1
|
PerezGrovas-Saltijeral A, Stones J, Orji OC, Shaker H, Knight HM. Modification of the RNA methylome in neurodevelopmental disorders. Curr Opin Genet Dev 2025; 92:102330. [PMID: 40080918 DOI: 10.1016/j.gde.2025.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
RNA metabolism is fundamental to protein synthesis, degradation and transport of molecules. Methylation of RNA influences the processing of mRNA, noncoding RNA, tRNA and rRNA. Here, we review accumulating evidence that disruption to the RNA methylome impairs developmental processes and causes neurodevelopmental conditions. We first describe mutated RNA methylation effector protein genes that give rise to neurodevelopmental syndromes. We consider the biological processes thereby disrupted, including translational dynamics at cytoplasmic and mt-ribosomes, synaptic function, energy production and cellular stress. Finally, we discuss novel forms of methylated RNA, such as R-loops and circular RNAs, which may contribute to disease processes. These findings herald an exciting new era to brain research and highlight the significant potential of manipulating the RNA methylome as a therapeutic target in the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Joseph Stones
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Oliver C Orji
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hala Shaker
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Helen M Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Nishizaki SS, Haghani NK, La GN, Mariano NAF, Uribe‐Salazar JM, Kaya G, Regester M, Andrews DS, Nordahl CW, Amaral DG, Dennis MY. m 6A-mRNA Reader YTHDF2 Identified as a Potential Risk Gene in Autism With Disproportionate Megalencephaly. Autism Res 2025; 18:966-982. [PMID: 39887636 PMCID: PMC12123175 DOI: 10.1002/aur.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Among autistic individuals, a subphenotype of disproportionate megalencephaly (ASD-DM) seen at three years of age is associated with co-occurring intellectual disability and poorer prognoses later in life. However, many of the genes contributing to ASD-DM have yet to be delineated. In this study, we identified additional ASD-DM candidate genes with the aim to better define the genetic etiology of this subphenotype of autism. We expanded the previously studied sample size of ASD-DM individuals ten fold by including probands from the Autism Phenome Project and Simons Simplex Collection, totaling 766 autistic individuals meeting the criteria for megalencephaly or macrocephaly and revealing 154 candidate ASD-DM genes harboring de novo protein-impacting variants. Our findings include 14 high confidence autism genes and seven genes previously associated with DM. Five impacted genes have previously been associated with both autism and DM, including CHD8 and PTEN. By performing functional network analysis, we expanded to additional candidate genes, including one previously implicated in ASD-DM (PIK3CA) as well as 184 additional genes connected with ASD or DM alone. Using zebrafish, we modeled a de novo tandem duplication impacting YTHDF2, encoding an N6-methyladenosine (m6A)-mRNA reader, in an ASD-DM proband. Testing zebrafish CRISPR knockdown led to reduced head/brain size, while overexpressing YTHDF2 resulted in increased head/brain size matching that of the proband. Single-cell transcriptomes of YTHDF2 gain-of-function larvae point to reduced expression of Fragile-X-syndrome-associated FMRP-target genes globally and in the developing brain, providing insight into the mechanism underlying autistic phenotypes. We additionally discovered a variant impacting a different gene encoding an m6A reader, YTHDC1, in our ASD-DM cohort. Though we highlight only two cases to date, our study provides support for the m6A-RNA modification pathway as potentially contributing to this severe form of autism.
