, Hunan Normal University, Changsha 410000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
Li P, Xiang Y, Wei J, Xu X, Wang J, Yu H, Li X, Lin H, Fu X. Follicle-stimulating hormone promotes EndMT in endothelial cells by upregulating ALKBH5 expression. Cell Mol Biol Lett 2025; 30:41. [PMID: 40186131 PMCID: PMC11969750 DOI: 10.1186/s11658-025-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The incidence of atherosclerosis markedly rises following menopause. Our previous findings demonstrated that elevated follicle-stimulating hormone (FSH) levels in postmenopausal women accelerate atherosclerosis progression. Plaque instability, the fundamental pathological factor in acute coronary syndrome, primarily results from vascular embolism due to plaque rupture. Recent evidence highlights that endothelial-to-mesenchymal transition (EndMT) exacerbates plaque instability, although the link between FSH and EndMT has not been fully established. This investigation sought to explore the possible influence of FSH in modulating EndMT. METHODS In this study, apolipoprotein E-deficient (ApoE-/-) mice served as an atherosclerosis model, while human umbilical vascular endothelial cells (HUVECs) were used as cellular models. Protein levels were assessed through immunochemical techniques, gene expression was quantified via RT-qPCR, and nucleic acid-protein interactions were evaluated using immunoprecipitation. The m6A modification status was determined by MeRIP, and cellular behaviors were analyzed through standard biochemical assays. RESULTS Our results indicate that FSH induces EndMT both in vitro and in vivo. Additional investigation suggested that FSH upregulates the transcription factor Forkhead box protein M1 (FOXM1) at both protein and mRNA levels by enhancing the expression of AlkB homolog 5, RNA demethylase (ALKBH5). FSH reduces m6A modifications on FOXM1 through ALKBH5, leading to increased nascent transcript levels and mRNA stability of FOXM1. Dual-luciferase reporter assays highlighted cAMP-response element binding protein (CREB)'s essential function in facilitating the FSH-induced upregulation of ALKBH5. CONCLUSIONS These findings suggest that FSH promotes ALKBH5 expression, facilitates N6-methyladenosine (m6A) demethylation on FOXM1, and consequently, induces EndMT. This study elucidates the impact of FSH on plaque instability and provides insights into potential strategies to prevent acute coronary syndrome in postmenopausal women.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jinzhi Wei
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xingyan Xu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Jiale Wang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Haowei Yu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Huiping Lin
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| | - Xiaodong Fu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, People's Republic of China.
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Zhang L, Wang X, Hu D, Li S, Sun M, Liu Q, Feng H, Zhou M, Chen C, Zhou H, Ma S. SUMOylation facilitates the stability of BCR-ABL to promote chronic myeloid leukemia progression. Oncogene 2025:10.1038/s41388-025-03350-y. [PMID: 40148689 DOI: 10.1038/s41388-025-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting the oncoprotein BCR-ABL have improved the prognosis for patients with chronic myeloid leukemia (CML). However, TKI resistance and persistent expression of BCR-ABL are responsible for the relapse and progression of CML. Here, we describe a novel approach to induce BCR-ABL protein degradation by small ubiquitin-like modifier (SUMO) modification. The E3 SUMO ligase TRIM28, upregulated during the progression of CML, promoted SUMOylation of BCR-ABL, thereby inhibiting its binding to the autophagy receptor P62 and repressing its autophagic degradation. Accordingly, genetic and pharmacological inhibition of TRIM28 or SUMOylation suppressed progression in both the CML mouse model and patient-derived xenograft model. Furthermore, targeting SUMOylation of BCR-ABL restrained the proliferation of TKI-resistant CML cells. These results identify the mechanism by which TRIM28 maintains BCR-ABL stability to promote CML progression and suggest SUMOylation as a target for CML treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefeng Wang
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Innovative Drug Pharmaceutical Research and Clinical Evaluation Jointly Established Disciplines in Anhui Province, Hefei, China
| | - Dongmei Hu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shijie Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingshan Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Huan Zhou
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
- Key Laboratory of Innovative Drug Pharmaceutical Research and Clinical Evaluation Jointly Established Disciplines in Anhui Province, Hefei, China.
