1
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
2
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
3
|
Hayakawa S, Tamura A, Nikiforov N, Koike H, Kudo F, Cheng Y, Miyazaki T, Kubekina M, Kirichenko TV, Orekhov AN, Yui N, Manabe I, Oishi Y. Activated cholesterol metabolism is integral for innate macrophage responses by amplifying Myd88 signaling. JCI Insight 2022; 7:138539. [PMID: 36509286 DOI: 10.1172/jci.insight.138539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that cellular metabolism is tightly linked to the regulation of immune cells. Here, we show that activation of cholesterol metabolism, involving cholesterol uptake, synthesis, and autophagy/lipophagy, is integral to innate immune responses in macrophages. In particular, cholesterol accumulation within endosomes and lysosomes is a hallmark of the cellular cholesterol dynamics elicited by Toll-like receptor 4 activation and is required for amplification of myeloid differentiation primary response 88 (Myd88) signaling. Mechanistically, Myd88 binds cholesterol via its CLR recognition/interaction amino acid consensus domain, which promotes the protein's self-oligomerization. Moreover, a novel supramolecular compound, polyrotaxane (PRX), inhibited Myd88‑dependent inflammatory macrophage activation by decreasing endolysosomal cholesterol via promotion of cholesterol trafficking and efflux. PRX activated liver X receptor, which led to upregulation of ATP binding cassette transporter A1, thereby promoting cholesterol efflux. PRX also inhibited atherogenesis in Ldlr-/- mice. In humans, cholesterol levels in circulating monocytes correlated positively with the severity of atherosclerosis. These findings demonstrate that dynamic changes in cholesterol metabolism are mechanistically linked to Myd88‑dependent inflammatory programs in macrophages and support the notion that cellular cholesterol metabolism is integral to innate activation of macrophages and is a potential therapeutic and diagnostic target for inflammatory diseases.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nikita Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Fujimi Kudo
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yinglan Cheng
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Marina Kubekina
- Institute of Gene Biology, Centre of Collective Usage, Moscow, Russia
| | - Tatiana V Kirichenko
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Moscow, Russia
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
5
|
Functional perspective of black fungi (Auricularia auricula): Major bioactive components, health benefits and potential mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Woo K, Kim DH, Oh MH, Park HS, Choi CH. N-3-Hydroxy Dodecanoyl-DL-homoserine Lactone (OH-dDHL) Triggers Apoptosis of Bone Marrow-Derived Macrophages through the ER- and Mitochondria-Mediated Pathways. Int J Mol Sci 2021; 22:ijms22147565. [PMID: 34299184 PMCID: PMC8305837 DOI: 10.3390/ijms22147565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing of Acinetobacter nosocomialis for cell-to-cell communication produces N-3-hydroxy dodecanoyl-DL-homoserine lactone (OH-dDHL) by an AnoR/I two-component system. However, OH-dDHL-driven apoptotic mechanisms in hosts have not been clearly defined. Here, we investigated the induction of apoptosis signaling pathways in bone marrow-derived macrophages treated with synthetic OH-dDHL. Moreover, the quorum-sensing system for virulence regulation was evaluated in vivo using wild-type and anoI-deletion mutant strains. OH-dDHL decreased the viability of macrophage and epithelial cells in dose- and time-dependent manners. OH-dDHL induced Ca2+ efflux and caspase-12 activation by ER stress transmembrane protein (IRE1 and ATF6a p50) aggregation and induced mitochondrial dysfunction through reactive oxygen species (ROS) production, which caused cytochrome c to leak. Pretreatment with a pan-caspase inhibitor reduced caspase-3, -8, and -9, which were activated by OH-dDHL. Pro-inflammatory cytokine and paraoxonase-2 (PON2) gene expression were increased by OH-dDHL. We showed that the anoI-deletion mutant strains have less intracellular invasion compared to the wild-type strain, and their virulence, such as colonization and dissemination, was decreased in vivo. Consequently, these findings revealed that OH-dDHL, as a virulence factor, contributes to bacterial infection and survival as well as the modification of host responses in the early stages of infection.
Collapse
Affiliation(s)
- Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Man Hwan Oh
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
| | - Ho Sung Park
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea; (K.W.); (D.H.K.); (H.S.P.)
- Correspondence: ; Tel.: +82-42-580-8246
| |
Collapse
|
7
|
Cohen G. Effect of High-Density Lipoprotein from Healthy Subjects and Chronic Kidney Disease Patients on the CD14 Expression on Polymorphonuclear Leukocytes. Int J Mol Sci 2021; 22:ijms22062830. [PMID: 33799511 PMCID: PMC7998954 DOI: 10.3390/ijms22062830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
In uremic patients, high-density lipoprotein (HDL) loses its anti-inflammatory features and can even become pro-inflammatory due to an altered protein composition. In chronic kidney disease (CKD), impaired functions of polymorphonuclear leukocytes (PMNLs) contribute to inflammation and an increased risk of cardiovascular disease. This study investigated the effect of HDL from CKD and hemodialysis (HD) patients on the CD14 expression on PMNLs. HDL was isolated using a one-step density gradient centrifugation. Isolation of PMNLs was carried out by discontinuous Ficoll-Hypaque density gradient centrifugation. CD14 surface expression was quantified by flow cytometry. The activity of the small GTPase Rac1 was determined by means of an activation pull-down assay. HDL increased the CD14 surface expression on PMNLs. This effect was more pronounced for HDL isolated from uremic patients. The acute phase protein serum amyloid A (SAA) caused higher CD14 expression, while SAA as part of an HDL particle did not. Lipid raft disruption with methyl-β-cyclodextrin led to a reduced CD14 expression in the absence and presence of HDL. HDL from healthy subjects but not from HD patients decreased the activity of Rac1. Considering the known anti-inflammatory effects of HDL, the finding that even HDL from healthy subjects increased the CD14 expression was unexpected. The pathophysiological relevance of this result needs further investigation.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Endotoxin Tolerance in Abdominal Aortic Aneurysm Macrophages, In Vitro: A Case-Control Study. Antioxidants (Basel) 2020; 9:antiox9090896. [PMID: 32967278 PMCID: PMC7554856 DOI: 10.3390/antiox9090896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). This study examined the environmentally conditioned responses of AAA macrophages to inflammatory stimuli. Plasma- and blood-derived monocytes were separated from the whole blood of patients with AAA (30–45 mm diameter; n = 33) and sex-matched control participants (n = 44). Increased concentrations of pro-inflammatory and pro-oxidant biomarkers were detected in the plasma of AAA patients, consistent with systemic inflammation and oxidative stress. However, in monocyte-derived macrophages, a suppressed cytokine response was observed in AAA compared to the control following stimulation with lipopolysaccharide (LPS) (tumor necrosis factor alpha (TNF-α) 26.9 ± 3.3 vs. 15.5 ± 3.2 ng/mL, p < 0.05; IL-6 3.2 ± 0.6 vs. 1.4 ± 0.3 ng/mL, p < 0.01). LPS-stimulated production of 8-isoprostane, a biomarker of oxidative stress, was also markedly lower in AAA compared to control participants. These findings are consistent with developed tolerance in human AAA macrophages. As Toll-like receptor 4 (TLR4) has been implicated in tolerance, macrophages were examined for changes in TLR4 expression and distribution. Although TLR4 mRNA and protein expression were unaltered in AAA, cytosolic internalization of receptors and lipid rafts was found. These findings suggest the inflamed, pro-oxidant AAA microenvironment favors macrophages with an endotoxin-tolerant-like phenotype characterized by a diminished capacity to produce pro-inflammatory mediators that enhance the immune response.
