1
|
Zipfel PF, Heidenreich K. The 4 functional segments of Factor H: Role in physiological target recognition and contribution to disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf065. [PMID: 40356067 DOI: 10.1093/jimmun/vkaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025]
Abstract
Factor H controls proximal complement activation, and its dysfunction leads to diseases that often manifest in the kidney. Structural and functional analyses have identified 4 distinct functional segments: an N-terminal regulatory unit, a cell binding unit, a segment with combined low-affinity C3b and heparin sites, and a C-terminal recognition or sensor unit with overlapping C3b/C3d and heparin sites. Three segments are linked to diseases. The regulatory segment is affected in C3 glomerulopathy and antineutrophil cytoplasmic antibody-associated vasculitis. The second segment includes the Y402H polymorphism of age-related macular degeneration, is associated with different types of cancer, and is targeted by pathogens. The C-terminal sensor segment is involved in atypical hemolytic uremic syndrome, in FHR1:FHR3 deficient and autoantibody-positive hemolytic uremic syndrome form and is exploited by pathogens. Factor H function is modulated by Factor H like protein 1 and FHR1, 2 plasma proteins that share segments with Factor H. This interplay is critical for fine-tuning local complement. Understanding Factor H's physiological role, as well as the impact of its absence, mutations, or autoantibody targeting, provides insights into disease mechanisms and provides opportunities for therapeutic intervention by using full-length Factor H, its fragments, or complement-modulatory compounds.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | |
Collapse
|
2
|
Holleman AM, Deaton AM, Hoffing RA, Krohn L, LoGerfo P, Nioi P, Plekan ME, Akle Serrano S, Ticau S, Walshe TE, Borodovsky A, Ward LD. Rare predicted loss-of-function and damaging missense variants in CFHR5 associate with protection from age-related macular degeneration. Am J Hum Genet 2025; 112:1062-1080. [PMID: 40250423 PMCID: PMC12120177 DOI: 10.1016/j.ajhg.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among older adults worldwide, but treatment options are limited. Genetics studies have implicated the CFH locus, containing CFH and five CFHR genes, CFHR1-5, in AMD. While CFH has been robustly linked with AMD risk, potential additional roles for the CFHR genes remain unclear, obscured by strong linkage disequilibrium across the locus. Investigating rare coding variants can help to identify causal genes in such regions. We used whole-exome sequencing data from 406,952 UK Biobank participants to examine AMD associations with genes at the CFH locus. For each gene, we used burden testing to examine associations of rare (minor-allele frequency [MAF] < 1%) predicted loss-of-function (pLoF) and predicted damaging missense variants with AMD. We considered "broadly defined AMD" (ICD-10 35.3; ncases = 10,700) and "strictly defined AMD" (dry or wet AMD; ncases = 346). Adjusting for CFH-region variants known to independently associate with AMD, we find that CFHR5 rare variant burden significantly associates with a decreased risk of broadly defined AMD (odds ratio [OR] = 0.75, p = 7 × 10-4), with this association primarily driven by pLoF variants. Furthermore, the association of CFHR5 rare variants with AMD protection is estimated to be stronger for individuals with the CFH rs1061170 AMD risk allele (p.Tyr402His [p.Y402H]; interaction p = 0.04). Corresponding analyses of strict AMD were underpowered. However, we observe that thinning of the photoreceptor layer outer segment strongly predicts strict AMD and find that CFHR5 rare variant burden is significantly associated with increased thickness of this retinal layer (+0.34 SD, p = 4 × 10-4, n = 45,365). These findings suggest CFHR5 inhibition as a potential therapeutic approach for AMD.
Collapse
Affiliation(s)
| | | | | | - Lynne Krohn
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Paul Nioi
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | - Simina Ticau
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | - Lucas D Ward
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Armento A, Sonntag I, Almansa-Garcia AC, Sen M, Bolz S, Arango-Gonzalez B, Kilger E, Sharma R, Bharti K, Fernandez-Godino R, de la Cerda B, Clark SJ, Ueffing M. The AMD-associated genetic polymorphism CFH Y402H confers vulnerability to Hydroquinone-induced stress in iPSC-RPE cells. Front Immunol 2025; 16:1527018. [PMID: 39981241 PMCID: PMC11839594 DOI: 10.3389/fimmu.2025.1527018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Age-related macular degeneration (AMD), a degenerative disease of the macula, is caused by an interplay of diverse risk factors (genetic predisposition, age and lifestyle habits). One of the main genetic risks includes the Y402H polymorphism in complement Factor H (FH), an inhibitor of complement system activation. There has been, and continues to be, much discussion around the functional consequences of this Y402H polymorphism, whether the soluble FH protein confers its risk association, or if the cells expressing the protein themselves are affected by the genetic alteration. In our study, we examined the cell characteristics of the retinal pigment epithelium (RPE) cells, which play a major role in retinal homeostasis and stability and which are synonymously linked to AMD. Methods Here, we employ RPE cells derived from induced pluripotent stem cells (iPSC) generated from donors, carrying either homozygous 402Y (low risk) or 402H (high risk) variants of the CFH gene. RPE cells were treated with Hydroquinone (HQ), a component of cigarette smoke, to induce oxidative damage. Results Intriguingly, RPE cells carrying high genetic risk proved more vulnerable to oxidative insult when exposed to HQ, as demonstrated by increased cytotoxicity and caspase activation, compared to the low-risk RPE cells. The exposure of RPE cells to RPE conditioned medium, normal human serum (NHS) and inactivated NHS (iNHS) had minimal impact on cell cytotoxicity and caspase activation, nor did the presence of purified soluble FH rescue the observed effects. Considering the known connection of oxidative stress to proteotoxic stress and degrading processes, we investigated the unfolded protein response (UPR) and autophagy. When exposed to HQ, RPE cells showed an increase in autophagy markers; however, iPSC-RPE cells carrying high genetic risk showed an overall reduced autophagic flux. Discussion Our findings suggest that the degree of cellular susceptibility to oxidative stress is not conferred by soluble FH protein and other complement sources, but intercellularly because of the corresponding genetic risk predisposition. Our data support the hypothesis that RPE cells carrying high genetic risk are less resilient to oxidative stress.
Collapse
Affiliation(s)
- Angela Armento
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Inga Sonntag
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Merve Sen
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ellen Kilger
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Ruchi Sharma
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kapil Bharti
- Ocular Stem Cells and Translational Research (OSCTR) Section, Ophthalmic Genetic and Visual Function Branch (OGVFB), National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Berta de la Cerda
- Retinal Neurodegeneration and Advanced Therapies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | - Simon J. Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
5
|
Zouache MA, Richards BT, Pappas CM, Anstadt RA, Liu J, Corsetti T, Matthews S, Seager NA, Schmitz-Valckenberg S, Fleckenstein M, Hubbard WC, Thomas J, Hageman JL, Williams BL, Hageman GS. Levels of complement factor H-related 4 protein do not influence susceptibility to age-related macular degeneration or its course of progression. Nat Commun 2024; 15:443. [PMID: 38200010 PMCID: PMC10781981 DOI: 10.1038/s41467-023-44605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Dysregulation of the alternative pathway (AP) of the complement system is a significant contributor to age-related macular degeneration (AMD), a primary cause of irreversible vision loss worldwide. Here, we assess the contribution of the liver-produced complement factor H-related 4 protein (FHR-4) to AMD initiation and course of progression. We show that FHR-4 variation in plasma and at the primary location of AMD-associated pathology, the retinal pigment epithelium/Bruch's membrane/choroid interface, is entirely explained by three independent quantitative trait loci (QTL). Using two distinct cohorts composed of a combined 14,965 controls and 20,741 cases, we ascertain that independent QTLs for FHR-4 are distinct from variants causally associated with AMD, and that FHR-4 variation is not independently associated with disease. Additionally, FHR-4 does not appear to influence AMD progression course among patients with disease driven predominantly by AP dysregulation. Modulation of FHR-4 is therefore unlikely to be an effective therapeutic strategy for AMD.
