1
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
2
|
Watkins L, Li M, Wu B. Translation elongation: measurements and applications. RNA Biol 2025; 22:1-10. [PMID: 40377059 DOI: 10.1080/15476286.2025.2504727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Translation converts genetic information in mRNAs into functional proteins. This process occurs in four major steps: initiation, elongation, termination and ribosome recycling; each of which profoundly impacts mRNA stability and protein yield. Over recent decades, regulatory mechanisms governing these aspects of translation have been identified. In this review, we focus on the elongation phase, reviewing the experimental methods used to measure elongation rates and discussing how the measurements shed light on the factors that regulate elongation and ultimately gene expression.
Collapse
Affiliation(s)
- Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mulin Li
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Galindo G, Fixen GM, Heredia A, Morisaki T, Stasevich TJ. All Probes Plasmids (APPs) for multicolor and long-term tracking of single-mRNA translation dynamics. Mol Biol Cell 2025; 36:mr6. [PMID: 40366872 DOI: 10.1091/mbc.e25-02-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Live-cell single-mRNA imaging of translation is inherently challenging, demanding precise optimization of multiple imaging components. To simplify these experiments, we developed All Probes Plasmids (APPs)-a panel of plasmids encoding all the necessary probes for imaging at optimized relative expression levels. APPs incorporate widely used translation tags, fluorescent proteins, and mRNA labeling systems, streamlining both multiplexed imaging and reporter immobilization. By cotransfecting just two plasmids-a reporter and an APP-individual translation sites can be visualized in living cells with high signal-to-noise. We demonstrate how APPs facilitate high-fidelity multicolor translation imaging, long-term single-mRNA tracking, and fluorescence correlation spectroscopy to quantify ribosome kinetics. By lowering technical barriers and enhancing experimental flexibility, APPs provide a versatile platform for advancing single-mRNA translation research in living cells.
Collapse
Affiliation(s)
- Gabriel Galindo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gretchen M Fixen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amelia Heredia
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Maillard L, Bensidoun P, Lagha M. Reshaping transcription and translation dynamics during the awakening of the zygotic genome. Curr Opin Genet Dev 2025; 92:102344. [PMID: 40188779 DOI: 10.1016/j.gde.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 05/13/2025]
Abstract
During the oocyte-to-embryo transition, the transcriptome and proteome are dramatically reshaped. This transition entails a shift from maternally inherited mRNAs to newly synthesized transcripts, produced during the zygotic genome activation (ZGA). Furthermore, a crucial transcription and translation selectivity is required for early embryonic development. Studies across various model organisms have revealed conserved cis- and trans-regulatory mechanisms dictating the regimes by which mRNA and proteins are produced during this critical phase. In this article, we highlight recent technological and conceptual advances that deepen our understanding of how the tuning of both transcription and translation evolves during ZGA.
Collapse
Affiliation(s)
- Louise Maillard
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Pierre Bensidoun
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique de Montpellier, CNRS UMR5535, Univ Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Verhagen PGA, Hansen MMK. Exploring the central dogma through the lens of gene expression noise. J Mol Biol 2025:169202. [PMID: 40354878 DOI: 10.1016/j.jmb.2025.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Over the past two decades, cell-to-cell heterogeneity has garnered increasing attention due to its critical role in both developmental and pathological processes. This growing interest has been driven, in part, by the advancements in live-cell and single-molecule imaging techniques. These techniques have provided mechanistic insights into how processes, transcription in particular, contribute to gene expression noise and, ultimately, cell-to-cell heterogeneity. More recently, however, research has expanded to explore how downstream steps in the central dogma influence gene expression noise. In this review, we mostly examine the impact of transcriptional processes on the generation of gene expression noise but also discuss how post-transcriptional mechanisms modulate noise and its propagation to the protein level. This evaluation emphasizes the need for further investigation into how processes beyond transcription shape gene expression noise, highlighting unanswered questions that remain in the field.