Collapse
|
9
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
10
|
Zhou H, Urso CJ, Jadeja V. Saturated Fatty Acids in Obesity-Associated Inflammation. J Inflamm Res 2020; 13:1-14. [PMID: 32021375 PMCID: PMC6954080 DOI: 10.2147/jir.s229691] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Obesity is a major risk factor for the development of various pathological conditions including insulin resistance, diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Central to these conditions is obesity-associated chronic low-grade inflammation in many tissues including adipose, liver, muscle, kidney, pancreas, and brain. There is increasing evidence that saturated fatty acids (SFAs) increase the phosphorylation of MAPKs, enhance the activation of transcription factors such as nuclear factor (NF)-κB, and elevate the expression of inflammatory genes. This paper focuses on the mechanisms by which SFAs induce inflammation. SFAs may induce the expression inflammatory genes via different pathways including toll-like receptor (TLR), protein kinase C (PKC), reactive oxygen species (ROS), NOD-like receptors (NLRs), and endoplasmic reticulum (ER) stress. These findings suggest that SFAs act as an important link between obesity and inflammation.
Collapse
Affiliation(s)
- Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - C J Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Viren Jadeja
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
11
|
Chen Y, Zhao YF, Yang J, Jing HY, Liang W, Chen MY, Yang M, Wang Y, Guo MY. Selenium alleviates lipopolysaccharide-induced endometritisviaregulating the recruitment of TLR4 into lipid rafts in mice. Food Funct 2020; 11:200-210. [DOI: 10.1039/c9fo02415h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium (Se) is an essential trace element for living organisms and plays diverse biological roles.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yi-fan Zhao
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Jing Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Hong-yuan Jing
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Wan Liang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Miao-yu Chen
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine
- College of Veterinary Medicine
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| |
Collapse
|
12
|
Xue J, Yu Y, Zhang X, Zhang C, Zhao Y, Liu B, Zhang L, Wang L, Chen R, Gao X, Jiao P, Song G, Jiang XC, Qin S. Sphingomyelin Synthase 2 Inhibition Ameliorates Cerebral Ischemic Reperfusion Injury Through Reducing the Recruitment of Toll-Like Receptor 4 to Lipid Rafts. J Am Heart Assoc 2019; 8:e012885. [PMID: 31718447 PMCID: PMC6915272 DOI: 10.1161/jaha.119.012885] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation is recognized as an important contributor of ischemia/reperfusion (I/R) damage after ischemic stroke. Sphingomyelin synthase 2 (SMS2), the key enzyme for the biosynthesis of sphingomyelin, can function as a critical mediator of inflammation. In the present study, we investigated the role of SMS2 in a mouse model of cerebral I/R. Methods and Results Cerebral I/R was induced by 60‐minute transient middle cerebral artery occlusion in SMS2 knockout (SMS2‐/‐) mice and wild‐type mice. Brain injury was determined by neurological deficits and infarct volume at 24 and 72 hours after transient middle cerebral artery occlusion. Microglia activation and inflammatory factors were detected by immunofluorescence staining, flow cytometry, western blot, and RT‐PCR. SMS2 deficiency significantly improved neurological function and minimized infarct volume at 72 hours after transient middle cerebral artery occlusion. The neuroprotective effects of SMS2 deficiency were associated with (1) suppression of microglia activation through Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathway and (2) downregulation of the level of galactin‐3 and other proinflammatory cytokines. The mechanisms underlying the beneficial effects of SMS2 deficiency may include altering sphingomyelin components in lipid raft fractions, thus impairing the recruitment of Toll‐like receptor 4 to lipid rafts and subsequently reducing Toll‐like receptor 4/myeloid differentiation factor 2 complex formation on the surface of microglia. Conclusions SMS2 deficiency ameliorated inflammatory injury after cerebral I/R in mice, and SMS2 may be a key modulator of Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells activation by disturbing the membrane component homeostasis during cerebral I/R.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xiangjian Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Cong Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yanan Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Boyan Liu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lan Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lina Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Rong Chen
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xuan Gao
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology SUNY Downstate Medical Center Brooklyn NY
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| |
Collapse
|
13
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Li Y, Guan J, Wang W, Hou C, Zhou L, Ma J, Cheng Y, Jiao S, Zhou Z. TRAF3-interacting JNK-activating modulator promotes inflammation by stimulating translocation of Toll-like receptor 4 to lipid rafts. J Biol Chem 2019; 294:2744-2756. [PMID: 30573680 DOI: 10.1074/jbc.ra118.003137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are key players of the innate immune system and contribute to inflammation and pathogen clearance. Although TLRs have been extensively studied, it remains unclear how exactly bacterial lipopolysaccharide (LPS)-induced conformational changes of the extracellular domain of the TLRs trigger the dimerization of their intracellular domain across the plasma membrane and thereby stimulate downstream signaling. Here, using LPS-stimulated THP-1-derived macrophages and murine macrophages along with immunoblotting and immunofluorescence and quantitative analyses, we report that in response to inflammatory stimuli, the coiled-coil protein TRAF3-interacting JNK-activating modulator (T3JAM) associates with TLR4, promotes its translocation to lipid rafts, and thereby enhances macrophage-mediated inflammation. T3JAM overexpression increased and T3JAM depletion decreased TLR4 signaling through both the MyD88-dependent pathway and TLR4 endocytosis. Importantly, deletion or mutation of T3JAM to disrupt its coiled-coil-mediated homoassociation abrogated TLR4 recruitment to lipid rafts. Consistently, T3JAM depletion in mice dampened TLR4 signaling and alleviated LPS-induced inflammatory damage. Collectively, our findings reveal an additional molecular mechanism by which TLR4 activity is regulated and suggest that T3JAM may function as a molecular clamp to "tighten up" TLR4 and facilitate its translocation to lipid rafts.