Collapse
Affiliation(s)
- Sierra S. Nishizaki
- Genome CenterUniversity of CaliforniaDavisCAUSA
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Nicholas K. Haghani
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Gabriana N. La
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Natasha Ann F. Mariano
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
- Postbaccalaureate Research Education ProgramUniversity of CaliforniaDavisCaliforniaUSA
| | - José M. Uribe‐Salazar
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Gulhan Kaya
- Genome CenterUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| | - Melissa Regester
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Derek Sayre Andrews
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Christine Wu Nordahl
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - David G. Amaral
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
| | - Megan Y. Dennis
- Genome CenterUniversity of CaliforniaDavisCAUSA
- Autism Research Training ProgramUniversity of CaliforniaDavisCAUSA
- MIND InstituteUniversity of CaliforniaDavisCAUSA
- Department of Biochemistry & Molecular MedicineUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
3
|
Xu Z, Sun B, Wang W, Fan Y, Su J, Sun J, Gu X. Research progress on m6A and drug resistance in gastrointestinal tumors. Front Pharmacol 2025; 16:1565738. [PMID: 40356985 PMCID: PMC12066682 DOI: 10.3389/fphar.2025.1565738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Gastrointestinal (GI) tumors represent a significant global health burden and are among the leading causes of cancer-related mortality worldwide. their drug resistance is one of the major challenges in cancer therapy. In recent years, epigenetic modifications, especially N6-methyladenosine (m6A) RNA modifications, have become a hot research topic. m6A modification plays an important role in gene expression and cancer progression by regulating RNA splicing, translation, stability, and degradation, which are regulated by "writers," "erasers" and "readers." In GI tumors, resistance to chemotherapy, targeted therapy, and immunotherapy is closely associated with m6A RNA modification. Therefore, the molecular mechanism of m6A modification and its targeted drug development provide new therapeutic strategies for overcoming drug resistance and therapeutic efficacy in GI tumors. In this review, the biological functions of m6A were explored, the specific resistance mechanisms of m6A in different types of GI tumors were explored, new ideas and targets for future treatment resistance were identified, and the limitations of this field were highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinyu Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
6
|
Zhao T, Zhang Z, Chen Z, Xu G, Wang Y, Wang F. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025; 15:1534948. [PMID: 39990690 PMCID: PMC11842269 DOI: 10.3389/fonc.2025.1534948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA modification, which is involved in the post-transcriptional regulation of genes. It plays an important role in various biological processes, including cell metabolism, growth, apoptosis, and tumorigenesis. By affecting the proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C methylation modification plays a vital part in the initiation and progression of tumors and is closely associated with the poor tumor prognosis. m5C-related proteins are categorized into three functional groups: m5C methyltransferases (m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding proteins (m5C readers). This paper introduces several common methodologies for detecting m5C methylation; and reviews the molecular structure and biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory mechanisms in tumors, offering novel targets and insights for tumor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102934. [PMID: 39612590 PMCID: PMC11839335 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A- mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A- targeted therapies.
Collapse
|
9
|
Qadri SW, Shah NM, Muddashetty RS. Epitranscriptome-Mediated Regulation of Neuronal Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70004. [PMID: 39963903 DOI: 10.1002/wrna.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/02/2024] [Accepted: 01/24/2025] [Indexed: 04/10/2025]
Abstract
Epitranscriptomic modification of RNA is an important layer of regulation for gene expression. RNA modifications come in many flavors and generate a complex tapestry of a regulatory network. Here, we focus on two major RNA modifications, one on rRNA (2'O Methylation) and another on mRNA (N6-Methyladenosine [m6A]) and their impact on translation. The 2'O methyl group addition on the ribose sugar of rRNA plays a critical role in RNA folding, ribosome assembly, and its interaction with many RNA binding proteins. Differential methylation of these sites contributes to ribosome heterogeneity and generates potential "specialized ribosomes." Specialized ribosomes are proposed to play a variety of important roles in maintaining pluripotency, lineage specification, and compartmentalized and activity-mediated translation in neurons. The m6A modification, on the other hand, determines the stability, transport, and translation of subclasses of mRNA. The dynamic nature of m6A owing to the localization and activity of its writers, readers, and erasers makes it a powerful tool for spatiotemporal regulation of translation. While substantial information has accumulated on the nature and abundance of these modifications, their functional consequences are still understudied. In this article, we review the literature constructing the body of our understanding of these two modifications and their outcome on the regulation of translation in general and their impact on the nervous system in particular. We also explore the possibility of how these modifications may collaborate in modulating translation and provoke the thought to integrate the functions of multiple epitranscriptome modifications.