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. m6A RNA methylation: a pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med 2025; 23:245. [PMID: 40022120 PMCID: PMC11871626 DOI: 10.1186/s12967-025-06221-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
M6A modification is one of the most common regulatory mechanisms of gene expression in eukaryotic cells, influencing processes such as RNA splicing, degradation, stability, and protein translation. Studies have shown that m6A methylation is closely associated with tumorigenesis and progression, and it plays a key regulatory role in tumor immune responses. m6A modification participates in regulating the differentiation and maturation of immune cells, as well as related anti-tumor immune responses. In the tumor microenvironment, m6A modification can also affect immune cell recruitment, activation, and polarization, thereby promoting or inhibiting tumor cell proliferation and metastasis, and reshaping the tumor immune microenvironment. In recent years, immunotherapies for tumors, such as immune checkpoint inhibitors and adoptive cell immunotherapy, have been increasingly applied in clinical settings, achieving favorable outcomes. Targeting m6A modifications to modulate the immune system, such as using small-molecule inhibitors to target dysregulated m6A regulatory factors or inducing immune cell reprogramming, can enhance anti-tumor immune responses and strengthen immune cell recognition and cytotoxicity against tumor cells. m6A modification represents a new direction in tumor immunotherapy with promising clinical potential. This review discusses the regulatory role of m6A methylation on immune cells and tumor immune responses and explores new strategies for immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Fan Zhou
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China.
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Yu F, Zheng S, Yu C, Gao S, Shen Z, Nar R, Liu Z, Huang S, Wu L, Gu T, Qian Z. KRAS mutants confer platinum resistance by regulating ALKBH5 posttranslational modifications in lung cancer. J Clin Invest 2025; 135:e185149. [PMID: 39960727 PMCID: PMC11910214 DOI: 10.1172/jci185149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 03/18/2025] Open
Abstract
Constitutively active mutations of KRAS are prevalent in non-small cell lung cancer (NSCLC). However, the relationship between these mutations and resistance to platinum-based chemotherapy and the underlying mechanisms remain elusive. In this study, we demonstrate that KRAS mutants confer resistance to platinum in NSCLC. Mechanistically, KRAS mutants mediate platinum resistance in NSCLC cells by activating ERK/JNK signaling, which inhibits AlkB homolog 5 (ALKBH5) N6-methyladenosine (m6A) demethylase activity by regulating posttranslational modifications (PTMs) of ALKBH5. Consequently, the KRAS mutant leads to a global increase in m6A methylation of mRNAs, particularly damage-specific DNA-binding protein 2 (DDB2) and XPC, which are essential for nucleotide excision repair. This methylation stabilized the mRNA of these 2 genes, thus enhancing NSCLC cells' capability to repair platinum-induced DNA damage and avoid apoptosis, thereby contributing to drug resistance. Furthermore, blocking KRAS-mutant-induced m6A methylation, either by overexpressing a SUMOylation-deficient mutant of ALKBH5 or by inhibiting methyltransferase-like 3 (METTL3) pharmacologically, significantly sensitizes KRAS-mutant NSCLC cells to platinum drugs in vitro and in vivo. Collectively, our study uncovers a mechanism that mediates KRAS-mutant-induced chemoresistance in NSCLC cells by activating DNA repair through the modulation of the ERK/JNK/ALKBH5 PTM-induced m6A modification in DNA damage repair-related genes.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/enzymology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/metabolism
- Drug Resistance, Neoplasm/genetics
- Protein Processing, Post-Translational/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Animals
- Mice
- Mutation
- Cell Line, Tumor
- Mice, Nude
- Cisplatin/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- MAP Kinase Signaling System/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- A549 Cells
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Shikan Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Chunjie Yu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Sanhui Gao
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Zuqi Shen
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Rukiye Nar
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Zhexin Liu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Shuang Huang
- Department of Anatomy & Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida Health Cancer Center, University of Florida Genetic Institute, University of Florida, Gainesville, Florida, USA
| | - Tongjun Gu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Zhijian Qian
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Xiao L, De Jesus DF, Ju CW, Wei JB, Hu J, DiStefano-Forti A, Gonzales VS, Tsuji T, Wei S, Blüher M, Tseng YH, He C, Kulkarni RN. Divergent roles of m 6A in orchestrating brown and white adipocyte transcriptomes and systemic metabolism. Nat Commun 2025; 16:533. [PMID: 39788955 PMCID: PMC11718074 DOI: 10.1038/s41467-024-55694-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
N6-methyladenosine (m6A) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that m6A methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity. Mettl14-knockout in BAT promotes prostaglandin secretion, improving systemic insulin sensitivity. Conversely, Mettl14-knockout in WAT triggers adipocyte apoptosis and systemic insulin resistance. m6A-seq and RNA-seq integration revealed upregulated prostaglandin biosynthesis pathways in BAT and apoptotic pathways in WAT with Mettl14 deficiency. Stable METTL14-knockout hBAs/hWAs show METTL14-mediated m6A promotes mRNA decay of PTGES2 and CBR1 in hBAs and TRAIL and TNFR1 in hWAs. These data shed light on the ability of m6A to impact metabolism in a cell-type-specific manner with implications for influencing the pathophysiology of metabolic diseases.