Collapse
Affiliation(s)
- Yehua Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Jingmin Guan
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Wenjia Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Chun Hou
- the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| | - Li Zhou
- the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| | - Jian Ma
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yunfeng Cheng
- the Department of Hematology and Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Jiao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031,
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, .,the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| |
Collapse
|
15
|
Wang J, Xiao C, Wei Z, Wang Y, Zhang X, Fu Y. Activation of liver X receptors inhibit LPS-induced inflammatory response in primary bovine mammary epithelial cells. Vet Immunol Immunopathol 2018; 197:87-92. [DOI: 10.1016/j.vetimm.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 11/29/2022]
|
16
|
Wei Z, Wang J, Shi M, Liu W, Yang Z, Fu Y. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages. Oncotarget 2018; 7:48995-49007. [PMID: 27285988 PMCID: PMC5226486 DOI: 10.18632/oncotarget.9863] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/22/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to investigate the effects of SSa on LPS-induced endotoxemia in mice and clarify the possible mechanism. An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of SSa in vivo. The primary mouse macrophages were used to investigate the molecular mechanism and targets of SSa in vitro. In vivo, the results showed that SSa improved survival during lethal endotoxemia. In vitro, our results showed that SSa dose-dependently inhibited the expression of TNF-α, IL-6, IL-1β, IFN-β-and RANTES in LPS-stimulated primary mouse macrophages. Western blot analysis showed that SSa suppressed LPS-induced NF-κB and IRF3 activation. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol and inhibited TLR4 translocation into lipid rafts. Moreover, SSa activated LXRα, ABCA1 and ABCG1. Silencing LXRα abrogated the effect of SSa. In conclusion, the anti-inflammatory effects of SSa is associated with activating LXRα dependent cholesterol efflux pathway which result in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts, thereby attenuating LPS mediated inflammatory response.
Collapse
Affiliation(s)
- Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Mingyu Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Weijian Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
17
|
Recent advances on Toll-like receptor 4 modulation: new therapeutic perspectives. Future Med Chem 2018; 10:461-476. [PMID: 29380635 DOI: 10.4155/fmc-2017-0172] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation or inhibition of TLR4 by small molecules will provide in the next few years a new generation of therapeutics. TLR4 stimulation (agonism) by high-affinity ligands mimicking lipid A gave vaccine adjuvants with improved specificity and efficacy that have been licensed and entered into the market. TLR4 inhibition (antagonism) prevents cytokine production at a very early stage; this is in principle a more efficient method to block inflammatory diseases compared to cytokines neutralization by antibodies. Advances in TLR4 modulation by drug-like small molecules achieved in the last years are reviewed. Recently discovered TLR4 agonists and antagonists of natural and synthetic origin are presented, and their mechanism of action and structure-activity relationship are discussed.
Collapse
|
18
|
Fu Y, Xin Z, Liu B, Wang J, Wang J, Zhang X, Wang Y, Li F. Platycodin D Inhibits Inflammatory Response in LPS-Stimulated Primary Rat Microglia Cells through Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2018; 8:1929. [PMID: 29375565 PMCID: PMC5767310 DOI: 10.3389/fimmu.2017.01929] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Platycodin D (PLD), an effective triterpenesaponin extracted from Platycodon grandiflorum, has been known to have anti-inflammatory effect. In the present study, we investigate the anti-inflammatory effects of PLD on LPS-induced inflammation in primary rat microglia cells. The results showed that PLD significantly inhibited LPS-induced ROS, TNF-α, IL-6, and IL-1β production in primary rat microglia cells. PLD also inhibited LPS-induced NF-κB activation. Furthermore, our results showed that PLD prevented LPS-induced TLR4 translocation into lipid rafts via disrupting the formation of lipid rafts by inducing cholesterol efflux. In addition, PLD could activate LXRα–ABCA1 signaling pathway which induces cholesterol efflux from cells. The inhibition of inflammatory cytokines by PLD could be reversed by SiRNA of LXRα. In conclusion, these results indicated that PLD prevented LPS-induced inflammation by activating LXRα–ABCA1 signaling pathway, which disrupted lipid rafts and prevented TLR4 translocation into lipid rafts, thereby inhibiting LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Zhuoyuan Xin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, First Hospital of Jilin University, Changchun, China
| | - Jiaxin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| |
Collapse
|
19
|
Hellwing C, Schoeniger A, Roessler C, Leimert A, Schumann J. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition. PeerJ 2018; 6:e4212. [PMID: 29312832 PMCID: PMC5757419 DOI: 10.7717/peerj.4212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll like receptors (TLRs) are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA) induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. METHODS In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA) or arachidonic acid (AA) and analyzed for receptor expression and microdomain localization in context of TLR stimulation. RESULTS AND CONCLUSIONS Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.
Collapse
Affiliation(s)
- Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Claudia Roessler
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Anja Leimert
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| |
Collapse
|
20
|
Vibrio cholerae OmpU induces IL-8 expression in human intestinal epithelial cells. Mol Immunol 2017; 93:47-54. [PMID: 29145158 DOI: 10.1016/j.molimm.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 01/22/2023]
Abstract
Although Vibrio cholerae colonizes the small intestine and induces acute inflammatory responses, less is known about the molecular mechanisms of V. cholerae-induced inflammatory responses in the intestine. We recently reported that OmpU, one of the most abundant outer membrane proteins of V. cholerae, plays an important role in the innate immunity of the whole bacteria. In this study, we evaluated the role of OmpU in induction of IL-8, a representative chemokine that recruits various inflammatory immune cells, in the human intestinal epithelial cell (IEC) line, HT-29. Recombinant OmpU (rOmpU) of V. cholerae induced IL-8 expression at the mRNA and protein levels in a dose- and time-dependent manner. Interestingly, IL-8 was secreted through both apical and basolateral sides of the polarized HT-29 cells upon apical exposure to rOmpU but not upon basolateral exposure. rOmpU-induced IL-8 expression was inhibited by interference of lipid raft formation with nystatin, but not by blocking the formation of clathrin-coated pits with chlorpromazine. In addition, rOmpU-induced IL-8 expression was mediated via ERK1/2 and p38 kinase pathways, but not via JNK signaling pathway. Finally, V. cholerae lacking ompU elicited decreased IL-8 expression and adherence to HT-29 cells compared to the parental strain. Collectively, these results suggest that V. cholerae OmpU might play an important role in intestinal inflammation by inducing IL-8 expression in human IECs.