Collapse
Affiliation(s)
- M A Zouache
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | - B T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - C M Pappas
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - R A Anstadt
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - J Liu
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - T Corsetti
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - S Matthews
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - N A Seager
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - S Schmitz-Valckenberg
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - M Fleckenstein
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - W C Hubbard
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - J Thomas
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - J L Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - B L Williams
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - G S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Grigsby D, Klingeborn M, Kelly U, Chew LA, Asokan A, Devlin G, Smith S, Keyes L, Timmers A, Scaria A, Bowes Rickman C. AAV Gene Augmentation of Truncated Complement Factor H Differentially Rescues Ocular Complement Dysregulation in a Mouse Model. Invest Ophthalmol Vis Sci 2023; 64:25. [PMID: 37471073 PMCID: PMC10365136 DOI: 10.1167/iovs.64.10.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose Complement dysregulation in the eye has been implicated in the pathogenesis of age-related macular degeneration (AMD), and genetic variants of complement factor H (CFH) are strongly associated with AMD risk. We therefore aimed to untangle the role of CFH and its splice variant, factor H-like 1 (FHL-1), in ocular complement regulation derived from local versus circulating sources. We assessed the therapeutic efficacy of adeno-associated viruses (AAVs) expressing human FHL-1 and a truncated version of CFH (tCFH), which retains the functional N- and C-terminal ends of the CFH protein, in restoring the alternative complement pathway in Cfh-/- mouse eyes and plasma. Methods Using Cfh-/- mice as a model of complement dysregulation, AAV vectors expressing tCFH or FHL-1 were injected subretinally or via tail vein, and the efficacy of the constructs was evaluated. Results Following subretinal injections, tCFH expression rescued factor B (FB) retention in the eye, but FHL-1 expression did not. By contrast, both constructs restored FB detection in plasma following tail vein injections. Both tCFH and FHL-1 proteins accumulated in the posterior eyecup from the circulation following liver transduction; however, neither was able to significantly regulate local ocular complement. Conclusions Our findings demonstrate that the C-terminus of human CFH is necessary for complement regulation in the murine eye. Furthermore, exogenous CFH must be synthesized locally to maximize complement regulation in the retina. These findings establish a critical foundation for development of CFH augmentation-based gene therapies for the eye.
Collapse
Affiliation(s)
- Daniel Grigsby
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- McLaughlin Research Institute, Great Falls, Montana, United States
| | - Una Kelly
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Lindsey A. Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Aravind Asokan
- Departments of Surgery, Molecular Genetics and Microbiology, and Biomedical Engineering, Duke University School of Medicine, Durham, North Carolina, United States
| | - Garth Devlin
- Departments of Surgery, Molecular Genetics and Microbiology, and Biomedical Engineering, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sharon Smith
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | - Lisa Keyes
- Pfizer, Morrisville, North Carolina, United States
| | - Adrian Timmers
- Editas Medicine, Cambridge, Massachusetts, United States
| | - Abraham Scaria
- Applied Genetic Technologies Corporation, Alachua, Florida, United States
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
7
|
Busch C, Rau S, Sekulic A, Perie L, Huber C, Gehrke M, Joussen AM, Zipfel PF, Wildner G, Skerka C, Strauß O. Increased plasma level of terminal complement complex in AMD patients: potential functional consequences for RPE cells. Front Immunol 2023; 14:1200725. [PMID: 37359546 PMCID: PMC10287163 DOI: 10.3389/fimmu.2023.1200725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Saskia Rau
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Andjela Sekulic
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Christian Huber
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Miranda Gehrke
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Antonia M. Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| |
Collapse
|
8
|
Armento A, Merle DA, Ueffing M. The Noncanonical Role of Complement Factor H in Retinal Pigment Epithelium (RPE) Cells and Implications for Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:9-13. [PMID: 37440007 DOI: 10.1007/978-3-031-27681-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - David Adrian Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Li J, Li C, Huang Y, Guan P, Huang D, Yu H, Yang X, Liu L. Mendelian randomization analyses in ocular disease: a powerful approach to causal inference with human genetic data. J Transl Med 2022; 20:621. [PMID: 36572895 PMCID: PMC9793675 DOI: 10.1186/s12967-022-03822-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
Ophthalmic epidemiology is concerned with the prevalence, distribution and other factors relating to human eye disease. While observational studies cannot avoid confounding factors from interventions, human eye composition and structure are unique, thus, eye disease pathogenesis, which greatly impairs quality of life and visual health, remains to be fully explored. Notwithstanding, inheritance has had a vital role in ophthalmic disease. Mendelian randomization (MR) is an emerging method that uses genetic variations as instrumental variables (IVs) to avoid confounders and reverse causality issues; it reveals causal relationships between exposure and a range of eyes disorders. Thus far, many MR studies have identified potentially causal associations between lifestyles or biological exposures and eye diseases, thus providing opportunities for further mechanistic research, and interventional development. However, MR results/data must be interpreted based on comprehensive evidence, whereas MR applications in ophthalmic epidemiology have some limitations worth exploring. Here, we review key principles, assumptions and MR methods, summarise contemporary evidence from MR studies on eye disease and provide new ideas uncovering aetiology in ophthalmology.
Collapse
Affiliation(s)
- Jiaxin Li
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Cong Li
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Yu Huang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China ,grid.413405.70000 0004 1808 0686Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peng Guan
- grid.412449.e0000 0000 9678 1884Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning China
| | - Desheng Huang
- grid.412449.e0000 0000 9678 1884Department of Mathematics, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning China
| | - Honghua Yu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Xiaohong Yang
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Lei Liu
- grid.413405.70000 0004 1808 0686Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| |
Collapse
|
10
|
Shughoury A, Sevgi DD, Ciulla TA. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 2022; 13:1233. [PMID: 35886016 PMCID: PMC9316037 DOI: 10.3390/genes13071233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the leading causes of irreversible blindness worldwide. In addition to environmental risk factors, such as tobacco use and diet, genetic background has long been established as a major risk factor for the development of AMD. However, our ability to predict disease risk and personalize treatment remains limited by our nascent understanding of the molecular mechanisms underlying AMD pathogenesis. Research into the molecular genetics of AMD over the past two decades has uncovered 52 independent gene variants and 34 independent loci that are implicated in the development of AMD, accounting for over half of the genetic risk. This research has helped delineate at least five major pathways that may be disrupted in the pathogenesis of AMD: the complement system, extracellular matrix remodeling, lipid metabolism, angiogenesis, and oxidative stress response. This review surveys our current understanding of each of these disease mechanisms, in turn, along with their associated pathogenic gene variants. Continued research into the molecular genetics of AMD holds great promise for the development of precision-targeted, personalized therapies that bring us closer to a cure for this debilitating disease.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Duriye Damla Sevgi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Thomas A. Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
- Clearside Biomedical, Inc., Alpharetta, GA 30005, USA
- Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
11
|
Emilsson V, Gudmundsson EF, Jonmundsson T, Jonsson BG, Twarog M, Gudmundsdottir V, Li Z, Finkel N, Poor S, Liu X, Esterberg R, Zhang Y, Jose S, Huang CL, Liao SM, Loureiro J, Zhang Q, Grosskreutz CL, Nguyen AA, Huang Q, Leehy B, Pitts R, Aspelund T, Lamb JR, Jonasson F, Launer LJ, Cotch MF, Jennings LL, Gudnason V, Walshe TE. A proteogenomic signature of age-related macular degeneration in blood. Nat Commun 2022; 13:3401. [PMID: 35697682 PMCID: PMC9192739 DOI: 10.1038/s41467-022-31085-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/01/2022] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| | | | | | | | - Michael Twarog
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Nancy Finkel
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Stephen Poor
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Xin Liu
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Robert Esterberg
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Yiyun Zhang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Sandra Jose
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Chia-Ling Huang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Sha-Mei Liao
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Qin Zhang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Cynthia L Grosskreutz
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Andrew A Nguyen
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Qian Huang
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Barrett Leehy
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Rebecca Pitts
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
| | - John R Lamb
- Novartis Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Fridbert Jonasson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Ophthalmology, University Hospital, Reykjavik, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, IS-201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tony E Walshe
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Mack HG, Colville DJ, Harraka P, Savige JA, Invernizzi A, Fraser-Bell S. Retinal findings in glomerulonephritis. Clin Exp Optom 2021; 105:474-486. [PMID: 34877922 DOI: 10.1080/08164622.2021.2003691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The complement system is part of the innate immune system activated by three distinct pathways: classical, lectin and alternative. It is also involved in retinal development and homoeostasis. Dense deposit disease is a rare renal disease associated with mutations in Complement factor H and overactivity of the alternative complement pathway. As well as glomerulonephritis, many affected individuals have retinal drusen and may be at risk of vision loss due to macular atrophy or choroidal neovascularisation. We discuss the reclassification of dense deposit disease as a type of C3 glomerulonephropathy, and hypothesise on the mechanisms of retinal abnormalities. Drusen have also been described in individuals with other types of glomerulonephritis involving abnormalities of the classical (membranoproliferative glomerulonephritis type 1) or lectin (IgA nephropathy, lupus nephritis) complement pathways. Although drusen are found in abnormalities of all three complement pathways, the age at onset, aetiology, and the threat to vision differs. This review describes drusen and other retinal abnormalities associated with the glomerulonephritides due to abnormal activation in each of the three complement activation pathways, and provides the first report of drusen occurring in a patient with the recently reclassified C3 glomerulonephritis with homozygous variant V62I in complement factor H. Optometric management of young patients presenting with retinal drusen is discussed, and complement-based therapies for visual loss are reviewed.