Collapse
MESH Headings
- Animals
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Transcriptome
- Humans
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Mice
- Mice, Knockout
- Insulin Resistance/genetics
- Adipocytes, White/metabolism
- Apoptosis/genetics
- Male
- Adipose Tissue, White/metabolism
- Adipose Tissue, Brown/metabolism
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- TNF-Related Apoptosis-Inducing Ligand/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Mice, Inbred C57BL
- Adipocytes, Brown/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA Stability
Collapse
Affiliation(s)
- Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng-Wei Ju
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, USA
| | - Jiang-Bo Wei
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ava DiStefano-Forti
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Valeria Salerno Gonzales
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center; Department of Medicine, BIDMC, Harvard Medical School; Harvard Stem Cell Institute, Boston, MA, USA
| | - Siying Wei
- Section of Islet Cell and Regenerative Biology, and CRISPR Screen Core Laboratory, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Medical School, Boston, MA, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, HI, Leipzig, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center; Department of Medicine, BIDMC, Harvard Medical School; Harvard Stem Cell Institute, Boston, MA, USA
| | - Chuan He
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Su N, Yu X, Duan M, Shi N. Recent advances in methylation modifications of microRNA. Genes Dis 2025; 12:101201. [PMID: 39524539 PMCID: PMC11550756 DOI: 10.1016/j.gendis.2023.101201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
microRNAs (miRNAs) are short single-stranded non-coding RNAs between 21 and 25 nt in length in eukaryotic organisms, which control post-transcriptional gene expression. Through complementary base pairing, miRNAs generally bind to their target messenger RNAs and repress protein production by destabilizing the messenger RNA and translational silencing. They regulate almost all life activities, such as cell proliferation, differentiation, apoptosis, tumorigenesis, and host-pathogen interactions. Methylation modification is the most common RNA modification in eukaryotes. miRNA methylation exists in different types, mainly N6-methyladenosine, 5-methylcytosine, and 7-methylguanine, which can change the expression level and biological mode of action of miRNAs and improve the activity of regulating gene expression in a very fine-tuned way with flexibility. In this review, we will summarize the recent findings concerning methylation modifications of miRNA, focusing on their biogenesis and the potential role of miRNA fate and functions.
Collapse
Affiliation(s)
| | | | | | - Ning Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
11
|
Janakiraman P, Jayaprakash JP, Muralidharan SV, Narayan KP, Khandelia P. N6-methyladenosine RNA modification in head and neck squamous cell carcinoma (HNSCC): current status and future insights. Med Oncol 2024; 42:12. [PMID: 39580759 DOI: 10.1007/s12032-024-02566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
N6-methyladenosine (m6A) plays a pivotal role in regulating epitranscriptomic mechanisms and is closely linked to the normal functioning of diverse classes of RNAs, both coding as well as noncoding. Recent research highlights the role of m6A RNA methylation in the onset and progression of several cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC ranks as the seventh most common cancer globally, with a five-year patient survival rate of just 50%. Elevated m6A RNA methylation levels and deregulated expression of various m6A modifiers, i.e. writers, readers, and erasers, have been reported across nearly all HNSCC subtypes. Numerous studies have demonstrated that m6A modifications significantly impact key hallmarks of HNSCC, such as proliferation, apoptosis, migration, and invasion. Furthermore, m6A impacts epithelial-mesenchymal transition (EMT), drug resistance, and aerobic glycolysis, and disrupts the tumor microenvironment. Additionally, transcripts regulated by m6A in HNSCC present themselves as potential diagnostic and prognostic biomarkers. This review attempts to comprehensively summarize the role of m6A RNA methylation and its modifiers in regulating various facets of HNSCC pathogenesis.