Collapse
|
21
|
Taniguchi M, Ochiai A. Characterization and production of multifunctional cationic peptides derived from rice proteins. Biosci Biotechnol Biochem 2017; 81:634-650. [DOI: 10.1080/09168451.2016.1277944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Yamada H, Umemoto T, Kawano M, Kawakami M, Kakei M, Momomura SI, Ishikawa SE, Hara K. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2017; 484:403-408. [DOI: 10.1016/j.bbrc.2017.01.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
|
23
|
Hu X, Fu Y, Lu X, Zhang Z, Zhang W, Cao Y, Zhang N. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2017; 7:644. [PMID: 28096801 PMCID: PMC5206804 DOI: 10.3389/fimmu.2016.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα-ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα-ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
24
|
Lu JC, Chiang YT, Lin YC, Chang YT, Lu CY, Chen TY, Yeh CS. Disruption of Lipid Raft Function Increases Expression and Secretion of Monocyte Chemoattractant Protein-1 in 3T3-L1 Adipocytes. PLoS One 2016; 11:e0169005. [PMID: 28030645 PMCID: PMC5193455 DOI: 10.1371/journal.pone.0169005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
The adipocyte is unique in its capacity to store lipids. In addition to triglycerides, the adipocyte stores a significant amount of cholesterol. Moreover, obese adipocytes are characterized by a redistribution of cholesterol with depleted cholesterol in the plasma membrane, suggesting that cholesterol perturbation may play a role in adipocyte dysfunction. We used methyl-β-cyclodextrin (MβCD), a molecule with high affinity for cholesterol, to rapidly deplete cholesterol level in differentiated 3T3-L1 adipocytes. We tested whether this perturbation altered adipocyte secretion of monocyte chemoattractant protein-1 (MCP-1), a chemokine that is elevated in obesity and is linked to obesity-associated chronic diseases. Depletion of cholesterol by MβCD increased MCP-1 secretion as well as the mRNA and protein levels, suggesting perturbation at biosynthesis and secretion. Pharmacological inhibition revealed that NF-κB, but not MEK, p38 and JNK, was involved in MβCD-stimulated MCP-1 biosynthesis and secretion in adipocytes. Finally, another cholesterol-binding drug, filipin, also induced MCP-1 secretion without altering membrane cholesterol level. Interestingly, both MβCD and filipin disturbed the integrity of lipid rafts, the membrane microdomains enriched in cholesterol. Thus, the depletion of membrane cholesterol in obese adipocytes may result in dysfunction of lipid rafts, leading to the elevation of proinflammatory signaling and MCP-1 secretion in adipocytes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yun Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Shan Yeh
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Józefowski S, Śróttek M. Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors. Cell Immunol 2016; 312:42-50. [PMID: 27908440 DOI: 10.1016/j.cellimm.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
Acting through CD14 and TLR4/MD-2, lipopolysaccharide (LPS) triggers strong pro-inflammatory activation of macrophages, which, if not appropriately controlled, may lead to lethal septic shock. Therefore, numerous mechanisms of negative regulation of responses to LPS exist, but whether they include down-regulation of LPS receptors is not clear. We have found that in J774 cells, the clathrin-dependent endocytic pathway enables activation of TRIF-dependent TLR4 signaling within endosomes, but is not associated with the down-regulation of TLR4 or CD14 surface expression. In contrast, lipid raft-dependent endocytosis negatively regulates the basal cell surface expression of LPS receptors and, consequently, responsiveness to LPS. Together with observations that treatments, known to selectively disrupt lipid rafts, do not inhibit LPS-stimulated cytokine production, our results suggest that lipid rafts may serve as sites in which LPS receptors are sorted for endocytosis, rather than being platforms for the assembly of TLR4-centered signaling complexes, as suggested previously.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland.
| | - Małgorzata Śróttek
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland
| |
Collapse
|
26
|
Chung HY, Hupe DC, Otto GP, Sprenger M, Bunck AC, Dorer MJ, Bockmeyer CL, Deigner HP, Gräler MH, Claus RA. Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis. Mol Med 2016; 22:412-423. [PMID: 27341515 DOI: 10.2119/molmed.2016.00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of sepsis involves activation of acid sphingomyelinase (SMPD1) with subsequent generation of the bioactive mediator ceramide. We herein evaluated the hypothesis that the enzyme exerts biological effects in endothelial stress response. Plasma-secreted sphingomyelinase activity, ceramide generation and lipid raft formation were measured in human microcirculatory endothelial cells (HMEC-1) stimulated with serum obtained from sepsis patients. Clustering of receptors relevant for signal transduction was studied by immuno staining. The role of SMPD1 for macrodomain formation was tested by pharmacological inhibition. To confirm the involvement of the stress enzyme, direct inhibitors (amino bisphosphonates) and specific downregulation of the gene was tested with respect to ADAMTS13 expression and cytotoxicity. Plasma activity and amount of SMPD1 were increased in septic patients dependent on clinical severity. Increased breakdown of sphingomyelin to ceramide in HMECs was observed following stimulation with serum from sepsis patients in vitro. Hydrolysis of sphingomyelin, clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as formation of ceramide enriched macrodomains was abrogated using functional inhibitors (desipramine and NB6). Strikingly, the stimulation of HMECs with serum obtained from sepsis patients or mixture of proinflammatory cytokines resulted in cytotoxicity and ADAMTS13 downregulation which was abrogated using desipramine, amino bisphosphonates and genetic inhibitors. SMPD1 is involved in the dysregulation of ceramide metabolism in endothelial cells leading to macrodomain formation, cytotoxicity and downregulation of ADAMTS13 expression. Functional inhibitors, such as desipramine, are capable to improve endothelial stress response during sepsis and might be considered as a pharmacological treatment strategy to favor the outcome.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Daniel C Hupe
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Gordon P Otto
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Marcel Sprenger
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Alexander C Bunck
- Department of Radiology, University Hospital Cologne, Cologne, Germany
| | - Michael J Dorer
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Clemens L Bockmeyer
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Hans-Peter Deigner
- Hochschule Furtwangen University, Faculty Medical and Life Sciences, Villingen-Schwenningen, Germany.,Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Markus H Gräler
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| | - Ralf A Claus
- Center for Sepsis Control & Care (CSCC), Jena University Hospital, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Germany
| |
Collapse
|
27
|
Zhang Y, Chen F, Chen J, Huang S, Chen J, Huang J, Li N, Sun S, Chu X, Zha L. Soyasaponin Bb inhibits the recruitment of toll-like receptor 4 (TLR4) into lipid rafts and its signaling pathway by suppressing the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent generation of reactive oxygen species. Mol Nutr Food Res 2016; 60:1532-43. [DOI: 10.1002/mnfr.201600015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yajie Zhang
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Fengping Chen
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Jiading Chen
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Suqun Huang
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Jian Huang
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Nan Li
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou Guangdong P. R. China
| |
Collapse
|
28
|
Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol 2016; 785:24-35. [PMID: 27085899 DOI: 10.1016/j.ejphar.2016.04.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 02/06/2023]
Abstract
Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses.