Collapse
Affiliation(s)
- Heather G Mack
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia.,Centre for Eye Research, University of Melbourne, Melbourne, Australia
| | - Deborah J Colville
- Department of Surgery (Ophthalmology), University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Melbourne Health, Melbourne, Australia
| | - Phillip Harraka
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Judith Anne Savige
- Department of Medicine (Northern), University of Melbourne, Melbourne, Australia
| | - Alessandro Invernizzi
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | | |
Collapse
|
13
|
Merle DA, Provenzano F, Jarboui MA, Kilger E, Clark SJ, Deleidi M, Armento A, Ueffing M. mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants (Basel) 2021; 10:1944. [PMID: 34943047 PMCID: PMC8750186 DOI: 10.3390/antiox10121944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina with multiple risk-modifying factors, including aging, genetics, and lifestyle choices. The combination of these factors leads to oxidative stress, inflammation, and metabolic failure in the retinal pigment epithelium (RPE) with subsequent degeneration of photoreceptors in the retina. The alternative complement pathway is tightly linked to AMD. In particular, the genetic variant in the complement factor H gene (CFH), which leads to the Y402H polymorphism in the factor H protein (FH), confers the second highest risk for the development and progression of AMD. Although the association between the FH Y402H variant and increased complement system activation is known, recent studies have uncovered novel FH functions not tied to this activity and highlighted functional relevance for intracellular FH. In our previous studies, we show that loss of CFH expression in RPE cells causes profound disturbances in cellular metabolism, increases the vulnerability towards oxidative stress, and modulates the activation of pro-inflammatory signaling pathways, most importantly the NF-kB pathway. Here, we silenced CFH in hTERT-RPE1 cells to investigate the mechanism by which intracellular FH regulates RPE cell homeostasis. We found that silencing of CFH results in hyperactivation of mTOR signaling along with decreased mitochondrial respiration and that mTOR inhibition via rapamycin can partially rescue these metabolic defects. To obtain mechanistic insight into the function of intracellular FH in hTERT-RPE1 cells, we analyzed the interactome of FH via immunoprecipitation followed by mass spectrometry-based analysis. We found that FH interacts with essential components of the ubiquitin-proteasomal pathway (UPS) as well as with factors associated with RB1/E2F signalling in a complement-pathway independent manner. Moreover, we found that FH silencing affects mRNA levels of the E3 Ubiquitin-Protein Ligase Parkin and PTEN induced putative kinase (Pink1), both of which are associated with UPS. As inhibition of mTORC1 was previously shown to result in increased overall protein degradation via UPS and as FH mRNA and protein levels were shown to be affected by inhibition of UPS, our data stress a potential regulatory link between endogenous FH activity and the UPS.
Collapse
Affiliation(s)
- David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University of Tuebingen, 72076 Tübingen, Germany
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| |
Collapse
|
14
|
Pappas CM, Zouache MA, Matthews S, Faust CD, Hageman JL, Williams BL, Richards BT, Hageman GS. Protective chromosome 1q32 haplotypes mitigate risk for age-related macular degeneration associated with the CFH-CFHR5 and ARMS2/HTRA1 loci. Hum Genomics 2021; 15:60. [PMID: 34563268 PMCID: PMC8466924 DOI: 10.1186/s40246-021-00359-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Single-variant associations with age-related macular degeneration (AMD), one of the most prevalent causes of irreversible vision loss worldwide, have been studied extensively. However, because of a lack of refinement of these associations, there remains considerable ambiguity regarding what constitutes genetic risk and/or protection for this disease, and how genetic combinations affect this risk. In this study, we consider the two most common and strongly AMD-associated loci, the CFH-CFHR5 region on chromosome 1q32 (Chr1 locus) and ARMS2/HTRA1 gene on chromosome 10q26 (Chr10 locus). RESULTS By refining associations within the CFH-CFHR5 locus, we show that all genetic protection against the development of AMD in this region is described by the combination of the amino acid-altering variant CFH I62V (rs800292) and genetic deletion of CFHR3/1. Haplotypes based on CFH I62V, a CFHR3/1 deletion tagging SNP and the risk variant CFH Y402H are associated with either risk, protection or neutrality for AMD and capture more than 99% of control- and case-associated chromosomes. We find that genetic combinations of CFH-CFHR5 haplotypes (diplotypes) strongly influence AMD susceptibility and that individuals with risk/protective diplotypes are substantially protected against the development of disease. Finally, we demonstrate that AMD risk in the ARMS2/HTRA1 locus is also mitigated by combinations of CFH-CFHR5 haplotypes, with Chr10 risk variants essentially neutralized by protective CFH-CFHR5 haplotypes. CONCLUSIONS Our study highlights the importance of considering protective CFH-CFHR5 haplotypes when assessing genetic susceptibility for AMD. It establishes a framework that describes the full spectrum of AMD susceptibility using an optimal set of single-nucleotide polymorphisms with known functional consequences. It also indicates that protective or preventive complement-directed therapies targeting AMD driven by CFH-CFHR5 risk haplotypes may also be effective when AMD is driven by ARMS2/HTRA1 risk variants.
Collapse
Affiliation(s)
- Chris M Pappas
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Moussa A Zouache
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA.
| | - Stacie Matthews
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Caitlin D Faust
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Jill L Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Brandi L Williams
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Burt T Richards
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA
| | - Gregory S Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
15
|
de Jong S, de Breuk A, Volokhina EB, Bakker B, Garanto A, Fauser S, Katti S, Hoyng CB, Lechanteur YTE, van den Heuvel LP, den Hollander AI. Systemic complement levels in patients with age-related macular degeneration carrying rare or low frequency variants in the CFH gene. Hum Mol Genet 2021; 31:455-470. [PMID: 34508573 PMCID: PMC8825240 DOI: 10.1093/hmg/ddab256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. Genetic variants in the complement factor H (CFH) gene are associated with AMD, but the functional consequences of many of these variants are currently unknown. In this study, we aimed to determine the effect of 64 rare and low-frequency variants in the CFH gene on systemic levels of factor H (FH) and complement activation marker C3bBbP using plasma samples of 252 carriers and 159 non-carriers. Individuals carrying a heterozygous nonsense, frameshift or missense variant in CFH presented with significantly decreased FH levels and significantly increased C3bBbP levels in plasma compared to non-carrier controls. FH and C3bBbP plasma levels were relatively stable over time in samples collected during follow-up visits. Decreased FH and increased C3bBbP concentrations were observed in carriers compared to non-carriers of CFH variants among different AMD stages, with the exception of C3bBbP levels in advanced AMD stages, which were equally high in carriers and non-carriers. In AMD families, FH levels were decreased in carriers compared to non-carriers, but C3bBbP levels did not differ. Rare variants in the CFH gene can lead to reduced FH levels or reduced FH function as measured by increased C3bBbP levels. The effects of individual variants in the CFH gene reported in this study will improve the interpretation of rare and low-frequency variants observed in AMD patients in clinical practice.