Collapse
Affiliation(s)
- Pieter G A Verhagen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Madern MF, Yang S, Witteveen O, Segeren HA, Bauer M, Tanenbaum ME. Long-term imaging of individual ribosomes reveals ribosome cooperativity in mRNA translation. Cell 2025; 188:1896-1911.e24. [PMID: 39892379 DOI: 10.1016/j.cell.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
The genetic information stored in mRNAs is decoded by ribosomes during mRNA translation. mRNAs are typically translated by multiple ribosomes simultaneously, but it is unclear whether and how the activity of different ribosomes on an mRNA is coordinated. Here, we develop an imaging approach based on stopless-ORF circular RNAs (socRNAs) to monitor translation of individual ribosomes in either monosomes or polysomes with very high resolution. Using experiments and simulations, we find that translating ribosomes frequently undergo transient collisions. However, unlike persistent collisions, such transient collisions escape detection by cellular quality control pathways. Rather, transient ribosome collisions promote productive translation by reducing ribosome pausing on problematic sequences, a process we term ribosome cooperativity. Ribosome cooperativity also reduces recycling of ribosomes by quality control pathways, thus enhancing processive translation. Together, our single-ribosome imaging approach reveals that ribosomes cooperate during translation to ensure fast and efficient translation.
Collapse
Affiliation(s)
- Maximilian F Madern
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sora Yang
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Olivier Witteveen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrika A Segeren
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marianne Bauer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
7
|
Sears RM, Nowling NL, Yarbro J, Zhao N. Expanding the tagging toolbox for visualizing translation live. Biochem J 2025; 482:BCJ20240183. [PMID: 39889305 DOI: 10.1042/bcj20240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/02/2025]
Abstract
Translation is a highly regulated process that includes three steps: initiation, elongation, and termination. Tremendous efforts have been spent to study the regulation of each translation step. In the last two decades, researchers have begun to investigate translation by tracking it in its native and live intracellular environment with high spatiotemporal resolution. To achieve this goal, a handful of tagging tools have been developed that can distinguish nascent chains from previously synthesized mature proteins. In this review, we will focus on these tagging tools and describe their development, working mechanisms, and advantages and drawbacks in tracking translation in live mammalian cells and organisms. In the second part of the review, we will summarize novel discoveries in translation by a recently developed nascent polypeptide tracking technology using tandem epitope tag array tagging tools. The superior spatiotemporal resolution of this technology enables us to directly and continuously track nascent chains live and thus reveal preferred translation location and timing, as well as the kinetics of canonical and noncanonical translation, translation bursts, ribosome quality control, and nonsense-mediated mRNA decay. In the future, we expect more tagging tools to be developed that allow us to track other regulation processes of a protein, such as folding, modifications, and degradation. With the expanding tagging toolbox, there is potential that we can track a protein from translation to degradation to fully understand its regulation in a native live cell environment.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Nathan L Nowling
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Jake Yarbro
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, U.S.A
| |
Collapse
|
8
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025:S1534-5807(24)00777-9. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Ali SY, Prasad A, Das D. Exact distributions of threshold crossing times of proteins under post-transcriptional regulation by small RNAs. Phys Rev E 2025; 111:014405. [PMID: 39972820 DOI: 10.1103/physreve.111.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/23/2024] [Indexed: 02/21/2025]
Abstract
The timings of several cellular events like cell lysis, cell division, or pore formation in endosomes are regulated by the time taken for the relevant proteins to cross a threshold in number or concentration. Since protein synthesis is stochastic, the threshold crossing time is a first passage problem. The exact distributions of these first passage processes have been obtained recently for unregulated and autoregulated genes. Many proteins are however regulated by post-transcriptional regulation, controlled by small noncoding RNAs (sRNAs). Certain mathematical models of gene expression with post-transcriptional sRNA regulation have been recently exactly mapped to models without sRNA regulation. Utilizing this mapping and the exact distributions, we calculate exact results on fluctuations (full distribution, all cumulants, and characteristic times) of protein threshold crossing times in the presence of sRNA regulation. We derive two interesting predictions from these exact results. We show that the size of the fluctuation of the threshold crossing times have a nonmonotonic U-shaped behavior as a function of the rates of binding and unbinding of the sRNA-mRNA complex. Thus there are optimal parameters that minimize noise. Furthermore, the fluctuations in models with sRNA regulation may be higher or lower compared to the model without regulation, depending on the mean protein burst size.