Collapse
|
29
|
Clark RS, Pellom ST, Booker B, Ramesh A, Zhang T, Shanker A, Maguire M, Juarez PD, Patricia MJ, Langston MA, Lichtveld MY, Hood DB. Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection. ENVIRONMENTAL RESEARCH 2016; 146:173-184. [PMID: 26765097 PMCID: PMC5523512 DOI: 10.1016/j.envres.2015.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
The exposome provides a framework for understanding elucidation of an uncharacterized molecular mechanism conferring enhanced susceptibility of macrophage membranes to bacterial infection after exposure to the environmental contaminant benzo(a)pyrene, [B(a)P]. The fundamental requirement in activation of macrophage effector functions is the binding of immunoglobulins to Fc receptors. FcγRIIa (CD32a), a member of the Fc family of immunoreceptors with low affinity for immunoglobulin G, has been reported to bind preferentially to IgG within lipid rafts. Previous research suggested that exposure to B(a)P suppressed macrophage effector functions but the molecular mechanisms remain elusive. The goal of this study was to elucidate the mechanism(s) of B(a)P-exposure induced suppression of macrophage function by examining the resultant effects of exposure-induced insult on CD32-lipid raft interactions in the regulation of IgG binding to CD32. The results demonstrate that exposure of macrophages to B(a)P alters lipid raft integrity by decreasing membrane cholesterol 25% while increasing CD32 into non-lipid raft fractions. This robust diminution in membrane cholesterol and 30% exclusion of CD32 from lipid rafts causes a significant reduction in CD32-mediated IgG binding to suppress essential macrophage effector functions. Such exposures across the lifespan would have the potential to induce immunosuppressive endophenotypes in vulnerable populations.
Collapse
Affiliation(s)
- Ryan S Clark
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel T Pellom
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Burthia Booker
- Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Tongwen Zhang
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Mark Maguire
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Paul D Juarez
- Department of Family and Preventive Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Maureen Y Lichtveld
- Department of Global Environmental Health Sciences, School of Public Health & Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Darryl B Hood
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Schoeniger A, Fuhrmann H, Schumann J. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. PeerJ 2016; 4:e1663. [PMID: 26870615 PMCID: PMC4748739 DOI: 10.7717/peerj.1663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
It is well known that PUFA impede the LPS-mediated activation of the transcription factor NFkappaB. However, the underlying mode of action has not been clarified yet. To address this issue in a comprehensive approach, we used the monocyte/macrophage cell line RAW264.7 to investigate the consequences of a PUFA supplementation on the TLR4 pathway with a focus on (i) the gene expression of TLR4 itself as well as of its downstream mediators, (ii) the membrane microdomain localization of TLR4 and CD14, (iii) the stimulation-induced interaction of TLR4 and CD14. Our data indicate that the impairment of the TLR4-mediated cell activation by PUFA supplementation is not due to changes in gene expression of mediator proteins of the signaling cascade. Rather, our data provide evidence that the PUFA enrichment of macrophages affects the TLR4 pathway at the membrane level. PUFA incorporation into membrane lipids induces a reordering of membrane microdomains thereby affecting cellular signal transduction. It is important to note that this remodeling of macrophage rafts has no adverse effect on cell viability. Hence, microdomain disruption via macrophage PUFA supplementation has a potential as non-toxic strategy to attenuate inflammatory signaling.
Collapse
Affiliation(s)
- Axel Schoeniger
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, University of Leipzig, Leipzig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, University of Leipzig, Leipzig, Germany
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| |
Collapse
|
31
|
Taniguchi M, Ochiai A, Matsushima K, Tajima K, Kato T, Saitoh E, Tanaka T. Endotoxin-neutralizing activity and mechanism of action of a cationic α-helical antimicrobial octadecapeptide derived from α-amylase of rice. Peptides 2016; 75:101-8. [PMID: 26643956 DOI: 10.1016/j.peptides.2015.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/09/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023]
Abstract
We have previously reported that AmyI-1-18, an octadecapeptide derived from α-amylase (AmyI-1) of rice, is a novel cationic α-helical peptide that exhibited antimicrobial activity against human pathogens, including Porphyromonas gingivalis, Pseudomonas aeruginosa, Propionibacterium acnes, Streptococcus mutans, and Candida albicans. In this study, to further investigate the potential functions of AmyI-1-18, we examined its inhibitory ability against the endotoxic activities of lipopolysaccharides (LPSs, smooth and Rc types) and lipid A from Escherichia coli. AmyI-1-18 inhibited the production of endotoxin-induced nitric oxide (NO), an inflammatory mediator, in mouse macrophages (RAW264) in a concentration-dependent manner. The results of a chromogenic Limulus amebocyte lysate assay illustrated that the ability [50% effective concentration (EC50): 0.17 μM] of AmyI-1-18 to neutralize lipid A was similar to its ability (EC50: 0.26 μM) to neutralize LPS, suggesting that AmyI-1-18 specifically binds to the lipid A moiety of LPS. Surface plasmon resonance analysis of the interaction between AmyI-1-18 and LPS or lipid A also suggested that AmyI-1-18 directly binds to the lipid A moiety of LPS because the dissociation constant (KD) of AmyI-1-18 with lipid A is 5.6×10(-10) M, which is similar to that (4.3×10(-10) M) of AmyI-1-18 with LPS. In addition, AmyI-1-18 could block the binding of LPS-binding protein to LPS, although its ability was less than that of polymyxin B. These results suggest that AmyI-1-18 expressing antimicrobial and endotoxin-neutralizing activities is useful as a safe and potent host defense peptide against pathogenic Gram-negative bacteria in many fields of healthcare.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Niigata 950-2181, Japan.
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kenta Matsushima
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Koji Tajima
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Tetsuo Kato
- Department of Chemistry, Tokyo Dental College, Tokyo 101-0062, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
32
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
33
|
Fu Y, Hu X, Cao Y, Zhang Z, Zhang N. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radic Biol Med 2015; 89:777-85. [PMID: 26475038 DOI: 10.1016/j.freeradbiomed.2015.10.407] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 11/15/2022]
Abstract
Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China.