Collapse
Affiliation(s)
- Sarah de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elena B Volokhina
- Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| | - Bjorn Bakker
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alejandro Garanto
- Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital of Cologne, 50937 Cologne, Germany.,F. Hoffmann - La Roche AG, 4070 Basel, Switzerland
| | | | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Yara T E Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lambert P van den Heuvel
- Amalia Children's Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
16
|
Armento A, Schmidt TL, Sonntag I, Merle DA, Jarboui MA, Kilger E, Clark SJ, Ueffing M. CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. Int J Mol Sci 2021; 22:ijms22168727. [PMID: 34445430 PMCID: PMC8396051 DOI: 10.3390/ijms22168727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| | - Tiziana L. Schmidt
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Inga Sonntag
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| |
Collapse
|
17
|
Lin JB, Halawa OA, Miller JW, Vavvas DG. Complement Inhibition for Geographic Atrophy: A Tempting Target with Mixed Results. J Clin Med 2021; 10:jcm10132890. [PMID: 34209660 PMCID: PMC8267692 DOI: 10.3390/jcm10132890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in older adults. One of the strongest genetic risk factors for AMD is a complement factor H (CFH) gene polymorphism characterized by a tyrosine-histidine change at amino acid position 402 (Y402H). The magnitude of this association between the Y402H variant and AMD is among the strongest that has been identified for any complex, multifactorial human disease. This strong association has motivated researchers to investigate a potential link between various elements of the complement pathway and AMD pathogenesis. Given the possible contribution of complement dysregulation to AMD, complement inhibition has emerged as a therapeutic strategy for slowing geographic atrophy (GA). Randomized clinical trials thus far have yielded mixed results. In this article, we provide the historical context for complement inhibition as a strategy for treating GA, discuss potential advantages and disadvantages of complement inhibition, and highlight the questions that must be addressed before complement inhibition can take center stage as a therapy for AMD.
Collapse
|
18
|
Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, Wong WT, Chew EY. Age-related macular degeneration. Nat Rev Dis Primers 2021; 7:31. [PMID: 33958600 DOI: 10.1038/s41572-021-00265-2] [Citation(s) in RCA: 537] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in the industrialized world. AMD is characterized by accumulation of extracellular deposits, namely drusen, along with progressive degeneration of photoreceptors and adjacent tissues. AMD is a multifactorial disease encompassing a complex interplay between ageing, environmental risk factors and genetic susceptibility. Chronic inflammation, lipid deposition, oxidative stress and impaired extracellular matrix maintenance are strongly implicated in AMD pathogenesis. However, the exact interactions of pathophysiological events that culminate in drusen formation and the associated degeneration processes remain to be elucidated. Despite tremendous advances in clinical care and in unravelling pathophysiological mechanisms, the unmet medical need related to AMD remains substantial. Although there have been major breakthroughs in the treatment of exudative AMD, no efficacious treatment is yet available to prevent progressive irreversible photoreceptor degeneration, which leads to central vision loss. Compelling progress in high-resolution retinal imaging has enabled refined phenotyping of AMD in vivo. These insights, in combination with clinicopathological and genetic correlations, have underscored the heterogeneity of AMD. Hence, our current understanding promotes the view that AMD represents a disease spectrum comprising distinct phenotypes with different mechanisms of pathogenesis. Hence, tailoring therapeutics to specific phenotypes and stages may, in the future, be the key to preventing irreversible vision loss.
Collapse
Affiliation(s)
- Monika Fleckenstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| | - Tiarnán D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia
| | - Usha Chakravarthy
- Department of Ophthalmology, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Steffen Schmitz-Valckenberg
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Caroline C Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Ophthalmology, Radboud Medical Center, Nijmegen, Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Wai T Wong
- Section on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Zouache MA, Bennion A, Hageman JL, Pappas C, Richards BT, Hageman GS. Macular retinal thickness differs markedly in age-related macular degeneration driven by risk polymorphisms on chromosomes 1 and 10. Sci Rep 2020; 10:21093. [PMID: 33273512 PMCID: PMC7713215 DOI: 10.1038/s41598-020-78059-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
The two most common genetic contributors to age-related macular degeneration (AMD), a leading cause of irreversible vision loss worldwide, are variants associated with CFH-CFHR5 on chromosome 1 (Chr1) and ARMS2/HTRA1 on chromosome 10 (Chr10). We sought to determine if risk and protective variants associated with these two loci drive differences in macular retinal thickness prior and subsequent to the onset of clinically observable signs of AMD. We considered 299 individuals (547 eyes) homozygous for risk variants or haplotypes on Chr1 or Chr10 exclusively (Chr1-risk and Chr10-risk, respectively) or homozygous for a neutral haplotype (Chr1-neu), for the protective I62 tagged haplotype (Chr1-prot-I62) or for the protection conferring CFHR1/3 deletion haplotype (Chr1-prot-del) on Chr1 without any risk alleles on Chr10. Among eyes with no clinically observable signs of AMD, the deletion of CFHR1/3, which is strongly protective against this disease, is associated with significantly thicker retinas in the perifovea. When controlling for age, Chr10-risk eyes with early or intermediate AMD have thinner retinas as compared to eyes from the Chr1-risk group with similar disease severity. Our analysis indicates that this difference likely results from distinct biological and disease initiation and progression events associated with Chr1- and Chr10-directed AMD.
Collapse
Affiliation(s)
- Moussa A Zouache
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA.
| | - Alex Bennion
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Jill L Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Christian Pappas
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Burt T Richards
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA
| | - Gregory S Hageman
- Steele Center for Translational Medicine, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, 84132, UT, USA.
| |
Collapse
|
21
|
Tzoumas N, Hallam D, Harris CL, Lako M, Kavanagh D, Steel DHW. Revisiting the role of factor H in age-related macular degeneration: Insights from complement-mediated renal disease and rare genetic variants. Surv Ophthalmol 2020; 66:378-401. [PMID: 33157112 DOI: 10.1016/j.survophthal.2020.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
22
|
Kelly UL, Grigsby D, Cady MA, Landowski M, Skiba NP, Liu J, Remaley AT, Klingeborn M, Bowes Rickman C. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J Biol Chem 2020; 295:13601-13616. [PMID: 32737203 PMCID: PMC7521644 DOI: 10.1074/jbc.ra119.012305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
Strong evidence suggests that dysregulated lipid metabolism involving dysfunction of the retinal pigmented epithelium (RPE) underlies the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly. A hallmark of AMD is the overproduction of lipid- and protein-rich extracellular deposits that accumulate in the extracellular matrix (Bruch's membrane (BrM)) adjacent to the RPE. We analyzed apolipoprotein A-1 (ApoA-1)-containing lipoproteins isolated from BrM of elderly human donor eyes and found a unique proteome, distinct from high-density lipoprotein (HDL) isolated from donor plasma of the same individuals. The most striking difference is higher concentrations of ApoB and ApoE, which bind to glycosaminoglycans. We hypothesize that this interaction promotes lipoprotein deposition onto BrM glycosaminoglycans, initiating downstream effects that contribute to RPE dysfunction/death. We tested this hypothesis using two potential therapeutic strategies to alter the lipoprotein/protein profile of these extracellular deposits. First, we used short heparan sulfate oligosaccharides to remove lipoproteins already deposited in both the extracellular matrix of RPE cells and aged donor BrM tissue. Second, an ApoA-1 mimetic, 5A peptide, was demonstrated to modulate the composition and concentration of apolipoproteins secreted from primary porcine RPE cells. Significantly, in a mouse model of AMD, this 5A peptide altered the proteomic profile of circulating HDL and ameliorated some of the potentially harmful changes to the protein composition resulting from the high-fat, high-cholesterol diet in this model. Together, these results suggest that targeting HDL interactions with BrM represents a new strategy to slow AMD progression in humans.
Collapse
Affiliation(s)
- Una L Kelly
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel Grigsby
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael Landowski
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
23
|
Loss of Complement Factor H impairs antioxidant capacity and energy metabolism of human RPE cells. Sci Rep 2020; 10:10320. [PMID: 32587311 PMCID: PMC7316856 DOI: 10.1038/s41598-020-67292-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Polymorphisms in the Complement Factor H (CFH) gene, coding for the Factor H protein (FH), can increase the risk for age-related macular degeneration (AMD). AMD-associated CFH risk variants, Y402H in particular, impair FH function leading to complement overactivation. Whether this alone suffices to trigger AMD pathogenesis remains unclear. In AMD, retinal homeostasis is compromised due to the dysfunction of retinal pigment epithelium (RPE) cells. To investigate the impact of endogenous FH loss on RPE cell balance, we silenced CFH in human hTERT-RPE1 cells. FH reduction led to accumulation of C3, at both RNA and protein level and increased RPE vulnerability toward oxidative stress. Mild hydrogen-peroxide exposure in combination with CFH knock-down led to a reduction of glycolysis and mitochondrial respiration, paralleled by an increase in lipid peroxidation, which is a key aspect of AMD pathogenesis. In parallel, cell viability was decreased. The perturbations of energy metabolism were accompanied by transcriptional deregulation of several glucose metabolism genes as well as genes modulating mitochondrial stability. Our data suggest that endogenously produced FH contributes to transcriptional and metabolic homeostasis and protects RPE cells from oxidative stress, highlighting a novel role of FH in AMD pathogenesis.