Collapse
Affiliation(s)
- Pramodha Janakiraman
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Sridhanya Velayudham Muralidharan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
12
|
Wen J, Zhu Q, Liu Y, Gou LT. RNA modifications: emerging players in the regulation of reproduction and development. Acta Biochim Biophys Sin (Shanghai) 2024; 57:33-58. [PMID: 39574165 PMCID: PMC11802351 DOI: 10.3724/abbs.2024201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/05/2024] [Indexed: 01/25/2025] Open
Abstract
The intricate world of RNA modifications, collectively termed the epitranscriptome, covers over 170 identified modifications and impacts RNA metabolism and, consequently, almost all biological processes. In this review, we focus on the regulatory roles and biological functions of a panel of dominant RNA modifications (including m 6A, m 5C, Ψ, ac 4C, m 1A, and m 7G) on three RNA types-mRNA, tRNA, and rRNA-in mammalian development, particularly in the context of reproduction as well as embryonic development. We discuss in detail how those modifications, along with their regulatory proteins, affect RNA processing, structure, localization, stability, and translation efficiency. We also highlight the associations among dysfunctions in RNA modification-related proteins, abnormal modification deposition and various diseases, emphasizing the roles of RNA modifications in critical developmental processes such as stem cell self-renewal and cell fate transition. Elucidating the molecular mechanisms by which RNA modifications influence diverse developmental processes holds promise for developing innovative strategies to manage developmental disorders. Finally, we outline several unexplored areas in the field of RNA modification that warrant further investigation.
Collapse
Affiliation(s)
- Junfei Wen
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qifan Zhu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yong Liu
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Lan-Tao Gou
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyCAS Center for Excellence in Molecular. Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
13
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
14
|
Zhang C, Wu Q, Yang H, Zhang H, Liu C, Yang B, Hu Q. Ferroptosis-related gene signature for predicting prognosis and identifying potential therapeutic drug in EGFR wild-type lung adenocarcinoma. Commun Biol 2024; 7:1416. [PMID: 39478024 PMCID: PMC11525656 DOI: 10.1038/s42003-024-07117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Epidermal growth factor receptor wild type lung adenocarcinoma (EGFRWT LUAD) still has limited treatment options and unsatisfactory clinical outcomes. Ferroptosis, as a form of cell death, has been reported to play a dual role in regulating tumor cell survival. In this study, we constructed a 3-ferroptosis-gene signature, FeSig, and verified its accuracy and efficacy in predicting EGFRWT LUAD prognosis at both the RNA and protein levels. Patients with higher FeSig scores were found to have worse clinical outcomes. Additionally, we explored the relationship between FeSig and tumor microenvironment, revealing that enhanced interactions between fibroblasts and tumor cells in FeSighigh patients causing tumor resistance to ferroptosis. To address this challenge, we screened potential drugs from NCI-60 (The US National Cancer Institute 60 human tumour cell line anticancer drug screen) and Connectivity map database, ultimately identifying 6-mercatopurine (6-MP) as a promising candidate. Both in vitro and in vivo experiments demonstrated its efficacy in treating FeSighigh EGFRWT LUAD tumor models. In summary, we develop a novel FeSig for predicting prognosis and guiding drug application.