| |
Collapse
|
34
|
Xia X, Fu J, Song X, Shi Q, Su C, Song E, Song Y. Neohesperidin dihydrochalcone down-regulates MyD88-dependent and -independent signaling by inhibiting endotoxin-induced trafficking of TLR4 to lipid rafts. Free Radic Biol Med 2015; 89:522-32. [PMID: 26453923 DOI: 10.1016/j.freeradbiomed.2015.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
Fulminant hepatic failure (FHF) is a lethal clinical syndrome characterized by the activation of macrophages and the increased production of inflammatory mediators. The purpose of this study was to investigate the effects of neohesperidin dihydrochalcone (NHDC), a widely-used low caloric artificial sweetener against FHF. An FHF experimental model was established in mice by intraperitoneal injection of D-galactosamine (d-GalN) (400mg/kg)/lipopolysaccharides (LPS) (10 μg/kg). Mice were orally administered NHDC for 6 continuous days and at 1h before d-GalN/LPS administration. RAW264.7 macrophages were used as an in vitro model. Cells were pre-treated with NHDC for 1h before stimulation with LPS (10 μg/ml) for 6h. d-GalN/LPS markedly increased the serum transaminase activities and levels of oxidative and inflammatory markers, which were significantly attenuated by NHDC. Mechanistic analysis indicated that NHDC inhibited LPS-induced myeloid differentiation factor 88 (MyD88) and TIR-containing adapter molecule (TRIF)-dependent signaling. Transient transfection of TLR4 or MyD88 siRNA inhibited the downstream inflammatory signaling. This effect could also be achieved by the pretreatment with NHDC. The fluorescence microscopy and flow cytometry results suggested that NHDC potently inhibited the binding of LPS to TLR4 in RAW264.7 macrophages. In addition, the inhibitory effect of NHDC on LPS-induced translocation of TLR4 into lipid raft domains played an important role in the amelioration of production of downstream pro-inflammatory molecules. Furthermore, the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by NHDC inhibited TLR4 signaling. In conclusion, our results suggest that NHDC attenuates d-GalN/LPS-induced FHF by inhibiting the TLR4-mediated inflammatory pathway, demonstrating a new application of NHDC as a hepatoprotective agent.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China, 400715.
| |
Collapse
|
35
|
Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 2015; 37:1401-12. [PMID: 24647607 DOI: 10.1007/s10753-014-9864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human apolipoprotein A-I (apoA-I) mimetic L-4F inhibits acute inflammation in endotoxemic animals. Since neutrophils play a crucial role in septic inflammation, we examined the effects of L-4F, compared to apoA-I, on lipopolysaccharide (LPS)-mediated activation of human neutrophils. We performed bioassays in human blood, isolated human neutrophils (incubated in 50 % donor plasma), and isolated human leukocytes (incubated in 5 and 50 % plasma) in vitro. In whole blood, both L-4F and apoA-I inhibited LPS-mediated elevation of TNF-α and IL-6. In LPS-stimulated neutrophils, L-4F and apoA-I (40 μg/ml) also decreased myeloperoxidase and TNF-α levels; however, L-4F tended to be superior in inhibiting LPS-mediated increase in IL-6 levels, membrane lipid rafts abundance and CD11b expression. In parallel experiments, when TNF-α and IL-8, instead of LPS, was used for cell stimulation, L-4F and/or apoA-I revealed only limited efficacy. In LPS-stimulated leukocytes, L-4F was as effective as apoA-I in reducing superoxide formation in 50 % donor plasma, and more effective in 5 % donor plasma (P<0.05). Limulus ambocyte lysate (LAL) and surface plasmon resonance assays showed that L-4F neutralizes LAL endotoxin activity more effectively than apoA-I (P<0.05) likely due to avid binding to LPS. We conclude that (1) direct binding/neutralization of LPS is a major mechanism of L-4F in vitro; (2) while L-4F has similar efficacy to apoA-I in anti-endotoxin effects in whole blood, it demonstrates superior efficacy to apoA-I in aqueous solutions and fluids with limited plasma components. This study rationalizes the utility of L-4F in the treatment of inflammation that is mediated by endotoxin-activated neutrophils.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, BDB-101, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bayunova LV, Parnova RG, Avrova NF. Antiapoptotic effect of gangliosides on PC12 cells exposed to bacterial lipopolysaccharide. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release. Immunity 2015; 42:640-53. [PMID: 25862090 DOI: 10.1016/j.immuni.2015.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.
Collapse
|
38
|
Huang CY, Sheu WHH, Chiang AN. Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol Nutr Food Res 2015; 59:751-62. [PMID: 25631736 DOI: 10.1002/mnfr.201400687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 11/12/2022]
Abstract
SCOPE Dietary PUFAs modulate the progression of cardiovascular disease, but the underlying mechanisms within vascular cells remain unclear. The aim of this study was to investigate the biological function and regulatory mechanisms of PUFAs in LPS-activated human aortic endothelial cells (HAECs). METHODS AND RESULTS To simulate the in vivo conditions of atherosclerosis, we have established an in vitro model in which THP-1 monocytes adhere to HAECs. Our results showed that n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) remarkably attenuated the adhesion of THP-1 cells to HAECs, probably through inhibiting the expression of VCAM-1 and ICAM-1. Using lipid raft isolation and confocal microscopy, we found that DHA and EPA suppressed the translocation of TLR4 into lipid rafts. Furthermore, DHA and EPA inhibited the ubiquitination and translocation of TRAF6, and the phosphorylation of TAK1, p38, and IκBα. We demonstrated that DHA reduced the phosphorylation of PKR, but EPA increased the expression of A20. Additionally, silencing of A20 reversed the inhibitory effect of EPA on the expression of adhesion molecules. CONCLUSION Our study revealed differential signaling pathways modulated by n-3 PUFAs in LPS-stimulated HAECs. These signaling pathways are potential targets for the prevention of atherosclerotic progression.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
39
|
Preta G, Lotti V, Cronin JG, Sheldon IM. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J 2014; 29:1516-28. [PMID: 25550455 PMCID: PMC4396600 DOI: 10.1096/fj.14-265207] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/20/2014] [Indexed: 12/04/2022]
Abstract
The virulence of many Gram-positive bacteria depends on cholesterol-dependent cytolysins (CDCs), which form pores in eukaryotic cell plasma membranes. Pyolysin (PLO) from Trueperella pyogenes provided a unique opportunity to explore cellular responses to CDCs because it does not require thiol activation. Sublytic concentrations of PLO stimulated phosphorylation of MAPK ERK and p38 in primary stromal cells, and induced autophagy as determined by protein light-chain 3B cleavage. Although, inhibitors of MAPK or autophagy did not affect PLO-induced cytolysis. However, 10 μM 3-hydroxynaphthalene-2-carboxylic acid-(3,4-dihydroxybenzylidene)-hydrazide (Dynasore), a dynamin guanosine 5′-triphosphatase inhibitor, protected stromal cells against PLO-induced cytolysis as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (85 ± 17% versus 50 ± 9% cell viability), measuring extracellular ATP, and kinetic assays. This was a generalized mechanism because Dynasore also protected HeLa cells against streptolysin O. Furthermore, the effect was reversible, with stromal cell sensitivity to PLO restored within 30 minutes of Dynasore removal. The protective effect of Dynasore was not conferred by dynamin inhibition, induction of ERK phosphorylation, or Dynasore binding to PLO. Rather, Dynasore reduced cellular cholesterol and disrupted plasma membrane lipid rafts, similar to positive control methyl-β-cyclodextrin. Dynasore is a tractable tool to explore the complexity of cholesterol homeostasis in eukaryotic cells and to develop strategies to counter CDCs.—Preta, G., Lotti, V., Cronin, J. G., and Sheldon, I. M. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Virginia Lotti
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - I Martin Sheldon
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| |
Collapse
|
40
|
Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:239-47. [PMID: 25499607 DOI: 10.1016/j.bbalip.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Lubov Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tatyana Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Yulia Vlasova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Vera Bachteeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Natalia Avrova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Rimma Parnova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia.