Collapse
|
24
|
Rodríguez FJ, Rios HA, Aguilar MC, Rosenstiehl SM, Gelvez N, Lopez G, Tamayo ML. Genetic association with intravitreal ranibizumab response for neovascular age-related macular degeneration in Hispanic population. Taiwan J Ophthalmol 2020; 9:243-248. [PMID: 31942429 PMCID: PMC6947742 DOI: 10.4103/tjo.tjo_72_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/27/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/PURPOSE: Age-related macular degeneration (AMD) is the leading cause of visual impairment in patients over 55 years. Currently, the most common therapies for neovascular AMD (nAMD) are intravitreal antiangiogenics. Studies suggest that genetic factors influence on antiangiogenics therapy outcomes. The purpose of this work was to establish the association between complement factor H (CFH) (Y402H), age-related maculopathy susceptibility 2 (ARMS2) (A69S), and high-temperature requirement factor A1 (HTRA1) (rs11200638) polymorphisms and the response to treatment with ranibizumab in patients with nAMD. METHODS: A cross-sectional study with 61 eyes with nAMD treated with ranibizumab was performed. Association between polymorphisms from CFH, ARMS2, and HTRA1 with the response to treatment was established. RESULTS: The mean age of patients was 76.6 (51–91) years. Only 37.7% of patients had a functional response and 26.2% had an anatomic response. TT polymorphism Y402H from CFH gene was associated with an increased likelihood of functional response to treatment. Otherwise, there was not a statistically significant association between anatomic and functional response to gene polymorphisms rs11200638 from HTRA1 and rs10490924 from ARMS 2. CONCLUSIONS: This study suggests that the response to intravitreal antiangiogenic therapy with ranibizumab was not associated to main polymorphisms from genes HTRA1 and ARMS2. However, it was found that the response to treatment differed according to CFH genotype, suggesting that further investigations are needed to establish if patients with the CC and TC genotype may need to be monitored more closely for disease recurrence than the TT genotype.
Collapse
Affiliation(s)
- Francisco Jose Rodríguez
- Fundacion Oftalmologica Nacional, Bogota, Colombia.,Universidad del Rosario, School of Medicine, Bogota, Colombia
| | - Hernan Andres Rios
- Fundacion Oftalmologica Nacional, Bogota, Colombia.,Universidad del Rosario, School of Medicine, Bogota, Colombia
| | - María Camila Aguilar
- Fundacion Oftalmologica Nacional, Bogota, Colombia.,Universidad del Rosario, School of Medicine, Bogota, Colombia
| | | | - Nancy Gelvez
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Greizy Lopez
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Martha L Tamayo
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| |
Collapse
|
25
|
Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. Int J Mol Sci 2019; 21:ijms21010017. [PMID: 31861421 PMCID: PMC6981708 DOI: 10.3390/ijms21010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as two or more consecutive pregnancy losses prior to 20 weeks of gestation, and the incidence of RPL is estimated at 1% of all pregnancies. While the etiologies of RPL are diverse, immune function is considered to be an important cause of RPL. In particular, the complement system is essential for stable development of the placenta and fetus. Moreover, complement factor D (CFD) and complement factor H (CFH) are important regulators of the complement system and are associated with diseases, such as age-related macular degeneration. Therefore, we investigated whether polymorphisms of CFD and CFH are associated with RPL in 412 women with RPL and 384 control women. Genotyping of three polymorphisms (CFD rs2230216, CFH rs1065489, and CFH rs1061170) was performed by TaqMan probe real-time PCR and PCR-restriction fragment length polymorphism. Association of three polymorphisms with RPL was evaluated by statistical analysis. The GT/TC genotype combination of CFH rs1065489 G>T/CFH rs1061170 T>C was associated with a decreased risk of RPL occurrence compared with reference genotypes (adjusted odds ratio [AOR] = 0.439; 95% confidence interval [CI] = 0.238–0.810; p = 0.008), and this association remained significant after adjustment for multiple comparisons using false discovery rate (FDR) correction (p = 0.040). In addition, the CFH rs1065489G>T polymorphism is associated with homocysteine and prolactin level and CFH rs1061170 TC genotype is related to uric acid and triglycerides level in RPL patients. Therefore, those factors could be possible clinical risk factors in RPL patients.
Collapse
|
26
|
Regulation of regulators: Role of the complement factor H-related proteins. Semin Immunol 2019; 45:101341. [PMID: 31757608 DOI: 10.1016/j.smim.2019.101341] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/15/2023]
Abstract
The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.
Collapse
|
27
|
Haapasalo K, Meri S. Regulation of the Complement System by Pentraxins. Front Immunol 2019; 10:1750. [PMID: 31428091 PMCID: PMC6688104 DOI: 10.3389/fimmu.2019.01750] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP) and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance of injured tissue components, to protect against infections and to regulate related inflammation together with the complement system. For this, pentraxins have a dual relationship with the complement system. Initially, after a focused binding to their targets, e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial components, the pentraxins activate complement by binding its first component C1q. However, the emerging inflammation needs to be limited to the target area. Therefore, pentraxins inhibit complement at the C3b stage to prevent excessive damage. The complement inhibitory functions of pentraxins are based on their ability to interact with complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the complement membrane attack complex (MAC). Monitoring CRP levels gives important clinical information about the extent of tissue damage and severity of infections. CRP is a valuable marker for distinguishing bacterial infections from viral infections. Disturbances in the functions and interactions of pentraxins and complement are also involved in a number of human diseases. This review will summarize what is currently known about the FH family proteins and pentraxins that interact with FH. Furthermore, we will discuss diseases, where interactions between these molecules may play a role.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
28
|
Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proc Natl Acad Sci U S A 2019; 116:3703-3711. [PMID: 30808757 PMCID: PMC6397537 DOI: 10.1073/pnas.1814014116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complement factor H (CFH) Y402H polymorphism (rs1061170) imparts the strongest risk for age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Popular thinking holds that the CFH H402 variant increases complement activation in the eye, predisposing susceptibility to disease. However, clinical trials of complement inhibitors in AMD patients have failed. Here we provide an explanation, showing CFH variant-specific differences in the presentation of AMD-like pathologies. We show that aged mice expressing the human H402, but not Y402 variant, (i) develop AMD-like symptoms and (ii) display differences in their systemic and ocular lipoprotein levels, but not in their complement activation, after diet. These findings support targeting lipoproteins for the treatment of AMD. One of the strongest susceptibility genes for age-related macular degeneration (AMD) is complement factor H (CFH); however, its impact on AMD pathobiology remains unresolved. Here, the effect of the principal AMD-risk–associated CFH variant (Y402H) on the development and progression of age-dependent AMD-like pathologies was determined in vivo. Transgenic mice expressing equal amounts of the full-length normal human CFH Y402 (CFH-Y/0) or the AMD-risk associated CFH H402 (CFH-H/H) variant on a Cfh−/− background were aged to 90 weeks and switched from normal diet (ND) to a high fat, cholesterol-enriched (HFC) diet for 8 weeks. The resulting phenotype was compared with age-matched controls maintained on ND. Remarkably, an AMD-like phenotype consisting of vision loss, increased retinal pigmented epithelium (RPE) stress, and increased basal laminar deposits was detected only in aged CFH-H/H mice following the HFC diet. These changes were not observed in aged CFH-Y/0 mice or in younger (36- to 40-week-old) CFH mice of both genotypes fed either diet. Biochemical analyses of aged CFH mice after HFC diet revealed genotype-dependent changes in plasma and eyecup lipoproteins, but not complement activation, which correlated with the AMD-like phenotype in old CFH-H/H mice. Specifically, apolipoproteins B48 and A1 are elevated in the RPE/choroid of the aged CFH-H/H mice compared with age-matched control CFH-Y/0 fed a HFC diet. Hence, we demonstrate a functional consequence of the Y402H polymorphism in vivo, which promotes AMD-like pathology development and affects lipoprotein levels in aged mice. These findings support targeting lipoproteins as a viable therapeutic strategy for treating AMD.