Collapse
Affiliation(s)
- Chuankai Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qi Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hongwei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Changqing Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Yang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingsong Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| |
Collapse
|
15
|
Wang F, Liao Q, Qin Z, Li J, Wei Q, Li M, Deng H, Xiong W, Tan M, Zhou M. Autophagy: a critical mechanism of N 6-methyladenosine modification involved in tumor progression and therapy resistance. Cell Death Dis 2024; 15:783. [PMID: 39468015 PMCID: PMC11519594 DOI: 10.1038/s41419-024-07148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
N6-Methyladenosine (m6A) is an evolutionarily highly conserved epigenetic modification that affects eukaryotic RNAs, especially mRNAs, and m6A modification is commonly linked to tumor proliferation, progression, and therapeutic resistance by participating in RNA metabolism. Autophagy is an intracellular degradation and recycling biological process by which cells remove damaged organelles, protein aggregates, and other intracellular wastes, and release nutrients to maintain cell survival when energy is scarce. Recent studies have shown that m6A modification plays a critical role in the regulation of autophagy, affecting the initiation of autophagy, the formation and assembly of autophagosomes, and lysosomal function by regulating critical regulatory molecules involved in the process of autophagy. Moreover, autophagy can also affect the expression of the three types of regulators related to m6A, which in turn affects the levels of their target genes via m6A modification. Thus, m6A modification and autophagy form a sophisticated regulatory network through mutual regulation, which plays an important role in tumor progression and therapeutic resistance. In this manuscript, we reviewed the effects of m6A modification on autophagy as well as the effects of autophagy on m6A modification and the roles of the m6A-autophagy axis in tumor progression and therapy resistance. Additionally, we summarized the value and application prospects of key molecules in the m6A-autophagy axis in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Feiyang Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiudi Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zihao Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jingyi Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
16
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
17
|
Zhang B, Hao Y, Liu H, Wu J, Lu L, Wang X, Bajpai AK, Yang X. Interplay of RNA m 6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024; 12:2211. [PMID: 39457524 PMCID: PMC11504890 DOI: 10.3390/biomedicines12102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: N6-methyladenosine (m6A), is the most common modification found in mRNA and lncRNA in higher organisms and plays an important role in physiology and pathology. However, its role in pan-cancer has not been explored. Results: A total of 31 m6A modification regulators, including 12 writers, 2 erasers, and 17 readers are identified in the current study. The functional analysis of the regulators results in the enrichment of processes, primarily related to RNA modification and metabolism, and the PPI network reveals multiple interactions among the regulators. The mRNA expression analysis reveals a high expression for most of the regulators in pan-cancer. Most of the m6A regulators are found to be mutated across the cancers, with ZC3H13, VIRMA, and PRRC2A having a higher frequency rate. Significant correlations of the regulators with clinicopathological parameters, such as age, gender, tumor stage, and grade are identified in pan-cancer. The m6A regulators' expression is found to have significant positive correlations with the miRNAs in pan-cancer. The expression pattern of the m6A regulators is able to classify the tumors into different subclusters as well as into high- and low-risk groups. These tumor groups show differential patterns in terms of their immune cell infiltration, tumor stemness score, genomic heterogeneity score, expression of immune regulatory/checkpoint genes, and correlations between the regulators and the drugs. Conclusions: Our study provide a comprehensive overview of the functional roles, genetic and epigenetic alterations, and prognostic value of the RNA m6A regulators in pan-cancer.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Yajuan Hao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| |
Collapse
|
18
|
Nabeel-Shah S, Pu S, Burke GL, Ahmed N, Braunschweig U, Farhangmehr S, Lee H, Wu M, Ni Z, Tang H, Zhong G, Marcon E, Zhang Z, Blencowe BJ, Greenblatt JF. Recruitment of the m 6A/m6Am demethylase FTO to target RNAs by the telomeric zinc finger protein ZBTB48. Genome Biol 2024; 25:246. [PMID: 39300486 PMCID: PMC11414060 DOI: 10.1186/s13059-024-03392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A), the most abundant internal modification on eukaryotic mRNA, and N6, 2'-O-dimethyladenosine (m6Am), are epitranscriptomic marks that function in multiple aspects of posttranscriptional regulation. Fat mass and obesity-associated protein (FTO) can remove both m6A and m6Am; however, little is known about how FTO achieves its substrate selectivity. RESULTS Here, we demonstrate that ZBTB48, a C2H2-zinc finger protein that functions in telomere maintenance, associates with FTO and binds both mRNA and the telomere-associated regulatory RNA TERRA to regulate the functional interactions of FTO with target transcripts. Specifically, depletion of ZBTB48 affects targeting of FTO to sites of m6A/m6Am modification, changes cellular m6A/m6Am levels and, consequently, alters decay rates of target RNAs. ZBTB48 ablation also accelerates growth of HCT-116 colorectal cancer cells and modulates FTO-dependent regulation of Metastasis-associated protein 1 (MTA1) transcripts by controlling the binding to MTA1 mRNA of the m6A reader IGF2BP2. CONCLUSIONS Our findings thus uncover a previously unknown mechanism of posttranscriptional regulation in which ZBTB48 co-ordinates RNA-binding of the m6A/m6Am demethylase FTO to control expression of its target RNAs.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | | | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada
| | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
19
|
Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m 6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell Biosci 2024; 14:108. [PMID: 39192357 DOI: 10.1186/s13578-024-01286-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is dynamically regulated by methyltransferases (termed "writers") and demethylases (referred to as "erasers"), facilitating a reversible modulation. Changes in m6A levels significantly influence cellular functions, such as RNA export from the nucleus, mRNA metabolism, protein synthesis, and RNA splicing. They are intricately associated with a spectrum of pathologies. Moreover, dysregulation of m6A modulation has emerged as a promising therapeutic target across many diseases. m6A plays a pivotal role in controlling vital downstream molecules and critical biological pathways, contributing to the pathogenesis and evolution of numerous conditions. This review provides an overview of m6A demethylases, explicitly detailing the structural and functional characteristics of FTO and ALKBH5. Additionally, we explore their distinct involvement in various diseases, examine factors regulating their expression, and discuss the progress in inhibitor development.