Collapse
Affiliation(s)
- Syed Wasifa Qadri
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
11
|
Tegowski M, Prater AK, Holley CL, Meyer KD. Single-cell m 6A profiling in the mouse brain uncovers cell type-specific RNA methylomes and age-dependent differential methylation. Nat Neurosci 2024; 27:2512-2520. [PMID: 39317796 PMCID: PMC11614689 DOI: 10.1038/s41593-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification in the brain that has important roles in neurodevelopment and brain function. However, because of technical limitations, global profiling of m6A sites within the individual cell types that make up the brain has not been possible. Here, we develop a mouse model that enables transcriptome-wide m6A detection in any tissue of interest at single-cell resolution. We use these mice to map m6A across different brain regions and within single cells of the mouse cortex and discover a high degree of shared methylation across brain regions and cell types. However, we also identify a small number of differentially methylated mRNAs in neurons that encode important regulators of neuronal signaling, and we discover that microglia have lower levels of m6A than other cell types. Finally, we perform single-cell m6A mapping in aged mice and identify many transcripts with age-dependent changes in m6A.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Anna K Prater
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Christopher L Holley
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
13
|
Jaafar C, Aguiar RCT. Dynamic multilayered control of m 6A RNA demethylase activity. Proc Natl Acad Sci U S A 2024; 121:e2317847121. [PMID: 39495907 PMCID: PMC11572932 DOI: 10.1073/pnas.2317847121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Similar to DNA and histone, RNA can also be methylated. In its most common form, a N6-methyladenosine (m6A) chemical modification is introduced into nascent messenger ribonucleic acid (mRNA) by a specialized methyltransferase complex and removed by the RNA demethylases, Fat mass and obesity-associated (FTO), and ALKBH5. The fate of m6A-marked mRNA is uniquely diverse, ranging from degradation to stabilization/translation, which has been suggested to be largely dependent on its interaction with the family of YT521-B homology (YTH) domain-containing proteins. Here, we highlight a series of control levers that impinge on the RNA demethylases. We present evidence to indicate that intermediary metabolism and various posttranslation modifications modulate the activity, stability, and the subcellular localization of FTO and ALKBH5, further dispelling the notion that m6A methylation is not a dynamic process. We also discuss how examination of these underappreciated regulatory nodes adds a more nuanced view of the role of FTO and ALKBH5 and should guide their study in cancer and nonmalignant conditions alike.
Collapse
Affiliation(s)
- Carine Jaafar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
| | - Ricardo C. T. Aguiar
- Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX78229
- South Texas Veterans Health Care System, Audie Murphy Veterans Affairs Hospital, San Antonio, TX78229
| |
Collapse
|
14
|
Yang W, Zhao Y, Yang Y. Dynamic RNA methylation modifications and their regulatory role in mammalian development and diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2084-2104. [PMID: 38833084 DOI: 10.1007/s11427-023-2526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 06/06/2024]
Abstract
Among over 170 different types of chemical modifications on RNA nucleobases identified so far, RNA methylation is the major type of epitranscriptomic modifications existing on almost all types of RNAs, and has been demonstrated to participate in the entire process of RNA metabolism, including transcription, pre-mRNA alternative splicing and maturation, mRNA nucleus export, mRNA degradation and stabilization, mRNA translation. Attributing to the development of high-throughput detection technologies and the identification of both dynamic regulators and recognition proteins, mechanisms of RNA methylation modification in regulating the normal development of the organism as well as various disease occurrence and developmental abnormalities upon RNA methylation dysregulation have become increasingly clear. Here, we particularly focus on three types of RNA methylations: N6-methylcytosine (m6A), 5-methylcytosine (m5C), and N7-methyladenosine (m7G). We summarize the elements related to their dynamic installment and removal, specific binding proteins, and the development of high-throughput detection technologies. Then, for a comprehensive understanding of their biological significance, we also overview the latest knowledge on the underlying mechanisms and key roles of these three mRNA methylation modifications in gametogenesis, embryonic development, immune system development, as well as disease and tumor progression.
