1
|
Mishra SK, Priya P, Rai GP, Haque R, Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput Biol Med 2023; 163:107233. [PMID: 37422941 DOI: 10.1016/j.compbiomed.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/03/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
In the recent past several vaccines were developed to combat the COVID-19 disease. Unfortunately, the protective efficacy of the current vaccines has been reduced due to the high mutation rate in SARS-CoV-2. Here, we successfully implemented a coevolution based immunoinformatics approach to design an epitope-based peptide vaccine considering variability in spike protein of SARS-CoV-2. The spike glycoprotein was investigated for B- and T-cell epitope prediction. Identified T-cell epitopes were mapped on previously reported coevolving amino acids in the spike protein to introduce mutation. The non-mutated and mutated vaccine components were constructed by selecting epitopes showing overlapping with the predicted B-cell epitopes and highest antigenicity. Selected epitopes were linked with the help of a linker to construct a single vaccine component. Non-mutated and mutated vaccine component sequences were modelled and validated. The in-silico expression level of the vaccine constructs (non-mutated and mutated) in E. coli K12 shows promising results. The molecular docking analysis of vaccine components with toll-like receptor 5 (TLR5) demonstrated strong binding affinity. The time series calculations including root mean square deviation (RMSD), radius of gyration (RGYR), and energy of the system over 100 ns trajectory obtained from all atom molecular dynamics simulation showed stability of the system. The combined coevolutionary and immunoinformatics approach used in this study will certainly help to design an effective peptide vaccine that may work against different strains of SARS-CoV-2. Moreover, the strategy used in this study can be implemented on other pathogens.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Prerna Priya
- Department of Botany, Purnea Mahila College, Purnia, Bihar, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
2
|
Martínez-Cortés F, Domínguez-Romero AN, Pérez-Hernández EG, Orozco-Delgado DL, Avila S, Odales J, Guzman Valle J, Gevorkian G, Manoutcharian K. Tumor antigen-unbiased variable epitope library contains mimotopes with antitumor effect in a mouse model of breast cancer. Mol Immunol 2023; 157:91-100. [PMID: 37002957 DOI: 10.1016/j.molimm.2023.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Breast cancer is one of the leading causes of death that affects the female population worldwide. Despite advances in treatments and a greater understanding of the disease, there are still difficulties in successfully treating patients. Currently, the main challenge in the field of cancer vaccines is antigenic variability which can reduce antigen-specific T- cell response efficacy. The search for and validation of immunogenic antigen targets increased dramatically over the past few decades and, with the advent of modern sequencing techniques, permitting the fast and accurate identification of the neoantigen landscape of tumor cells, will undoubtedly continue to grow exponentially for years to come. We have previously implemented Variable Epitope Libraries (VEL) as an unconventional vaccine strategy in preclinical models and for identifying and selecting mutant epitope variants. Here, we used an alanine-based sequence to generate a 9-mer VEL-like combinatorial mimotope library G3d as a new class of vaccine immunogen. An in silico analysis of the 16,000 G3d-derived sequences revealed potential MHC-I binders and immunogenic mimotopes. We demonstrated the antitumor effect of treatment with G3d in the 4T1 murine model of breast cancer. Moreover, two different T cell proliferation screening assays against a panel of randomly selected G3d-derived mimotopes allowed the isolation of both stimulatory and inhibitory mimotopes showing differential therapeutic vaccine efficacy. Thus, the mimotope library is a promising vaccine immunogen and a reliable source for isolating molecular cancer vaccine components.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Eréndira G Pérez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Diana L Orozco-Delgado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Sandra Avila
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico.
| |
Collapse
|
3
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
4
|
Martínez-Cortés F, Servín-Blanco R, Domínguez-Romero AN, Munguía ME, Guzman Valle J, Odales J, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Mol Immunol 2021; 139:65-75. [PMID: 34454186 DOI: 10.1016/j.molimm.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - María Elena Munguía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico.
| |
Collapse
|
5
|
Odales J, Guzman Valle J, Martínez-Cortés F, Manoutcharian K. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol 2020; 358:104235. [PMID: 33137645 PMCID: PMC7548077 DOI: 10.1016/j.cellimm.2020.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/01/2022]
Abstract
Antibody-based therapies induce CDR-specific T and B cell responses. Idiotype-anti-idiotype network alters immune system memory compartment. Antigenized antibodies are efficient vaccine immunogen.