Collapse
Affiliation(s)
- Zewei Gao
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuan Zha
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine,Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
20
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
21
|
Sun H, Li M, Li Y, Zheng N, Li J, Li X, Liu Y, Ji Q, Zhou L, Su J, Huang W, Liu Z, Liu P, Zou L. Gastrodin Improves the Activity of the Ubiquitin-Proteasome System and the Autophagy-Lysosome Pathway to Degrade Mutant Huntingtin. Int J Mol Sci 2024; 25:7709. [PMID: 39062952 PMCID: PMC11277377 DOI: 10.3390/ijms25147709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called "Tianma" in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a therapeutic effect on Huntington's disease (HD). In the present study, we evaluated the effect of GAS on the degradation of mutant huntingtin protein (mHtt) by using PC12 cells transfected with N-terminal mHtt Q74. We found that 0.1-100 μM GAS had no effect on the survival rate of Q23 and Q74 PC12 cells after 24-48 h of incubation. The ubiquitin-proteasome system (UPS) is the main system that clears misfolded proteins in eukaryotic cells. Mutated Htt significantly upregulated total ubiquitinated protein (Ub) expression, decreased chymotrypsin-like, trypsin-like and caspase-like peptidase activity, and reduced the colocalization of the 20S proteasome with mHtt. GAS (25 μM) attenuated all of the abovementioned pathological changes, and the regulatory effect of GAS on mHtt was found to be abolished by MG132, a proteasome inhibitor. The autophagy-lysosome pathway (ALP) is another system for misfolded protein degradation. Although GAS downregulated the expression of autophagy markers (LC3II and P62), it increased the colocalization of LC3II with lysosomal associated membrane protein 1 (LAMP1), which indicates that ALP was activated. Moreover, GAS prevented mHtt-induced neuronal damage in PC12 cells. GAS has a selective effect on mHtt in Q74 PC12 cells and has no effect on Q23 and proteins encoded by other genes containing long CAGs, such as Rbm33 (10 CAG repeats) and Hcn1 (>30 CAG repeats). Furthermore, oral administration of 100 mg/kg GAS increased grip strength and attenuated mHtt aggregates in B6-hHTT130-N transgenic mice. This is a high dose (100 mg/kg GAS) when compared with experiments on HD mice with other small molecules. We will design more doses to evaluate the dose-response relationship of the inhibition effect of GAS on mHtt in our next study. In summary, GAS can promote the degradation of mHtt by activating the UPS and ALP, making it a potential therapeutic agent for HD.
Collapse
Affiliation(s)
- He Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Miao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Yunling Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (Y.L.); (W.H.)
| | - Na Zheng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Jiaxin Li
- Department of Bioengineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Xiang Li
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Yingying Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Qianyun Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Liping Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Jingwen Su
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Wanxu Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (Y.L.); (W.H.)