Collapse
Affiliation(s)
- Syed Yunus Ali
- Indian Institute of Technology Bombay, Department of Physics, Powai, Mumbai 400076, India
| | - Ashok Prasad
- Colorado State University, Department of Chemical and Biological Engineering, Fort Collins, Colorado 80521, USA
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Department of Physics, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Gentry RC, Ide NA, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL. The mechanism of mRNA cap recognition. Nature 2025; 637:736-743. [PMID: 39663447 DOI: 10.1038/s41586-024-08304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
During translation initiation, mRNA molecules must be identified and activated for loading into a ribosome1-3. In this rate-limiting step, the heterotrimeric protein eukaryotic initiation factor eIF4F must recognize and productively interact with the 7-methylguanosine cap at the 5' end of the mRNA and subsequently activate the message1-3. Despite its fundamental, regulatory role in gene expression, the molecular events underlying cap recognition and mRNA activation remain unclear3. Here we generate a single-molecule fluorescence imaging system to examine the dynamics with which eIF4F discriminates productive and non-productive locations on full-length, native mRNA molecules. At the single-molecule level, we observe stochastic sampling of eIF4F along the length of the mRNA and identify allosteric communication between the eIF4F subunits that ultimately drive cap-recognition and subsequent activation of the message. Our experiments uncover functions for each subunit of eIF4F and we conclude by presenting a model for mRNA activation that precisely defines the composition of the activated message. This model provides a general framework for understanding how mRNA molecules may be discriminated from one another and how other RNA-binding proteins may control the efficiency of translation initiation.
Collapse
Affiliation(s)
- Riley C Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nicholas A Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Erik W Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- BioChemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
12
|
Ren J, Luo S, Shi H, Wang X. Spatial omics advances for in situ RNA biology. Mol Cell 2024; 84:3737-3757. [PMID: 39270643 PMCID: PMC11455602 DOI: 10.1016/j.molcel.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Spatial regulation of RNA plays a critical role in gene expression regulation and cellular function. Understanding spatially resolved RNA dynamics and translation is vital for bringing new insights into biological processes such as embryonic development, neurobiology, and disease pathology. This review explores past studies in subcellular, cellular, and tissue-level spatial RNA biology driven by diverse methodologies, ranging from cell fractionation, in situ and proximity labeling, imaging, spatially indexed next-generation sequencing (NGS) approaches, and spatially informed computational modeling. Particularly, recent advances have been made for near-genome-scale profiling of RNA and multimodal biomolecules at high spatial resolution. These methods enabled new discoveries into RNA's spatiotemporal kinetics, RNA processing, translation status, and RNA-protein interactions in cells and tissues. The evolving landscape of experimental and computational strategies reveals the complexity and heterogeneity of spatial RNA biology with subcellular resolution, heralding new avenues for RNA biology research.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuchen Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailing Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Smeal SW, Mokashi CS, Kim AH, Chiknas PM, Lee REC. Time-varying stimuli that prolong IKK activation promote nuclear remodeling and mechanistic switching of NF-κB dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615244. [PMID: 39386677 PMCID: PMC11463372 DOI: 10.1101/2024.09.26.615244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temporal properties of molecules within signaling networks, such as sub-cellular changes in protein abundance, encode information that mediate cellular responses to stimuli. How dynamic signals relay and process information is a critical gap in understanding cellular behaviors. In this work, we investigate transmission of information about changing extracellular cytokine concentrations from receptor-level supramolecular assemblies of IκB kinases (IKK) downstream to the nuclear factor κB (NF-κB) transcription factor (TF). In a custom robot-controlled microfluidic cell culture, we simultaneously measure input-output (I/O) encoding of IKK-NF-κB in dual fluorescent-reporter cells. When compared with single cytokine pulses, dose-conserving pulse trains prolong IKK assemblies and lead to disproportionately enhanced retention of nuclear NF-κB. Using particle swarm optimization, we demonstrate that a mechanistic model does not recapitulate this emergent property. By contrast, invoking mechanisms for NF-κB-dependent chromatin remodeling to the model recapitulates experiments, showing how temporal dosing that prolongs IKK assemblies facilitates switching to permissive chromatin that sequesters nuclear NF-κB. Remarkably, using simulations to resolve single-cell receptor data accurately predicts same-cell NF-κB time courses for more than 80% of our single cell trajectories. Our data and simulations therefore suggest that cell-to-cell heterogeneity in cytokine responses are predominantly due to mechanisms at the level receptor-associated protein complexes.