| |
Collapse
|
41
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 565] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
42
|
Fu Y, Zhou E, Wei Z, Wang W, Wang T, Yang Z, Zhang N. Cyanidin-3-O-β-glucoside ameliorates lipopolysaccharide-induced acute lung injury by reducing TLR4 recruitment into lipid rafts. Biochem Pharmacol 2014; 90:126-34. [PMID: 24841888 DOI: 10.1016/j.bcp.2014.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Cyanidin-3-O-β-glucoside (C3G), a typical anthocyanin pigment that exists in the human diet, has been reported to have anti-inflammatory properties. The aim of this study was to detect the effect of C3G on LPS-induced acute lung injury and to investigate the molecular mechanisms. Acute lung injury was induced by intratracheal administration of LPS in mice. Alveolar macrophages from mice were stimulated with LPS and were treated with C3G. Our results showed that C3G attenuated lung histopathologic changes, myeloperoxidase (MPO) activity, TNF-α, IL-1β and IL-6 production in LPS-induced acute lung injury model. In vitro, C3G dose-dependently inhibited TNF-α, IL-1β, IL-6, IL-10 and IFN-β production, as well as NF-κB and IRF3 activation in LPS-stimulated alveolar macrophages. Furthermore, C3G disrupted the formation of lipid rafts by depleting cholesterol and inhibited TLR4 translocation into lipid rafts. Moreover, C3G activated LXRα-ABCG1-dependent cholesterol efflux. Knockout of LXRα abrogated the anti-inflammatory effects of C3G. In conclusion, C3G has a protective effect on LPS-induced acute lung injury. The promising anti-inflammatory mechanisms of C3G is associated with up-regulation of the LXRα-ABCG1 pathway which result in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts, thereby suppressing TLR4 mediated inflammatory response.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Ershun Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Wei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Tiancheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|
43
|
Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J 2014; 281:2543-57. [PMID: 24698106 DOI: 10.1111/febs.12801] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/22/2014] [Accepted: 03/31/2014] [Indexed: 01/15/2023]
Abstract
Glycyrrhizin, a triterpene glycoside isolated from licorice root, is known to have anti-inflammatory activities. However, the effect of glycyrrhizin on mastitis has not been reported. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of action of glycyrrhizin on lipopolysaccharide (LPS)-induced mastitis in mouse. An LPS-induced mouse mastitis model was used to confirm the anti-inflammatory activity of glycyrrhizin in vivo. Primary mouse mammary epithelial cells were used to investigate the molecular mechanism and targets of glycyrrhizin. In vivo, glycyrrhizin significantly attenuated the mammary gland histopathological changes, myeloperoxidase activity and infiltration of neutrophilic granulocytes and downregulated the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 caused by LPS. In vitro, glycyrrhizin dose-dependently inhibited the LPS-induced expression of tumor necrosis factor-α, IL-6, and RANTES. Western blot analysis showed that glycyrrhizin suppressed LPS-induced nuclear factor-κB and interferon regulatory factor 3 activation. However, glycyrrhizin did not inhibit nuclear factor-κB and interferon regulatory factor 3 activation induced by MyD88-dependent (MyD88, IKKβ) or TRIF-dependent (TRIF, TBK1) downstream signaling components. Moreover, glycyrrhizin did not act though affecting the function of CD14 or expression of Toll-like receptor 4. Finally, we showed that glycyrrhizin decreased the levels of cholesterol of lipid rafts and inhibited the translocation of Toll-like receptor 4 to lipid rafts. Moreover, glycyrrhizin activated ATP-binding cassette transporter A1, which could induce cholesterol efflux from lipid rafts. In conclusion, we find that the anti-inflammatory effects of glycyrrhizin may be attributable to its ability to activate ATP-binding cassette transporter A1. Glycyrrhizin might be a useful therapeutic reagent for the treatment of mastitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fu Y, Wei Z, Zhou E, Zhang N, Yang Z. Cyanidin-3-O-β-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model. J Lipid Res 2014; 55:1111-9. [PMID: 24752550 DOI: 10.1194/jlr.m047340] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 12/20/2022] Open
Abstract
Cyanidin-3-O-β-glucoside (C3G) (CAS number 7084-24-4), a typical anthocyanin pigment that exists in the human diet, has been reported to have anti-inflammatory properties. However, the effect of C3G on lipopolysaccharide (LPS)-induced mastitis and the molecular mechanisms have not been investigated. In this study, we detected the protective effects of C3G on a LPS-induced mouse mastitis model and investigated the molecular mechanisms in LPS-stimulated mouse mammary epithelial cells (MMECs). Our results showed that C3G could attenuate mammary histopathologic changes and myeloperoxidase activity, and inhibit TNF-α, interleukin (IL)-1β, and IL-6 production caused by LPS. Meanwhile, C3G dose-dependently inhibited TNF-α and IL-6 in LPS-stimulated MMECs. C3G suppressed LPS-induced nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3) activation. Furthermore, C3G disrupted the formation of lipid rafts by depleting cholesterol. Moreover, C3G activated liver X receptor (LXR)-ABCG1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of C3G. In conclusion, C3G has a protective effect on LPS-induced mastitis. The promising anti-inflammatory mechanisms of C3G are associated with upregulation of the LXRα-ABCG1 pathway which result in disrupting lipid rafts by depleting cholesterol, thereby suppressing toll-like receptor 4-mediated NF-κB and IRF3 signaling pathways induced by LPS.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Ershun Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| |
Collapse
|
45
|
Fu Y, Zhou E, Wei Z, Song X, Liu Z, Wang T, Wang W, Zhang N, Liu G, Yang Z. Glycyrrhizin inhibits lipopolysaccharide-induced inflammatory response by reducing TLR4 recruitment into lipid rafts in RAW264.7 cells. Biochim Biophys Acta Gen Subj 2014; 1840:1755-64. [PMID: 24462946 DOI: 10.1016/j.bbagen.2014.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of glycyrrhizin on LPS-induced endotoxemia in mice and clarify the possible mechanism. METHODS An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of glycyrrhizin in vivo. In vitro, RAW264.7 cells were stimulated with LPS in the presence or absence of glycyrrhizin. The expression of cytokines was determined by ELISA. Toll-like receptor 4 (TLR4) was determined by Western blot analysis. Nuclear factor-kB (NF-κB) and Interferon regulatory factor 3 (IRF3) activation were detected by Western blotting and luciferase assay. Lipid raft staining was detected by immunocytochemistry. RESULTS In vivo, the results showed that glycyrrhizin can improve survival during lethal endotoxemia. In vitro, glycyrrhizin dose-dependently inhibited the expression of TNF-α, IL-6, IL-1β and RANTES in LPS-stimulated RAW264.7 cells. Western blot analysis showed that glycyrrhizin suppressed LPS-induced NF-κB and IRF3 activation. However, glycyrrhizin did not inhibit NF-κB and IRF3 activation induced by MyD88-dependent (MyD88, IKKβ) or TRIF-dependent (TRIF, TBK1) downstream signaling components. Moreover, glycyrrhizin did not affect the expression of TLR4 and CD14 induced by LPS. Significantly, we found that glycyrrhizin decreased the levels of cholesterol of lipid rafts and inhibited translocation of TLR4 to lipid rafts. Moreover, glycyrrhizin activated ABCA1, which could induce cholesterol efflux from lipid rafts. CONCLUSION Glycyrrhizin exerts an anti-inflammatory property by disrupting lipid rafts and inhibiting translocation of TLR4 to lipid rafts, thereby attenuating LPS-mediated inflammatory response. GENERAL SIGNIFICANCE Learning the anti-inflammatory mechanism of glycyrrhizin is crucial for the anti-inflammatory drug development.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Ershun Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Xiaojing Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Zhicheng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Tiancheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Wei Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Guowen Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China.