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (H.S.); (M.L.); (N.Z.); (Y.L.); (Q.J.); (L.Z.)
| |
Collapse
|
22
|
Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, Zheng C, Gao S, Wu H, Li K. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics 2024; 14:3127-3149. [PMID: 38855173 PMCID: PMC11155398 DOI: 10.7150/thno.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Protein SUMOylation, a post-translational modification, intricately regulates diverse biological processes including gene expression, cell cycle progression, signaling pathway transduction, DNA damage response, and RNA metabolism. This modification contributes to the acquisition of tumorigenicity and the maintenance of cancer hallmarks. In malignancies, protein SUMOylation is triggered by various cellular stresses, promoting tumor initiation and progression. This augmentation is orchestrated through its specific regulatory mechanisms and characteristic biological functions. This review focuses on elucidating the fundamental regulatory mechanisms and pathological functions of the SUMO pathway in tumor pathogenesis and malignant evolution, with particular emphasis on the tumorigenic potential of SUMOylation. Furthermore, we underscore the potential therapeutic benefits of targeting the SUMO pathway, paving the way for innovative anti-tumor strategies by perturbing this dynamic and reversible modifying process.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Deng
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| |
Collapse
|
23
|
Yu F, Liu S, Zhu AC, He C, Qian Z. Protocol for detecting RBM33-binding sites in HEK293T cells using PAR-CLIP-seq. STAR Protoc 2024; 5:102855. [PMID: 38300798 PMCID: PMC10846379 DOI: 10.1016/j.xpro.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression both co-transcriptionally and post-transcriptionally. Here, we provide a protocol for photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation followed by next-generation sequencing (PAR-CLIP-seq). PAR-CLIP-seq is a transcriptome-scale technique for identifying in vivo binding sites of RBPs at the single-nucleotide level. We detail procedures for the establishment of FLAG-RBM33 stable cell line, the sequencing library preparation, and the data analysis.
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Shun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Allen C Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
24
|
Li J, Xie K, Xu M, Wang Y, Huang Y, Tan T, Xie H. Significance of N6-methyladenosine RNA methylation regulators in diagnosis and subtype classification of primary Sjögren's syndrome. Heliyon 2024; 10:e24860. [PMID: 38318073 PMCID: PMC10839990 DOI: 10.1016/j.heliyon.2024.e24860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The importance of N6-methyladenine (m6A) in mRNA metabolism, physiology, pathology and other life processes is well recognized. However, the exact role of m6A regulators in primary Sjögren's syndrome (PSS) remains unclear. In this study, we used bioinformatics and machine learning random forest approach to screen eight key m6A regulators from the Gene Expression Omnibus GSE7451, GSE40611 and GSE84844 datasets. An accurate nomogram model for predicting PSS risk was established based on these regulators. And using consensus clustering, patients diagnosed with PSS were classified into two different m6A patterns. We found that patients in group B had higher m6A scores compared to those in group A: furthermore, both groups were closely related to immunity and possibly to other diseases. These results emphasise the important role of m6A regulators in the pathogenesis of PSS. Our study of m6A patterns may inform future immunotherapy strategies for PSS.
Collapse
Affiliation(s)
- Jiaoyan Li
- Department of Rheumatology and Clinical Immunology, The First Hospital of Changsha, Changsha, 410005, Hunan Province, PR China
| | - Kaihong Xie
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, PR China
| | - Minxian Xu
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, PR China
| | - Ye Wang
- Department of Thoracic Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, PR China
| | - Yinghong Huang
- Department of Rheumatology and Clinical Immunology, The First Hospital of Changsha, Changsha, 410005, Hunan Province, PR China
| | - Tao Tan
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Hui Xie
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan Province, PR China
| |
Collapse
|
25
|