Collapse
|
29
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
30
|
Osborne AJ, Nan R, Miller A, Bhatt JS, Gor J, Perkins SJ. Two distinct conformations of factor H regulate discrete complement-binding functions in the fluid phase and at cell surfaces. J Biol Chem 2018; 293:17166-17187. [PMID: 30217822 PMCID: PMC6222095 DOI: 10.1074/jbc.ra118.004767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/10/2018] [Indexed: 11/06/2022] Open
Abstract
Factor H (FH) is the major regulator of C3b in the alternative pathway of the complement system in immunity. FH comprises 20 short complement regulator (SCR) domains, including eight glycans, and its Y402H polymorphism predisposes those who carry it to age-related macular degeneration. To better understand FH complement binding and self-association, we have studied the solution structures of both the His-402 and Tyr-402 FH allotypes. Analytical ultracentrifugation revealed that up to 12% of both FH allotypes self-associate, and this was confirmed by small-angle X-ray scattering (SAXS), MS, and surface plasmon resonance analyses. SAXS showed that monomeric FH has a radius of gyration (Rg ) of 7.2-7.8 nm and a length of 25 nm. Starting from known structures for the SCR domains and glycans, the SAXS data were fitted using Monte Carlo methods to determine atomistic structures of monomeric FH. The analysis of 29,715 physically realistic but randomized FH conformations resulted in 100 similar best-fit FH structures for each allotype. Two distinct molecular structures resulted that showed either an extended N-terminal domain arrangement with a folded-back C terminus or an extended C terminus and a folded-back N terminus. These two structures are the most accurate to date for glycosylated full-length FH. To clarify FH functional roles in host protection, crystal structures for the FH complexes with C3b and C3dg revealed that the extended N-terminal conformation accounted for C3b fluid-phase regulation, the extended C-terminal conformation accounted for C3d binding, and both conformations accounted for bivalent FH binding to glycosaminoglycans on the target cell surface.
Collapse
Affiliation(s)
- Amy J Osborne
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ruodan Nan
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ami Miller
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh S Bhatt
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular Vesicles: Packages Sent With Complement. Front Immunol 2018; 9:721. [PMID: 29696020 PMCID: PMC5904200 DOI: 10.3389/fimmu.2018.00721] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cells communicate with other cells in their microenvironment by transferring lipids, peptides, RNA, and sugars in extracellular vesicles (EVs), thereby also influencing recipient cell functions. Several studies indicate that these vesicles are involved in a variety of critical cellular processes including immune, metabolic, and coagulatory responses and are thereby associated with several inflammatory diseases. Furthermore, EVs also possess anti-inflammatory properties and contribute to immune regulation, thus encouraging an emerging interest in investigating and clarifying mechanistic links between EVs and innate immunity. Current studies indicate complex interactions of the complement system with EVs, with a dramatic influence on local and systemic inflammation. During inflammatory conditions with highly activated complement, including after severe tissue trauma and during sepsis, elevated numbers of EVs were found in the circulation of patients. There is increasing evidence that these shed vesicles contain key complement factors as well as complement regulators on their surface, affecting inflammation and the course of disease. Taken together, interaction of EVs regulates complement activity and contributes to the pro- and anti-inflammatory immune balance. However, the molecular mechanisms behind this interaction remain elusive and require further investigation. The aim of this review is to summarize the limited current knowledge on the crosstalk between complement and EVs. A further aspect is the clinical relevance of EVs with an emphasis on their capacity as potential therapeutic vehicles in the field of translational medicine.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| | - Steffen U Eisenhardt
- Division of Reconstructive Microsurgery, Department of Plastic and Hand Surgery, University of Freiburg Faculty of Medicine, University of Freiburg Medical Centre, Freiburg, Germany
| | - Julia Harant
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
32
|
Mohlin C, Sandholm K, Kvanta A, Ekdahl KN, Johansson K. A model to study complement involvement in experimental retinal degeneration. Ups J Med Sci 2018; 123:28-42. [PMID: 29436895 PMCID: PMC5901466 DOI: 10.1080/03009734.2018.1431744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The complement system (CS) plays a role in the pathogenesis of a number of ocular diseases, including diabetic retinopathy (DR), glaucoma, uveitis, and age-related macular degeneration (AMD). Given that many of the complex eye-related degenerative diseases have limited treatment opportunities, we aimed to mimic the in vivo retinal degenerative process by developing a relevant co-culture system. METHOD AND MATERIALS The adult porcine retina was co-cultured with the spontaneously arising human retinal pigment epithelial cells-19 (ARPE-19). RESULTS Inflammatory activity was found after culture and included migrating microglial cells, gliosis, cell death, and CS activation (demonstrated by a minor increase in the secreted anaphylotoxin C3a in co-culture). CS components, including C1q, C3, C4, soluble C5b-9, and the C5a receptor, were expressed in the retina and/or ARPE cells after culture. C1q, C3, and CS regulators such as C4 binding protein (C4BP), factor H (CFH), and factor I (CFI) were secreted after culture. DISCUSSION Thus, our research indicates that this co-culturing system may be useful for investigations of the CS and its involvement in experimental neurodegenerative diseases.
Collapse
Affiliation(s)
- Camilla Mohlin
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- CONTACT Camilla Mohlin Linnaeus Center of Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| | - Kerstin Sandholm
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kristina N. Ekdahl
- Linnaeus University Faculty of Health and Life Science, Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Kjell Johansson
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Spartà G, Gaspert A, Neuhaus TJ, Weitz M, Mohebbi N, Odermatt U, Zipfel PF, Bergmann C, Laube GF. Membranoproliferative glomerulonephritis and C3 glomerulopathy in children: change in treatment modality? A report of a case series. Clin Kidney J 2018; 11:479-490. [PMID: 30094012 PMCID: PMC6070093 DOI: 10.1093/ckj/sfy006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Background Membranoproliferative glomerulonephritis (MPGN) with immune complexes and C3 glomerulopathy (C3G) in children are rare and have a variable outcome, with some patients progressing to end-stage renal disease (ESRD). Mutations in genes encoding regulatory proteins of the alternative complement pathway and of complement C3 (C3) have been identified as concausative factors. Methods Three children with MPGN type I, four with C3G, i.e. three with C3 glomerulonephritis (C3GN) and one with dense deposit disease (DDD), were followed. Clinical, autoimmune data, histological characteristics, estimated glomerular filtration rate (eGFR), proteinuria, serum C3, genetic and biochemical analysis were assessed. Results The median age at onset was 7.3 years and the median eGFR was 72 mL/min/1.73 m2. Six children had marked proteinuria. All were treated with renin-angiotensin-aldosterone system (RAAS) blockers. Three were given one or more immunosuppressive drugs and two eculizumab. At the last median follow-up of 9 years after diagnosis, three children had normal eGFR and no or mild proteinuria on RAAS blockers only. Among four patients without remission of proteinuria, genetic analysis revealed mutations in complement regulator proteins of the alternative pathway. None of the three patients with immunosuppressive treatment achieved partial or complete remission of proteinuria and two progressed to ESRD and renal transplantation. Two patients treated with eculizumab revealed relevant decreases in proteinuria. Conclusions In children with MPGN type I and C3G, the outcomes of renal function and response to treatment modality show great variability independent from histological diagnosis at disease onset. In case of severe clinical presentation at disease onset, early genetic and biochemical analysis of the alternative pathway dysregulation is recommended. Treatment with eculizumab appears to be an option to slow disease progression in single cases.
Collapse
Affiliation(s)
- Giuseppina Spartà
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas J Neuhaus
- Children's Hospital of Lucerne, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Marcus Weitz
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Odermatt
- Nephrology Unit, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology e. V. Hans-Knöll-Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Carsten Bergmann
- Bioscientia Center of Human Genetics, Ingelheim am Rhein, Germany
| | - Guido F Laube
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Łukawska E, Polcyn-Adamczak M, Niemir ZI. The role of the alternative pathway of complement activation in glomerular diseases. Clin Exp Med 2018; 18:297-318. [DOI: 10.1007/s10238-018-0491-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023]
|
35
|
C-reactive protein and pentraxin-3 binding of factor H-like protein 1 differs from complement factor H: implications for retinal inflammation. Sci Rep 2018; 8:1643. [PMID: 29374201 PMCID: PMC5786067 DOI: 10.1038/s41598-017-18395-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Retinal inflammation plays a key role in the progression of age-related macular degeneration (AMD), a condition that leads to loss of central vision. The deposition of the acute phase pentraxin C-reactive protein (CRP) in the macula activates the complement system, thereby contributing to dysregulated inflammation. The complement protein factor H (FH) can bind CRP and down-regulate an inflammatory response. However, it is not known whether a truncated form of FH, called factor H-like protein 1 (FHL-1), which plays a significant regulatory role in the eye, also interacts with CRP. Here, we compare the binding properties of FHL-1 and FH to both CRP and the related protein pentraxin-3 (PTX3). We find that, unlike FH, FHL-1 can bind pro-inflammatory monomeric CRP (mCRP) as well as the circulating pentameric form. Furthermore, the four-amino acid C-terminal tail of FHL-1 (not present in FH) plays a role in mediating its binding to mCRP. PTX3 was found to be present in the macula of donor eyes and the AMD-associated Y402H polymorphism altered the binding of FHL-1 to PTX3. Our findings reveal that the binding characteristics of FHL-1 differ from those of FH, likely underpinning independent immune regulatory functions in the context of the human retina.