Antibodies, T cell receptors and major histocompatibility complex molecules are members of the immunoglobulin superfamily and have pivotal roles in the immune system. The fine interrelation between them regulates several immune functions. Here, we describe lesser-known functions ascribed to these molecules in generating and maintaining immune response. Particularly, we outline the contribution of antibody- and T cell receptor-derived complementarity-determining region neoantigens, antigenized antibodies, as well as major histocompatibility complex class I molecules-derived epitopes to the induction of protective/therapeutic immune responses against pathogens and cancer. We discuss findings of our own and other studies describing protective mechanisms, based on immunogenic properties of immunoglobulin superfamily members, and evaluate the perspectives of application of this class of immunogens in molecular vaccines design.
Collapse
Affiliation(s)
- Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico.
| |
Collapse
|
6
|
Stern Z, Stylianou DC, Kostrikis LG. The development of inovirus-associated vector vaccines using phage-display technologies. Expert Rev Vaccines 2019; 18:913-920. [PMID: 31373843 PMCID: PMC7103683 DOI: 10.1080/14760584.2019.1651649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages). As vaccine carriers, they have elicited both cellular and humoral responses against a variety of pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are exploited for widespread vaccine development. Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the display of specific antigenic peptides which induce antibody production to prevent or curtail infection. Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the development of different applications of inovirus-based phage display vaccines across a broad range of pathogens and hosts is reviewed. The references cited in this review were selected from established databases based on the authors' knowledge of the study subject. Expert commentary: The importance of phage-display technology has been recently highlighted by the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore, the symbiotic nature of filamentous viruses infecting intestinal F+E. coli strains offers an attractive platform for the development of novel vaccines that stimulate mucosal immunity.
Collapse
Affiliation(s)
- Zachariah Stern
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
7
|
Servín-Blanco R, Chávaro-Ortiz RM, Zamora-Alvarado R, Martínez-Cortes F, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from major histocompatibility complex (MHC) class I molecules using variable epitope libraries. Immunol Lett 2018; 204:47-54. [PMID: 30339819 DOI: 10.1016/j.imlet.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Although various immune checkpoint inhibitors (ICIs), used for the treatment of advanced cancer, showed remarkably durable tumor regression in a subset of patients, there are important limitations in a large group of non-responders, and the generation of novel immunogens capable of inducing protective cellular immune responses is a priority in cancer immunotherapy field. During the last decades, several types of vaccine immunogens have been used in numerous preclinical studies and clinical trials. However, although immunity to tumor Ags can be elicited by most vaccines tested, their clinical efficacy remains modest. Recently, we have developed an innovative vaccine concept, called Variable Epitope Libraries (VELs), with the purpose to exploit the high antigenic variability of many important pathogens and tumor cells as starting points for the construction of a new class of vaccine immunogens capable of inducing the largest possible repertoire of both B and T cells. In the present study, we decided to generate VEL immunogens derived from both classical and non-classical major histocompatibility complex (MHC) class I molecules. The MHC molecules, responsible for antigen presentation and subsequent activation of T lymphocytes, undergo multiple modifications that directly affect their proper function, resulting in immune escape of tumor cells. Two large VELs derived from multi-epitope region of H2-Kd and Qa-2 sequences (46 and 34 amino acids long, respectively), along with their wild type counterparts have been generated as synthetic peptides and tested in an aggressive 4T1 mouse model of breast cancer. Significant inhibition of tumor growth and the reduction of metastatic lesions in the lungs of immunized mice were observed. This study demonstrated for the first time the successful application of VELs carrying combinatorial libraries of epitope variants derived from MHC class I molecules as novel vaccine immunogens.