Collapse
Affiliation(s)
- Steven W. Smeal
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chaitanya S. Mokashi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- current address Altos Labs, Redwood City, CA, 94065, USA
| | - A. Hyun Kim
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - P. Murdo Chiknas
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robin E. C. Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Zhang Q, Cao W, Wang J, Yin Y, Sun R, Tian Z, Hu Y, Tan Y, Zhang BG. Transcriptional bursting dynamics in gene expression. Front Genet 2024; 15:1451461. [PMID: 39346775 PMCID: PMC11437526 DOI: 10.3389/fgene.2024.1451461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity. Currently, the lack of a comprehensive quantitative model limits the research on transcriptional bursting. This review examines various gene expression models and compares their strengths and weaknesses to guide researchers in selecting the most suitable model for their research context. We also provide a detailed summary of the key metrics related to transcriptional bursting. We compared the temporal dynamics of transcriptional bursting across species and the molecular mechanisms influencing these bursts, and highlighted the spatiotemporal patterns of gene expression differences by utilizing metrics such as burst size and burst frequency. We summarized the strategies for modeling gene expression from both biostatistical and biochemical reaction network perspectives. Single-cell sequencing data and integrated multiomics approaches drive our exploration of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we examined classical methods for parameter estimation that help capture dynamic parameters in gene expression data, assessing their merits and limitations to facilitate optimal parameter estimation. Our comprehensive summary and review of the current transcriptional burst dynamics theories provide deeper insights for promoting research on the nature of cell processes, cell fate determination, and cancer diagnosis.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Wenjie Cao
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Wang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yihao Yin
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Rui Sun
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Zunyi Tian
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yuhan Hu
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yalan Tan
- School of Bioengineering & Health, Wuhan Textile University, Wu Han, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| |
Collapse
|
15
|
Dufourt J, Bellec M. Shedding light on the unseen: how live imaging of translation could unlock new insights in developmental biology. C R Biol 2024; 347:87-93. [PMID: 39258401 DOI: 10.5802/crbiol.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Recent advances in live imaging technologies have refined our understanding of protein synthesis in living cells. Among the various approaches to live imaging of translation, this perspective highlights the use of antibody-based nascent peptide detection, a method that enables visualization of single-molecule translation in vivo. We examine how these advances improve our understanding of biological processes, particularly in developing organisms. In addition, we discuss technological advances in this field and suggest further improvements. Finally, we review some examples of how this method could lead to future scientific breakthroughs in the study of translation and its regulation in whole organisms.