Collapse
Affiliation(s)
- Wenlan Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Yungui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
15
|
Chen Y, Zhou Z, Chen Y, Chen D. Reading the m 6A-encoded epitranscriptomic information in development and diseases. Cell Biosci 2024; 14:124. [PMID: 39342406 PMCID: PMC11439334 DOI: 10.1186/s13578-024-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal and reversible modification on RNAs. Different cell types display their unique m6A profiles, which are determined by the functions of m6A writers and erasers. M6A modifications lead to different outcomes such as decay, stabilization, or transport of the RNAs. The m6A-encoded epigenetic information is interpreted by m6A readers and their interacting proteins. M6A readers are essential for different biological processes, and the defects in m6A readers have been discovered in diverse diseases. Here, we review the latest advances in the roles of m6A readers in development and diseases. These recent studies not only highlight the importance of m6A readers in regulating cell fate transitions, but also point to the potential application of drugs targeting m6A readers in diseases.
Collapse
Affiliation(s)
- Yunbing Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ziyu Zhou
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yanxi Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang, 314400, China.
| |
Collapse
|
16
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Wang CH, Zhou H. Discovery of a new inhibitor for YTH domain-containing m 6A RNA readers. RSC Chem Biol 2024; 5:914-923. [PMID: 39211476 PMCID: PMC11353026 DOI: 10.1039/d4cb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
N 6-methyladenosine (m6A) is an abundant modification in mammalian mRNAs and plays important regulatory roles in gene expression, primarily mediated through specific recognition by "reader" proteins. YTH family proteins are one major family of known m6A readers, which specifically recognize m6A-modified transcripts via the YTH domains. Despite the significant relevance of YTH-m6A recognition in biology and diseases, few small molecule inhibitors are available for specifically perturbing this interaction. Here we report the discovery of a new inhibitor ("N-7") for YTH-m6A RNA recognition, from the screening of a nucleoside analogue library against the YTH domain of the YTHDF1 protein. N-7 is characterized to be a pan-inhibitor in vitro against five YTH domains from human YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 proteins, with IC50 values in the range of 30-48 μM measured using a fluorescence polarization competition assay. We demonstrated that N-7 directly interacts with the YTH domain proteins via a thermal shift assay. N-7 expands the chemical structure landscape of the m6A YTH domain-containing reader inhibitors and potentiates future inhibitor development for reader functional studies and therapeutic efforts in targeting the epitranscriptome.
Collapse
Affiliation(s)
- Chuan-Hui Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Huiqing Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
18
|
Yu X, Zhao W, Liu Y, Lv J, Zhong X, Huang P. Hyperbaric oxygen therapy alleviates intestinal dysfunction following traumatic brain injury via m 6A regulation. Int J Med Sci 2024; 21:2272-2284. [PMID: 39310263 PMCID: PMC11413893 DOI: 10.7150/ijms.97682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy can attenuate neurological impairment after traumatic brain injury (TBI) and alleviate intestinal dysfunction. However, the role and mechanism of HBO therapy in intestinal dysfunction following TBI remain unclear. Herein, by establishing a mouse model of controlled cortical impact (CCI), we found that HBO therapy reduced histopathological lesions and decreased the levels of inflammatory and oedema proteins in the intestinal tissues of mice 10 days after TBI. We also showed that HBO therapy improved microbiome abundance and probiotic (particularly g_Bifidobacterium) colonisation in mice post-CCI. Then, we identified that the m6A level imcreased notably in injured cortical tissue of CCI+HBO group compared with the CCI group following CCI. Thus, our results suggested that HBO therapy could alleviate TBI-induced intestinal dysfunction and m6A might participate in this regulation process, which provides new insights for exploring the specific mechanism and targets of HBO in the treatment of intestinal dysfunction after TBI, thereby improving the therapeutic effect of HBO.