Collapse
|
36
|
Hughes AE, Bridgett S, Meng W, Li M, Curcio CA, Stambolian D, Bradley DT. Sequence and Expression of Complement Factor H Gene Cluster Variants and Their Roles in Age-Related Macular Degeneration Risk. Invest Ophthalmol Vis Sci 2017; 57:2763-9. [PMID: 27196323 PMCID: PMC4884056 DOI: 10.1167/iovs.15-18744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose To investigate how potentially functional genetic variants are coinherited on each of four common complement factor H (CFH) and CFH-related gene haplotypes and to measure expression of these genes in eye and liver tissues. Methods We sequenced the CFH region in four individuals (one homozygote for each of four common CFH region haplotypes) to identify all genetic variants. We studied associations between the haplotypes and AMD phenotypes in 2157 cases and 1150 controls. We examined RNA-seq profiles in macular and peripheral retina and retinal pigment epithelium/choroid/sclera (RCS) from eight eye donors and three liver samples. Results The haplotypic coinheritance of potentially functional variants (including missense variants, novel splice sites, and the CFHR3–CFHR1 deletion) was described for the four common haplotypes. Expression of the short and long CFH transcripts differed markedly between the retina and liver. We found no expression of any of the five CFH-related genes in the retina or RCS, in contrast to the liver, which is the main source of the circulating proteins. Conclusions We identified all genetic variants on common CFH region haplotypes and described their coinheritance. Understanding their functional effects will be key to developing and stratifying AMD therapies. The small scale of our expression study prevented us from investigating the relationships between CFH region haplotypes and their expression, and it will take time and collaboration to develop epidemiologic-scale studies. However, the striking difference between systemic and ocular expression of complement regulators shown in this study suggests important implications for the development of intraocular and systemic treatments.
Collapse
Affiliation(s)
- Anne E Hughes
- Formerly of Centre for Public Health Queen's University Belfast, Belfast, United Kingdom
| | - Stephen Bridgett
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Weihua Meng
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Declan T Bradley
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
37
|
Abstract
The complement system is a vital component of the immune-priveliged human eye that is always active at a low-grade level, preventing harmful intraocular injuries caused by accumulation of turnover products and controlling pathogens to preserve eye homeostasis and vision. The complement system is a double-edged sword that is essential for protection but may also become harmful and contribute to eye pathology. Here, we review the evidence for the involvement of complement system dysregulation in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica, highlighting the relationship between morphogical changes and complement system protein expression and regulation in these diseases. The potential benefits of complement inhibition in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica are abundant, as are those of further research to improve our understanding of complement-mediated injury in these diseases.
Collapse
Affiliation(s)
- Camilla Mohlin
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Csincsi ÁI, Szabó Z, Bánlaki Z, Uzonyi B, Cserhalmi M, Kárpáti É, Tortajada A, Caesar JJE, Prohászka Z, Jokiranta TS, Lea SM, Rodríguez de Córdoba S, Józsi M. FHR-1 Binds to C-Reactive Protein and Enhances Rather than Inhibits Complement Activation. THE JOURNAL OF IMMUNOLOGY 2017; 199:292-303. [PMID: 28533443 DOI: 10.4049/jimmunol.1600483] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023]
Abstract
Factor H-related protein (FHR) 1 is one of the five human FHRs that share sequence and structural homology with the alternative pathway complement inhibitor FH. Genetic studies on disease associations and functional analyses indicate that FHR-1 enhances complement activation by competitive inhibition of FH binding to some surfaces and immune proteins. We have recently shown that FHR-1 binds to pentraxin 3. In this study, our aim was to investigate whether FHR-1 binds to another pentraxin, C-reactive protein (CRP), analyze the functional relevance of this interaction, and study the role of FHR-1 in complement activation and regulation. FHR-1 did not bind to native, pentameric CRP, but it bound strongly to monomeric CRP via its C-terminal domains. FHR-1 at high concentration competed with FH for CRP binding, indicating possible complement deregulation also on this ligand. FHR-1 did not inhibit regulation of solid-phase C3 convertase by FH and did not inhibit terminal complement complex formation induced by zymosan. On the contrary, by binding C3b, FHR-1 allowed C3 convertase formation and thereby enhanced complement activation. FHR-1/CRP interactions increased complement activation via the classical and alternative pathways on surfaces such as the extracellular matrix and necrotic cells. Altogether, these results identify CRP as a ligand for FHR-1 and suggest that FHR-1 enhances, rather than inhibits, complement activation, which may explain the protective effect of FHR-1 deficiency in age-related macular degeneration.
Collapse
Affiliation(s)
- Ádám I Csincsi
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsóka Szabó
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Zsófia Bánlaki
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Barbara Uzonyi
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Immunology Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Marcell Cserhalmi
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Kárpáti
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Agustín Tortajada
- Departamento Medicina Celular y Molecular, Centro de Investigaciones Biológicas, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28040 Madrid, Spain
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, H-1125 Budapest, Hungary; and
| | - T Sakari Jokiranta
- Research Programs Unit, Immunobiology, Haartman Institute, University of Helsinki, FI-00014 Helsinki, Finland
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Santiago Rodríguez de Córdoba
- Departamento Medicina Celular y Molecular, Centro de Investigaciones Biológicas, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, 28040 Madrid, Spain
| | - Mihály Józsi
- Hungarian Academy of Sciences-Eötvös Loránd University MTA-ELTE Lendület Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
| |
Collapse
|
39
|
Ferluga J, Kouser L, Murugaiah V, Sim RB, Kishore U. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders. Mol Immunol 2017; 84:84-106. [PMID: 28216098 DOI: 10.1016/j.molimm.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
Abstract
Complement system homeostasis is important for host self-protection and anti-microbial immune surveillance, and recent research indicates roles in tissue development and remodelling. Complement also appears to have several points of interaction with the blood coagulation system. Deficiency and altered function due to gene mutations and polymorphisms in complement effectors and regulators, including Factor H, have been associated with familial and sporadic autoimmune inflammatory - thrombotic disorders, in which autoantibodies play a part. These include systemic lupus erythematosus, rheumatoid arthritis, atypical haemolytic uremic syndrome, anti-phospholipid syndrome and age-related macular degeneration. Such diseases are generally complex - multigenic and heterogeneous in their symptoms and predisposition/susceptibility. They usually need to be triggered by vascular trauma, drugs or infection and non-complement genetic factors also play a part. Underlying events seem to include decline in peripheral regulatory T cells, dendritic cell, and B cell tolerance, associated with alterations in lymphoid organ microenvironment. Factor H is an abundant protein, synthesised in many cell types, and its reported binding to many different ligands, even if not of high affinity, may influence a large number of molecular interactions, together with the accepted role of Factor H within the complement system. Factor H is involved in mesenchymal stem cell mediated tolerance and also contributes to self-tolerance by augmenting iC3b production and opsonisation of apoptotic cells for their silent dendritic cell engulfment via complement receptor CR3, which mediates anti-inflammatory-tolerogenic effects in the apoptotic cell context. There may be co-operation with other phagocytic receptors, such as complement C1q receptors, and the Tim glycoprotein family, which specifically bind phosphatidylserine expressed on the apoptotic cell surface. Factor H is able to discriminate between self and nonself surfaces for self-protection and anti-microbe defence. Factor H, particularly as an abundant platelet protein, may also modulate blood coagulation, having an anti-thrombotic role. Here, we review a number of interaction pathways in coagulation and in immunity, together with associated diseases, and indicate where Factor H may be expected to exert an influence, based on reports of the diversity of ligands for Factor H.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
40
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
41
|
Keir LS, Langman CB. Complement and the kidney in the setting of Shiga-toxin hemolytic uremic syndrome, organ transplantation, and C3 glomerulonephritis. Transfus Apher Sci 2016; 54:203-11. [PMID: 27156109 DOI: 10.1016/j.transci.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To review the role of complement in glomerular pathologies focusing on thrombotic microangiopathies (TMA) caused by Shiga toxin (Stx) and organ transplantation associated hemolytic uremic syndrome (HUS) as well as C3 glomerulopathy (C3G). METHODS Examination of literature discussing TMA associated with Stx HUS, transplantation related HUS and C3G. RESULTS There is an emerging role for complement biology in the renal glomerulus where its inappropriate over-activation is integral to several diseases. Stx HUS patients show evidence of complement activation and the toxin itself can activate complement and inhibit its normal regulation. However, therapeutic complement blockade has not yet proven effective in all circumstances. This may be partly related to late use and a clinical trial could be warranted. Organ transplantation associated HUS has carried a poor prognosis. While case reports supporting the use of complement inhibition exist, there has not been a formal trial. Complement activation in C3G is established but again treatment with complement inhibition has failed to be uniformly beneficial. Here, too, a clinical trial may help determine which subgroup of patients should be treated with these agents. CONCLUSION Complement plays an important role in the glomerulus but more work is needed to fully understand how it contributes to normal function and pathology. This will help direct appropriate therapy in these diseases.