Collapse
|
16
|
Tomuro K, Mito M, Toh H, Kawamoto N, Miyake T, Chow SYA, Doi M, Ikeuchi Y, Shichino Y, Iwasaki S. Calibrated ribosome profiling assesses the dynamics of ribosomal flux on transcripts. Nat Commun 2024; 15:7061. [PMID: 39187487 PMCID: PMC11347596 DOI: 10.1038/s41467-024-51258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Ribosome profiling, which is based on deep sequencing of ribosome footprints, has served as a powerful tool for elucidating the regulatory mechanism of protein synthesis. However, the current method has substantial issues: contamination by rRNAs and the lack of appropriate methods to measure ribosome numbers in transcripts. Here, we overcome these hurdles through the development of "Ribo-FilterOut", which is based on the separation of footprints from ribosome subunits by ultrafiltration, and "Ribo-Calibration", which relies on external spike-ins of stoichiometrically defined mRNA-ribosome complexes. A combination of these approaches estimates the number of ribosomes on a transcript, the translation initiation rate, and the overall number of translation events before its decay, all in a genome-wide manner. Moreover, our method reveals the allocation of ribosomes under heat shock stress, during aging, and across cell types. Our strategy of modified ribosome profiling measures kinetic and stoichiometric parameters of cellular translation across the transcriptome.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05782 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02306 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108570 Japan Agency for Medical Research and Development (AMED)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23H00095 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP22K20765 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K14173 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2178 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- Pioneering Project MEXT | RIKEN
- RIKEN TRIP initiative "TRIP-AGIS" MEXT | RIKEN
- Pioneering Project MEXT | RIKEN
- JPMJBS2418 MEXT | Japan Science and Technology Agency (JST)
- JPMJFR226F MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hirotaka Toh
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
17
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
18
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
19
|
Moss MJ, Chamness LM, Clark PL. The Effects of Codon Usage on Protein Structure and Folding. Annu Rev Biophys 2024; 53:87-108. [PMID: 38134335 PMCID: PMC11227313 DOI: 10.1146/annurev-biophys-030722-020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.
Collapse
Affiliation(s)
- McKenze J Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Laura M Chamness
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| |
Collapse
|
20
|
Miścicka A, Bulakhov AG, Kuroha K, Zinoviev A, Hellen CT, Pestova T. Ribosomal collision is not a prerequisite for ZNF598-mediated ribosome ubiquitination and disassembly of ribosomal complexes by ASCC. Nucleic Acids Res 2024; 52:4627-4643. [PMID: 38366554 PMCID: PMC11077048 DOI: 10.1093/nar/gkae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Ribosomal stalling induces the ribosome-associated quality control (RQC) pathway targeting aberrant polypeptides. RQC is initiated by K63-polyubiquitination of ribosomal protein uS10 located at the mRNA entrance of stalled ribosomes by the E3 ubiquitin ligase ZNF598 (Hel2 in yeast). Ubiquitinated ribosomes are dissociated by the ASC-1 complex (ASCC) (RQC-Trigger (RQT) complex in yeast). A cryo-EM structure of the ribosome-bound RQT complex suggested the dissociation mechanism, in which the RNA helicase Slh1 subunit of RQT (ASCC3 in mammals) applies a pulling force on the mRNA, inducing destabilizing conformational changes in the 40S subunit, whereas the collided ribosome acts as a wedge, promoting subunit dissociation. Here, using an in vitro reconstitution approach, we found that ribosomal collision is not a strict prerequisite for ribosomal ubiquitination by ZNF598 or for ASCC-mediated ribosome release. Following ubiquitination by ZNF598, ASCC efficiently dissociated all polysomal ribosomes in a stalled queue, monosomes assembled in RRL, in vitro reconstituted 80S elongation complexes in pre- and post-translocated states, and 48S initiation complexes, as long as such complexes contained ≥ 30-35 3'-terminal mRNA nt. downstream from the P site and sufficiently long ubiquitin chains. Dissociation of polysomes and monosomes both involved ribosomal splitting, enabling Listerin-mediated ubiquitination of 60S-associated nascent chains.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexander G Bulakhov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kazushige Kuroha
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
21
|
Morita Y, Takegawa K, Collins BM, Higuchi Y. Polarity-dependent expression and localization of secretory glucoamylase mRNA in filamentous fungal cells. Microbiol Res 2024; 282:127653. [PMID: 38422859 DOI: 10.1016/j.micres.2024.127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In multinuclear and multicellular filamentous fungi little is known about how mRNAs encoding secreted enzymes are transcribed and localized spatiotemporally. To better understand this process we analyzed mRNA encoding GlaA, a glucoamylase secreted in large amounts by the industrial filamentous fungus Aspergillus oryzae, by the MS2 system, in which mRNA can be visualized in living cells. We found that glaA mRNA was significantly transcribed and localized near the hyphal tip and septum, which are the sites of protein secretion, in polarity-dependent expression and localization manners. We also revealed that glaA mRNA exhibits long-range dynamics in the vicinity of the endoplasmic reticulum (ER) in a manner that is dependent on the microtubule motor proteins kinesin-1 and kinesin-3, but independent of early endosomes. Moreover, we elucidated that although glaA mRNA localized to stress granules (SGs) and processing bodies (PBs) under high temperature, glaA mRNA was not seen under ER stress, suggesting that there are different regulatory mechanisms of glaA mRNA by SG and PB under high temperature and ER stress. Collectively, this study uncovers a dynamic regulatory mechanism of mRNA encoding a secretory enzyme in filamentous fungi.