Collapse
Affiliation(s)
- Xuelai Yu
- Department of Hyperbaric Oxygen, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Wei Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Yunyun Liu
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| | - Jingchuan Lv
- Department of Intensive Care Unit, Nanjing Tongren Hospital, School of Medicine, Southeast University, 211102 Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Peizan Huang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031 Nanjing, China
| |
Collapse
|
19
|
Chen T, Greene GH, Motley J, Mwimba M, Luo GZ, Xu G, Karapetyan S, Xiang Y, Liu C, He C, Dong X. m 6A modification plays an integral role in mRNA stability and translation during pattern-triggered immunity. Proc Natl Acad Sci U S A 2024; 121:e2411100121. [PMID: 39116132 PMCID: PMC11331096 DOI: 10.1073/pnas.2411100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.
Collapse
Affiliation(s)
- Tianyuan Chen
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - George H. Greene
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Jonathan Motley
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Musoki Mwimba
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Guan-Zheng Luo
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Guoyong Xu
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Sargis Karapetyan
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Yezi Xiang
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| | - Chang Liu
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Chuan He
- HHMI, University of Chicago, Chicago, IL60637
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Xinnian Dong
- HHMI, Duke University, Durham, NC27708
- Department of Biology, Duke University, Durham, NC27708
| |
Collapse
|
20
|
Shi Z, Wen K, Zou Z, Fu W, Guo K, Sammudin NH, Ruan X, Sullere S, Wang S, Zhang X, Thinakaran G, He C, Zhuang X. YTHDF1 mediates translational control by m6A mRNA methylation in adaptation to environmental challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607063. [PMID: 39149343 PMCID: PMC11326287 DOI: 10.1101/2024.08.07.607063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kailong Wen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenqin Fu
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Guo
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nabilah H Sammudin
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Sighel D, Destefanis E, Quattrone A. Therapeutic strategies to target the epitranscriptomic machinery. Curr Opin Genet Dev 2024; 87:102230. [PMID: 39024774 DOI: 10.1016/j.gde.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Altered RNA modification patterns and dysregulated expression of epitranscriptomic machinery proteins (EMPs) have been causatively correlated with several diseases. Modulation of EMP gene expression has shown promise in reversing disease-associated phenotypes, making EMPs attractive therapeutic targets. Various therapeutic strategies, including small-molecule modulators, proteolysis-targeting chimeras, and molecular tools for site-specific engineering of RNA modifications, have been introduced to modulate EMPs and RNA modifications themselves and are currently being investigated to enrich the physician's armamentarium. At the forefront of research are small-molecule inhibitors of the key players involved in the N6-methyladenosine RNA modification, with an inhibitor of methyltransferase 3 in clinical trials. Preclinical studies have also demonstrated proof-of-concept for the other approaches, raising expectations for this exciting new frontier of therapy.
Collapse
Affiliation(s)
- Denise Sighel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy. https://twitter.com/@DSighel
| | - Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy. https://twitter.com/@Destefanis_E
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
22
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
23
|
Baldi S, Amer B, Alnadari F, Al-Mogahed M, Gao Y, Gamallat Y. The Prognostic and Therapeutic Potential of Fragile X Mental Retardation 1 ( FMR1) Gene Expression in Prostate Adenocarcinoma: Insights into Survival Outcomes and Oncogenic Pathway Modulation. Int J Mol Sci 2024; 25:7290. [PMID: 39000397 PMCID: PMC11242135 DOI: 10.3390/ijms25137290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Prostate adenocarcinoma (PRAD) is the second most common tumor associated with death. The role and mechanisms of the fragile X mental retardation 1 (FMR1) gene in PRAD remain unknown. We conducted an analysis of FMR1 expression in PRAD to determine its prognostic importance and connection to carcinogenic pathways such as PI3K_AKT_mTOR. Survival analyses were utilized to establish a correlation between FMR1 expression and patient outcomes. We used the integration of genomic data with bioinformatic predictions to predict the regulatory factors of the FMR1 gene in PRAD. Our data revealed that individuals with higher levels of FMR1 expression experience worse survival outcomes compared to those with lower expression (hazard ratio [HR] = 5.08, 95% confidence interval [CI] = 1.07 - 24, p = 0.0412). FMR1 expression was significantly higher in patients with advanced pathological tumor stages, particularly in the pT3 and pT4 combined stages and the pN1 nodal stage. Furthermore, patients with high Gleason scores (GSs) (combined GSs 8 and 9) exhibited increased levels of FMR1 expression. Our results further identify a possible regulatory link between FMR1 and key oncogenic pathways, including PI3K_AKT_mTOR, and predict the possible mechanism by which FMR1 is regulated in PRAD. Our data suggest that the FMR1 gene could serve as a biomarker for PRAD progression. However, in-depth investigations, including those with large patient samples and in vitro studies, are needed to validate this finding and understand the mechanisms involved.