Collapse
Affiliation(s)
- Lindsay S Keir
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Kidney Diseases, The Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Kidney Diseases, The Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Rosa TFA, Flammersfeld A, Ngwa CJ, Kiesow M, Fischer R, Zipfel PF, Skerka C, Pradel G. The Plasmodium falciparum blood stages acquire factor H family proteins to evade destruction by human complement. Cell Microbiol 2016; 18:573-90. [PMID: 26457721 PMCID: PMC5063132 DOI: 10.1111/cmi.12535] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 01/24/2023]
Abstract
The acquisition of regulatory proteins is a means of blood-borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL-1 and CFHR-1 to their surface, and FH binding is trypsin-resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH-mediated protection via anti-FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.
Collapse
Affiliation(s)
- Thiago F A Rosa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Meike Kiesow
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074, Aachen, Germany
| |
Collapse
|
43
|
Molins B, Fuentes-Prior P, Adán A, Antón R, Arostegui JI, Yagüe J, Dick AD. Complement factor H binding of monomeric C-reactive protein downregulates proinflammatory activity and is impaired with at risk polymorphic CFH variants. Sci Rep 2016; 6:22889. [PMID: 26961257 PMCID: PMC4785391 DOI: 10.1038/srep22889] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/23/2016] [Indexed: 11/30/2022] Open
Abstract
Inflammation and immune-mediated processes are pivotal to the pathogenic progression of age-related macular degeneration (AMD). Although plasma levels of C-reactive protein (CRP) have been shown to be associated with an increased risk for AMD, the pathophysiological importance of the prototypical acute-phase reactant in the etiology of the disease is unknown, and data regarding the exact role of CRP in ocular inflammation are limited. In this study, we provide mechanistic insight into how CRP contributes to the development of AMD. In particular, we show that monomeric CRP (mCRP) but not the pentameric form (pCRP) upregulates IL-8 and CCL2 levels in retinal pigment epithelial cells. Further, we show that complement factor H (FH) binds mCRP to dampen its proinflammatory activity. FH from AMD patients carrying the “risk” His402 polymorphism displays impaired binding to mCRP, and therefore proinflammatory effects of mCRP remain unrestrained.
Collapse
Affiliation(s)
- Blanca Molins
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain.,Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Alfredo Adán
- Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Rosa Antón
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain
| | - Juan I Arostegui
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, 08028 Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, 08028 Barcelona, Spain
| | - Andrew D Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences and School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TH, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, EC1V 2PD, UK
| |
Collapse
|
44
|
Complement factor H polymorphism rs1061170 and the effect of cigarette smoking on the risk of lung cancer. Contemp Oncol (Pozn) 2015; 19:441-5. [PMID: 26843839 PMCID: PMC4731447 DOI: 10.5114/wo.2015.56202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Aim of the study Complement factor H (CFH) has been known to inhibit the complement pathway and to contribute to tumour growth by suppressing the anti-tumour cell mediated response in cell lines from several malignancies. We examined the association of Try402His single nucleotide polymorphism in CFH gene with lung cancer and the interaction with cigarette smoking. Material and methods This case-control study included 80 primary lung cancer patients and 106 control subjects who were genotyped for Try402His (rs1061170) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results Variant genotypes (Tyr/His and His/His) were overpresented among patients compared to controls (p = 0.03, OR = 2.510, 95% CI: 1.068–5.899), and the frequency of variant H allele was significantly overexpressed in cases compared to controls (p = 0.021). Tyr/His genotype was identified in 100% of small cell lung cancer (SCLC) patients vs. 34.5% of non-SCLC (NSCLC), while 20.7% of NSCLC patients were homozygous for the variant allele (His/His) (p = 0.001). Binary logistic regression analysis revealed a 2.5 times greater estimated risk for NSCLC than for SCLC among variant allele carriers, and a 7.3-fold increased risk of lung cancer among variant allele smoking carriers vs. 1.3-fold increased risk among wild allele smoking carriers. Moreover, the stage of cancer positively correlated with smoking and pack-years in allele H carriers, and the correlation was stronger among those who were homozygous for it (His/His) than those who were heterozygous (Tyr/His). Conclusions CFH 402H variant is a smoking-related risk factor for lung cancer, particularly the NSCLC.
Collapse
|
45
|
Grassmann F, Ach T, Brandl C, Heid IM, Weber BH. What Does Genetics Tell Us About Age-Related Macular Degeneration? Annu Rev Vis Sci 2015; 1:73-96. [DOI: 10.1146/annurev-vision-082114-035609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Thomas Ach
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, D-97080, Germany
| | - Caroline Brandl
- Institute of Human Genetics and
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, D-93042, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, D-93053, Germany;
| | | |
Collapse
|
46
|
Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol 2015; 98:713-25. [PMID: 26292978 PMCID: PMC4733662 DOI: 10.1189/jlb.3ri0615-239r] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| |
Collapse
|
47
|
Lueck K, Busch M, Moss SE, Greenwood J, Kasper M, Lommatzsch A, Pauleikhoff D, Wasmuth S. Complement Stimulates Retinal Pigment Epithelial Cells to Undergo Pro-Inflammatory Changes. Ophthalmic Res 2015; 54:195-203. [PMID: 26502094 DOI: 10.1159/000439596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS We examined the effect of human complement sera (HCS) on retinal pigment epithelial (RPE) cells with respect to pro-inflammatory mediators relevant in early age-related macular degeneration (AMD). METHODS RPE cells were treated with complement-containing HCS or with heat-inactivated (HI) HCS or C7-deficient HCS as controls. Cells were analysed for C5b-9 using immunocytochemistry and flow cytometry. Interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) were quantified by ELISA and RT-PCR. Tumour necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), were analysed by Western blotting. The intracellular distribution of nuclear factor (NF)-x03BA;B was investigated by immunofluorescence. RESULTS A concentration-dependent increased staining for C5b-9 but no influence on cell viability was observed after HCS treatment. ELISA and RT-PCR analysis revealed elevated secretion and expression of IL-6, IL-8, and MCP-1. Western blot analysis showed a concentration-dependent increase in ICAM-1, VCAM-1, and TNF-α in response to HCS, and immunofluorescence staining revealed nuclear translocation of NF-x03BA;B. CONCLUSION This study suggests that complement stimulates NF-x03BA;B activation in RPE cells that might further create a pro-inflammatory environment. All these factors together may support early AMD development.
Collapse
Affiliation(s)
- Katharina Lueck
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Complement pathway biomarkers and age-related macular degeneration. Eye (Lond) 2015; 30:1-14. [PMID: 26493033 DOI: 10.1038/eye.2015.203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
In the age-related macular degeneration (AMD) 'inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration.
Collapse
|
49
|
Medina FMC, Alves Lopes da Motta A, Takahashi WY, Carricondo PC, dos Santos Motta MM, Melo MB, Vasconcellos JPC. Pharmacogenetic Effect of Complement Factor H Gene Polymorphism in Response to the Initial Intravitreal Injection of Bevacizumab for Wet Age-Related Macular Degeneration. Ophthalmic Res 2015; 54:169-74. [DOI: 10.1159/000439172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
|
50
|
[Immunogerontology - Research into aging]. Z Rheumatol 2015; 74:435-7. [PMID: 26031286 DOI: 10.1007/s00393-014-1562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|