Collapse
Affiliation(s)
- Yuki Morita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
23
|
Basier C, Nurse P. TOR regulates variability of protein synthesis rates. EMBO J 2024; 43:1618-1633. [PMID: 38499788 PMCID: PMC11021518 DOI: 10.1038/s44318-024-00075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Cellular processes are subject to inherent variability, but the extent to which cells can regulate this variability has received little investigation. Here, we explore the characteristics of the rate of cellular protein synthesis in single cells of the eukaryote fission yeast. Strikingly, this rate is highly variable despite protein synthesis being dependent on hundreds of reactions which might be expected to average out at the overall cellular level. The rate is variable over short time scales, and exhibits homoeostatic behaviour at the population level. Cells can regulate the level of variability through processes involving the TOR pathway, suggesting there is an optimal level of variability conferring a selective advantage. While this could be an example of bet-hedging, but we propose an alternative explanation: regulated 'loose' control of complex processes of overall cellular metabolism such as protein synthesis, may lead to this variability. This could ensure cells are fluid in control and agile in response to changing conditions, and may constitute a novel organisational principle of complex metabolic cellular systems.
Collapse
Affiliation(s)
- Clovis Basier
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
24
|
Hochstoeger T, Papasaikas P, Piskadlo E, Chao JA. Distinct roles of LARP1 and 4EBP1/2 in regulating translation and stability of 5'TOP mRNAs. SCIENCE ADVANCES 2024; 10:eadi7830. [PMID: 38363833 PMCID: PMC10871529 DOI: 10.1126/sciadv.adi7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
A central mechanism of mTOR complex 1 (mTORC1) signaling is the coordinated translation of ribosomal protein and translation factor mRNAs mediated by the 5'-terminal oligopyrimidine motif (5'TOP). Recently, La-related protein 1 (LARP1) was proposed to be the specific regulator of 5'TOP mRNA translation downstream of mTORC1, while eIF4E-binding proteins (4EBP1/2) were suggested to have a general role in translational repression of all transcripts. Here, we use single-molecule translation site imaging of 5'TOP and canonical mRNAs to study the translation of single mRNAs in living cells. Our data reveal that 4EBP1/2 has a dominant role in repression of translation of both 5'TOP and canonical mRNAs during pharmacological inhibition of mTOR. In contrast, we find that LARP1 selectively protects 5'TOP mRNAs from degradation in a transcriptome-wide analysis of mRNA half-lives. Our results clarify the roles of 4EBP1/2 and LARP1 in regulating 5'TOP mRNAs and provide a framework to further study how these factors control cell growth during development and disease.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | | | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A. Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Abram QH, Landry BN, Wang AB, Kothe RF, Hauch HC, Sagan SM. The myriad roles of RNA structure in the flavivirus life cycle. RNA Biol 2024; 21:14-30. [PMID: 38797925 PMCID: PMC11135854 DOI: 10.1080/15476286.2024.2357857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.