Collapse
Affiliation(s)
- Salem Baldi
- Department of Medical Laboratory Diagnostics, School of Medical Technology, Shaoyang University, Shaoyang 422000, China
| | - Bushra Amer
- Department of Family Medicine, Michigan State University, East Lansing, MI 49684, USA
| | - Fawze Alnadari
- Research and Development Center of Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing 210046, China
| | - Maged Al-Mogahed
- Department of Surgery, The First Bethune Hospital of Jilin University, Changchun 130012, China
| | - Yaqin Gao
- Department of Ultrasound Diagnosis, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Yaser Gamallat
- Department of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1M4, Canada
| |
Collapse
|
24
|
Zou Z, He C. The YTHDF proteins display distinct cellular functions on m 6A-modified RNA. Trends Biochem Sci 2024; 49:611-621. [PMID: 38677920 PMCID: PMC11227416 DOI: 10.1016/j.tibs.2024.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
26
|
Wang L, Wan W, Zhang S, Keswani T, Li G, Xiao J. RNA-mediated epigenetic regulation in exercised heart: Mechanisms and opportunities for intervention. Mol Aspects Med 2024; 97:101274. [PMID: 38653129 DOI: 10.1016/j.mam.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Physical exercise has been widely acknowledged as a beneficial lifestyle alteration and a potent non-pharmacological treatment for heart disease. Extensive investigations have revealed the beneficial effects of exercise on the heart and the underlying mechanisms involved. Exercise is considered one of the key factors that can lead to epigenetic alterations. The increasing number of identified molecules in the exercised heart has led to many studies in recent years that have explored the cellular function of ncRNAs and RNA modifications in the heart. Investigating the regulatory role of RNA-mediated epigenetic regulation in exercised hearts will contribute to the development of therapeutic strategies for the management of heart diseases. This review aims to summarize the positive impact of exercise on cardiac health. We will first provide an overview of the mechanisms through which exercise offers protection to the heart. Subsequently, we will delve into the current understanding of ncRNAs, specifically miRNAs, lncRNAs, and circRNAs, as well as RNA modification, focusing on RNA m6A and RNA A-to-I editing, and how they contribute to exercise-induced benefits for the heart. Lastly, we will explore the emerging therapeutic strategies that utilize exercise-mediated RNA epigenetic regulation in the treatment of heart diseases, while also addressing the challenges faced in this field.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shuang Zhang
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Tarun Keswani
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
27
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
28
|
Zaccara S, Jaffrey SR. Understanding the redundant functions of the m 6A-binding YTHDF proteins. RNA (NEW YORK, N.Y.) 2024; 30:468-481. [PMID: 38531646 PMCID: PMC11019742 DOI: 10.1261/rna.079988.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/28/2024]
Abstract
N 6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA, and it has important functions in mRNA regulation. However, our understanding of the specific functions of m6A along with its cytosolic readers, the YTHDF proteins, has changed substantially in recent years. The original view was that different m6A sites within an mRNA could have different functions depending on which YTHDF paralog was bound to it, with bound YTHDF1 inducing translation, while bound YTHDF2 induced mRNA degradation. As a result, each YTHDF was proposed to have unique physiologic roles that arise from their unique binding properties and regulatory effects on mRNA. More recent data have called much of this into question, showing that all m6A sites bind all YTHDF proteins with equal ability, with a single primary function of all three YTHDF proteins to mediate mRNA degradation. Here, we describe the diverse technical concerns that led to the original model being questioned and the newer data that overturned this model and led to the new understanding of m6A and YTHDF function. We also discuss how any remaining questions about the functions of the YTHDF proteins can be readily resolved.