Aufgebauer CJ, Bland KM, Horner SM. Modifying the antiviral innate immune response by selective writing, erasing, and reading of m 6A on viral and cellular RNA. Cell Chem Biol 2024; 31:100-109. [PMID: 38176419 PMCID: PMC10872403 DOI: 10.1016/j.chembiol.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Viral infection and the antiviral innate immune response are regulated by the RNA modification m6A. m6A directs nearly all aspects of RNA metabolism by recruiting RNA-binding proteins that mediate the fate of m6A-containing RNA. m6A controls the antiviral innate immune response in diverse ways, including shielding viral RNA from detection by antiviral sensors and influencing the expression of cellular mRNAs encoding antiviral signaling proteins, cytokines, and effector proteins. While m6A and the m6A machinery are important for the antiviral response, the precise mechanisms that determine how the m6A machinery selects specific viral or cellular RNA molecules for modification during infection are not fully understood. In this review, we highlight recent findings that shed light on how viral infection redirects the m6A machinery during the antiviral response. A better understanding of m6A targeting during viral infection could lead to new immunomodulatory and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Caroline J Aufgebauer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine M Bland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Höfler S, Duss O. Interconnections between m 6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci Alliance 2024; 7:e202302240. [PMID: 37935465 PMCID: PMC10629537 DOI: 10.26508/lsa.202302240] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Collapse
Affiliation(s)
- Simone Höfler
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Liu Y, Fan J, Zhang M, Liu Z, Wang J, Liu J, Li Z, Yang F, Zhang G. A human identification system for hair shaft using RNA polymorphism. Forensic Sci Int Genet 2023; 67:102929. [PMID: 37611365 DOI: 10.1016/j.fsigen.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Hair is one of the common pieces of evidence at crime scenes, with abundant mitochondrial DNA but limited nuclear DNA in its shaft. It also helps to narrow the investigation scope to maternal lineage but fails to provide unique individual information. We assumed that RNA in hair shafts would be an alternative resource used to perform human identification based on the facts that (1) RNA retains the polymorphic information; (2) the multi-copy of RNA in a cell resists degradation as compared to the one-copy of nuclear DNA. In this study, we explored the potential of RNA polymorphism in hair shafts for forensic individual identification. A SNaPshot typing system was constructed using 18 SNPs located on 11 genes (ABCA13, AHNAK, EXPH5, KMT2D, KRT35, PPP1R15A, RBM33, S100A5, TBC1D4, TMC5, TRPV2). The RNA typing system was evaluated for sensitivity, species specificity, and feasibility for aged hair samples. Hair samples from a Shanxi population in China were used for the population study of the system. The detection limit of the assay was 2 ng RNA. The CDP of these 11 genes was 0.999969 in the Shanxi population. We also identified the concordance of the RNA and DNA typing results. In summary, we developed an RNA typing method to perform human identification from hair shafts, which performed as accurately as nuclear DNA typing. Our method provides a potential basis for solving the human identification problem from hair shafts, as well as other biological materials that lack nuclear DNA.
Collapse
Affiliation(s)
- Yao Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiajia Fan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Mingming Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jinding Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Fan Yang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
28
|
Wang Y, Wang Y, Patel H, Chen J, Wang J, Chen ZS, Wang H. Epigenetic modification of m 6A regulator proteins in cancer. Mol Cancer 2023; 22:102. [PMID: 37391814 PMCID: PMC10311752 DOI: 10.1186/s12943-023-01810-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Divergent N6-methyladenosine (m6A) modifications are dynamic and reversible posttranscriptional RNA modifications that are mediated by m6A regulators or m6A RNA methylation regulators, i.e., methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). Aberrant m6A modifications are associated with cancer occurrence, development, progression, and prognosis. Numerous studies have established that aberrant m6A regulators function as either tumor suppressors or oncogenes in multiple tumor types. However, the functions and mechanisms of m6A regulators in cancer remain largely elusive and should be explored. Emerging studies suggest that m6A regulators can be modulated by epigenetic modifications, namely, ubiquitination, SUMOylation, acetylation, methylation, phosphorylation, O-GlcNAcylation, ISGylation, and lactylation or via noncoding RNA action, in cancer. This review summarizes the current roles of m6A regulators in cancer. The roles and mechanisms for epigenetic modification of m6A regulators in cancer genesis are segregated. The review will improve the understanding of the epigenetic regulatory mechanisms of m6A regulators.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
29
|
Zhang P, Abdel-Wahab O. RBM33: A new regulator of N-6-methyladenosine (m 6A) methylation. Mol Cell 2023; 83:1956-1958. [PMID: 37327770 DOI: 10.1016/j.molcel.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
In this issue of Molecular Cell, Yu et al.1 identify RBM33 as a previously unrecognized m6A (N-6-methyladenosine) RNA binding protein that plays a critical role in ALKBH5-mediated m6A demethylation of a subset of mRNA transcripts by forming a complex with ALKBH5.
Collapse
Affiliation(s)
- Pu Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|