Collapse
Affiliation(s)
- Quinn H. Abram
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Breanna N. Landry
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B. Wang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ronja F. Kothe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah C.H. Hauch
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M. Sagan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Gentry RC, Ide NA, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL. The mechanism of mRNA activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567265. [PMID: 38014128 PMCID: PMC10680758 DOI: 10.1101/2023.11.15.567265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During translation initiation, messenger RNA molecules must be identified and activated for loading into a ribosome. In this rate-limiting step, the heterotrimeric protein eukaryotic initiation factor eIF4F must recognize and productively interact with the 7-methylguanosine cap at the 5' end of the messenger RNA and subsequently activate the message. Despite its fundamental, regulatory role in gene expression, the molecular events underlying cap recognition and messenger RNA activation remain mysterious. Here, we generate a unique, single-molecule fluorescence imaging system to interrogate the dynamics with which eIF4F discriminates productive and non-productive locations on full-length, native messenger RNA molecules. At the single-molecule level, we observe stochastic sampling of eIF4F along the length of the messenger RNA and identify allosteric communication between the eIF4F subunits which ultimately drive cap-recognition and subsequent activation of the message. Our experiments uncover novel functions for each subunit of eIF4F and we conclude by presenting a model for messenger RNA activation which precisely defines the composition of the activated message. This model provides a general framework for understanding how messenger RNA molecules may be discriminated from one another, and how other RNA-binding proteins may control the efficiency of translation initiation.
Collapse
Affiliation(s)
- Riley C Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nicholas A Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Erik W Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: BioChemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102
| | | |
Collapse
|
28
|
Kamada Y, Ando R, Izawa S, Matsuura A. Yeast Tor complex 1 phosphorylates eIF4E-binding protein, Caf20. Genes Cells 2023; 28:789-799. [PMID: 37700444 PMCID: PMC11447835 DOI: 10.1111/gtc.13067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Tor complex 1 (TORC1), a master regulator of cell growth, is an evolutionarily conserved protein kinase within eukaryotic organisms. To control cell growth, TORC1 governs translational processes by phosphorylating its substrate proteins in response to cellular nutritional cues. Mammalian TORC1 (mTORC1) assumes the responsibility of phosphorylating the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) to regulate its interaction with eIF4E. The budding yeast Saccharomyces cerevisiae possesses a pair of 4E-BP genes, CAF20 and EAP1. However, the extent to which the TORC1-4E-BP axis regulates translational initiation in yeast remains uncertain. In this study, we demonstrated the influence of TORC1 on the phosphorylation status of Caf20 in vivo, as well as the direct phosphorylation of Caf20 by TORC1 in vitro. Furthermore, we found the TORC1-dependent recruitment of Caf20 to the 80S ribosome. Consequently, our study proposes a plausible involvement of yeast's 4E-BP in the efficacy of translation initiation, an aspect under the control of TORC1.
Collapse
Affiliation(s)
- Yoshiaki Kamada
- National Institute for Basic Biology, Okazaki, Japan
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Ryoko Ando
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
29
|
Latallo MJ, Wang S, Dong D, Nelson B, Livingston NM, Wu R, Zhao N, Stasevich TJ, Bassik MC, Sun S, Wu B. Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD. Nat Commun 2023; 14:5581. [PMID: 37696852 PMCID: PMC10495369 DOI: 10.1038/s41467-023-41339-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
C9ORF72 hexanucleotide repeat expansion is the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One pathogenic mechanism is the accumulation of toxic dipeptide repeat (DPR) proteins like poly-GA, GP and GR, produced by the noncanonical translation of the expanded RNA repeats. However, how different DPRs are synthesized remains elusive. Here, we use single-molecule imaging techniques to directly measure the translation dynamics of different DPRs. Besides initiation, translation elongation rates vary drastically between different frames, with GP slower than GA and GR the slowest. We directly visualize frameshift events using a two-color single-molecule translation assay. The repeat expansion enhances frameshifting, but the overall frequency is low. There is a higher chance of GR-to-GA shift than in the reversed direction. Finally, the ribosome-associated protein quality control (RQC) factors ZNF598 and Pelota modulate the translation dynamics, and the repeat RNA sequence is important for invoking the RQC pathway. This study reveals that multiple translation steps modulate the final DPR production. Understanding repeat RNA translation is critically important to decipher the DPR-mediated pathogenesis and identify potential therapeutic targets in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Malgorzata J Latallo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daoyuan Dong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Blake Nelson
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nathan M Livingston
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shuying Sun
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|