Collapse
Affiliation(s)
- Sara Zaccara
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| |
Collapse
|
29
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
30
|
Cazzanelli G, Dalle Vedove A, Spagnolli G, Terruzzi L, Colasurdo E, Boldrini A, Patsilinakos A, Sturlese M, Grottesi A, Biasini E, Provenzani A, Quattrone A, Lolli G. Pliability in the m 6A-Binding Region Extends Druggability of YTH Domains. J Chem Inf Model 2024; 64:1682-1690. [PMID: 38417111 DOI: 10.1021/acs.jcim.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Epitranscriptomic mRNA modifications affect gene expression, with their altered balance detected in various cancers. YTHDF proteins contain the YTH reader domain recognizing the m6A mark on mRNA and represent valuable drug targets. Crystallographic structures have been determined for all three family members; however, discrepancies are present in the organization of the m6A-binding pocket. Here, we present new crystallographic structures of the YTH domain of YTHDF1, accompanied by computational studies, showing that this domain can exist in different stable conformations separated by a significant energetic barrier. During the transition, additional conformations are explored, with peculiar druggable pockets appearing and offering new opportunities for the design of YTH-interfering small molecules.
Collapse
Affiliation(s)
- Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Luca Terruzzi
- Sibylla Biotech S.p.A, Via Lillo del Duca 10, 20091 Bresso, Milan, Italy
| | - Enrica Colasurdo
- Sibylla Biotech S.p.A, Via Lillo del Duca 10, 20091 Bresso, Milan, Italy
| | - Alberto Boldrini
- Sibylla Biotech S.p.A, Via Lillo del Duca 10, 20091 Bresso, Milan, Italy
| | | | - Mattia Sturlese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology─CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Trento, Italy
| |
Collapse
|
31
|
Wen K, Shi Z, Yu P, Mo L, Sullere S, Yang V, Westneat N, Beeler JA, McGehee DS, Doiron B, Zhuang X. Opposing Motor Memories in the Direct and Indirect Pathways of the Basal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582159. [PMID: 38463990 PMCID: PMC10925233 DOI: 10.1101/2024.02.26.582159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Loss of dopamine neurons causes motor deterioration in Parkinson's disease patients. We have previously reported that in addition to acute motor impairment, the impaired motor behavior is encoded into long-term memory in an experience-dependent and task-specific manner, a phenomenon we refer to as aberrant inhibitory motor learning. Although normal motor learning and aberrant inhibitory learning oppose each other and this is manifested in apparent motor performance, in the present study, we found that normal motor memory acquired prior to aberrant inhibitory learning remains preserved in the brain, suggesting the existence of independent storage. To investigate the neuronal circuits underlying these two opposing memories, we took advantage of the RNA-binding protein YTHDF1, an m 6 A RNA methylation reader involved in the regulation of protein synthesis and learning/memory. Conditional deletion of Ythdf1 in either D1 or D2 receptor-expressing neurons revealed that normal motor memory is stored in the D1 (direct) pathway of the basal ganglia, while inhibitory memory is stored in the D2 (indirect) pathway. Furthermore, fiber photometry recordings of GCaMP signals from striatal D1 (dSPN) and D2 (iSPN) receptor-expressing neurons support the preservation of normal memory in the direct pathway after aberrant inhibitory learning, with activities of dSPN predictive of motor performance. Finally, a computational model based on activities of motor cortical neurons, dSPN and iSPN neurons, and their interactions through the basal ganglia loops supports the above observations. These findings have important implications for novel approaches in treating Parkinson's disease by reactivating preserved normal memory, and in treating hyperkinetic movement disorders such as chorea or tics by erasing aberrant motor memories.