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China.
| |
Collapse
|
46
|
Snodgrass RG, Huang S, Choi IW, Rutledge JC, Hwang DH. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. THE JOURNAL OF IMMUNOLOGY 2013; 191:4337-47. [PMID: 24043885 DOI: 10.4049/jimmunol.1300298] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies have shown that TLR4- and TLR2-deficient mice are protected from high-fat diet-induced inflammation and insulin resistance, suggesting that saturated fatty acids derived from the high-fat diet activate TLR-mediated proinflammatory signaling pathways and induce insulin resistance. However, evidence that palmitic acid, the major dietary saturated fatty acid, can directly activate TLR has not been demonstrated. In this article, we present multiple lines of evidence showing that palmitic acid directly activates TLR2, a major TLR expressed on human monocytes, by inducing heterodimerization with TLR1 in an NADPH oxidase-dependent manner. Dimerization of TLR2 with TLR1 was inhibited by the n-3 fatty acid docosahexaenoic acid. Activation of TLR2 by palmitic acid leads to expression of pro-IL-1β that is cleaved by caspase-1, which is constitutively present in monocytes, to release mature IL-1β. Our results reveal mechanistic insight about how palmitic acid activates TLR2, upregulates NALP3 expression, and induces inflammasome-mediated IL-1β production in human monocytes, which can trigger enhanced inflammation in peripheral tissues, and suggest that these processes are dynamically modulated by the types of dietary fat we consume.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- U.S. Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616
| | | | | | | | | |
Collapse
|
47
|
Ciesielski F, Griffin DC, Rittig M, Moriyón I, Bonev BB. Interactions of lipopolysaccharide with lipid membranes, raft models — A solid state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1731-42. [DOI: 10.1016/j.bbamem.2013.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/08/2013] [Accepted: 03/28/2013] [Indexed: 01/09/2023]
|
48
|
de la Haba C, Palacio JR, Martínez P, Morros A. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:357-64. [DOI: 10.1016/j.bbamem.2012.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/26/2012] [Accepted: 08/17/2012] [Indexed: 01/11/2023]
|
49
|
Zou J, Feng D, Ling WH, Duan RD. Lycopene suppresses proinflammatory response in lipopolysaccharide-stimulated macrophages by inhibiting ROS-induced trafficking of TLR4 to lipid raft-like domains. J Nutr Biochem 2012; 24:1117-22. [PMID: 23246157 DOI: 10.1016/j.jnutbio.2012.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
We recently showed that lycopene inhibited lipopolysaccharide (LPS)-induced productions of nitric oxide (NO) and interleukin-6 (IL-6) in murine RAW264.7 macrophages by mechanisms related to inhibition of ERK and nuclear factor-κB. Since the assembly of Toll-like receptor 4 (TLR4) in lipid rafts is a key element in LPS induced signaling, we investigated whether this process would be influenced by lycopene. We found that pretreatment of RAW264.7 cells with lycopene inhibited LPS-induced recruitment of TLR4 into fractions - enriched with lipid raft marker. By the methods of immunoprecipitation and immunoblotting, we also found that lycopene inhibited the subsequent formation of the complex of TLR4 with its adaptors including myeloid differentiation primary-response protein 88 and TIR domain-containing adaptor-inducing IFN-β. We also found that the lycopene induced inhibition was associated with reduced formation of reactive oxygen species (ROS), which was an upstream mechanism for the effects of lycopene, because treating the cells with the antioxidant N-acetyl-l-cysteine and NADPH oxidase inhibitor diphenyleneiodonium chloride significantly inhibited LPS-induced recruitment of TLR4 into lipid raft-like domains as well as the production of proinflammatory molecule NO and IL-6. Thus, our findings suggest that lycopene may prevent LPS-induced TLR4 assembly into lipid rafts through reducing intracellular ROS level.
Collapse
Affiliation(s)
- Jun Zou
- Department of Cardiology, Affiliated NanHai Hospital of Southern Medical University, China
| | | | | | | |
Collapse
|
50
|
Kwon OK, Ahn KS, Park JW, Jang HY, Joung H, Lee HK, Oh SR. Ethanol extract of Elaeocarpus petiolatus inhibits lipopolysaccharide-induced inflammation in macrophage cells. Inflammation 2012; 35:535-44. [PMID: 21603972 DOI: 10.1007/s10753-011-9343-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elaeocarpus petiolatus is known to exert active oxygen scavenging, anti-aging, and whitening actions. However, the biological effects of E. petiolatus on inflammation and the underlying mechanisms are yet to be established. In the present study, we investigated the anti-inflammatory effects of the ethanol extract from E. petiolatus (EPE) bark in murine Raw264.7 macrophages stimulated with lipopolysaccharide (LPS). EPE inhibited the production of PGE(2), TNF-α, and IL-1β in a dose-dependent manner in Raw264.7 cells stimulated with LPS. The decrease in PGE(2) production was correlated with reduced COX-2 expression. Furthermore, EPE suppressed the phosphorylation of extracellular signal-related kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 as well as translocation of the NF-κB p65 subunit from the cytosol to nucleus. Our results suggest that EPE exerts anti-inflammatory activity through inhibition of inflammatory mediators, such as PGE(2), TNF-α, and IL-1β, and downregulation of COX-2 via suppression of NF-κB translocation and phosphorylation of ERK, JNK, and p38 in LPS-stimulated Raw264.7 cells.
Collapse
Affiliation(s)
- Ok-Kyoung Kwon
- Immune Modulator Research Center, Korea Research Institute of Bioscience and Biotechnology, 685-4 Yangchung-ri, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|