Collapse
|
32
|
Kurosaki T, Rambout X, Maquat LE. FMRP-mediated spatial regulation of physiologic NMD targets in neuronal cells. Genome Biol 2024; 25:31. [PMID: 38263082 PMCID: PMC10804635 DOI: 10.1186/s13059-023-03146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
In non-polarized cells, nonsense-mediated mRNA decay (NMD) generally begins during the translation of newly synthesized mRNAs after the mRNAs are exported to the cytoplasm. Binding of the FMRP translational repressor to UPF1 on NMD targets mainly inhibits NMD. However, in polarized cells like neurons, FMRP additionally localizes mRNAs to cellular projections. Here, we review the literature and evaluate available transcriptomic data to conclude that, in neurons, the translation of physiologic NMD targets bound by FMRP is partially inhibited until the mRNAs localize to projections. There, FMRP displacement in response to signaling induces a burst in protein synthesis followed by rapid mRNA decay.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
33
|
Zhang Y, Ling Y, Zhou Y, Shi X, Shen F, Zhou J, Chen Y, Yang F, Gu Y, Wang J. Research Advances in the Roles of N6-Methyladenosine Modification in Ovarian Cancer. Cancer Control 2024; 31:10732748241256819. [PMID: 38755968 PMCID: PMC11102699 DOI: 10.1177/10732748241256819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological tumor, characterized by its insidious and frequently recurring metastatic progression. Owing to limited early screening methods, over 70% of OC cases are diagnosed at advanced stages, typically stage III or IV. Recently, N6-methyladenosine (m6A) modification has emerged as a hotspot of epigenetic research, representing a significant endogenous RNA modification in higher eukaryotes. Numerous studies have reported that m6A-related regulatory factors play pivotal roles in tumor development through diverse mechanisms. Moreover, recent studies have indicated the aberrant expression of multiple regulatory factors in OC. Therefore, this paper comprehensively reviews research advancements concerning m6A in OC, aiming to elucidate the regulatory mechanism of m6A-associated regulators on pivotal aspects, such as proliferation, invasion, metastasis, and drug resistance, in OC. Furthermore, it discusses the potential of m6A-associated regulators as early diagnostic markers and therapeutic targets, thus contributing to the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Ling
- Affiliated Hospital of Medical School, Nanjing University, Nanjing Stomatological Hospital, Nanjing, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, West China Second Hospital, University of Sichuan, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, University of Sichuan, Chengdu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Rong H, Wang D, Wang Y, Dong C, Wang G. YTHDF1 in Tumor Cell Metabolism: An Updated Review. Molecules 2023; 29:140. [PMID: 38202722 PMCID: PMC10779796 DOI: 10.3390/molecules29010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancement of research on m6A-related mechanisms in recent years, the YTHDF protein family within m6A readers has garnered significant attention. Among them, YTHDF1 serves as a pivotal member, playing a crucial role in protein translation, tumor proliferation, metabolic reprogramming of various tumor cells, and immune evasion. In addition, YTHDF1 also exerts regulatory effects on tumors through multiple signaling pathways, and numerous studies have confirmed its ability to assist in the reprogramming of the tumor cell-related metabolic processes. The focus of research on YTHDF1 has shifted in recent years from its m6A-recognition and -modification function to the molecular mechanisms by which it regulates tumor progression, particularly by exploring the regulatory factors that interact with YTHDF1 upstream and downstream. In this review, we elucidate the latest signaling pathway mechanisms of YTHDF1 in various tumor cells, with a special emphasis on its distinctive characteristics in tumor cell metabolic reprogramming. Furthermore, we summarize the latest pathological and physiological processes involving YTHDF1 in tumor cells, and analyze potential therapeutic approaches that utilize YTHDF1. We believe that YTHDF1 represents a highly promising target for future tumor treatments and a novel tumor biomarker.
Collapse
Affiliation(s)
| | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; (H.R.); (D.W.); (Y.W.); (C.D.)
| |
Collapse
|