Collapse
Affiliation(s)
- Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Rosa Mariana Chávaro-Ortiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Rubén Zamora-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Fernando Martínez-Cortes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria, CDMX, 04510, Mexico.
| |
Collapse
|
8
|
Servín-Blanco R, Zamora-Alvarado R, Gevorkian G, Manoutcharian K. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets. Hum Vaccin Immunother 2016; 12:2640-2648. [PMID: 27295540 DOI: 10.1080/21645515.2016.1191718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.
Collapse
Affiliation(s)
- R Servín-Blanco
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - R Zamora-Alvarado
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - G Gevorkian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - K Manoutcharian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| |
Collapse
|
9
|
Hassapis KA, Stylianou DC, Kostrikis LG. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines. Viruses 2014; 6:5047-76. [PMID: 25525909 PMCID: PMC4276942 DOI: 10.3390/v6125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
Collapse
Affiliation(s)
- Kyriakos A Hassapis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| |
Collapse
|
10
|
NoeDominguez-Romero A, Zamora-Alvarado R, Servín-Blanco R, Pérez-Hernández EG, Castrillon-Rivera LE, Munguia ME, Acero G, Govezensky T, Gevorkian G, Manoutcharian K. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer. Hum Vaccin Immunother 2014; 10:3201-13. [PMID: 25483665 PMCID: PMC4514078 DOI: 10.4161/hv.29679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 12/26/2022] Open
Abstract
The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Proliferation
- Cells, Cultured
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Immune Tolerance/immunology
- Inhibitor of Apoptosis Proteins/genetics
- Interferon-gamma/immunology
- Lymphocyte Activation/immunology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Peptide Library
- Repressor Proteins/genetics
- Survivin
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Escape/immunology
- Vaccination
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Allan NoeDominguez-Romero
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Rubén Zamora-Alvarado
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Erendira G Pérez-Hernández
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | | | - Maria Elena Munguia
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Tzipe Govezensky
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México (UNAM); Cuidad Universitaria; México D.F., México
| |
Collapse
|
11
|
Karlsson I, Brandt L, Vinner L, Kromann I, Andreasen LV, Andersen P, Gerstoft J, Kronborg G, Fomsgaard A. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clin Immunol 2012; 146:120-30. [PMID: 23314272 DOI: 10.1016/j.clim.2012.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/07/2012] [Accepted: 12/09/2012] [Indexed: 01/09/2023]
Abstract
We investigated the potential of inducing additional T-cell immunity during chronic HIV-1 infection directed to subdominant HIV-1 epitopes from common HLA-supertypes. Ten treatment-naïve HIV-1-infected individuals were immunized with peptides in the adjuvant CAF01. One individual received placebo. T-cell immunogenicity was examined longitudinally by a flow cytometry (CD107a, IFNγ, TNFα, IL-2 and/or MIP1β expression) as well as IFNγ ELISPOT. Safety was evaluated by clinical follow up combined with monitoring of biochemistry, hematology, CD4 T-cell counts and viral load. New CD4 and CD8 T-cell responses specific for one or more vaccine epitopes were induced in 10/10 vaccinees. The responses were dominated by CD107a and MIP1β expression. There were no significant changes in HIV-1 viral load or CD4 T-cell counts. Our study demonstrates that the peptide/CAF01 vaccine is safe and that it is possible to generate new HIV-1 T-cell responses to defined epitopes in treatment-naïve HIV-1-infected individuals.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Department of Virology, Statens Serum Institut, 2300 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|
13
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
14
|
González E, Robles Y, Govezensky T, Bobes RJ, Gevorkian G, Manoutcharian K. Isolation of neurocysticercosis-related antigens from a genomic phage display library of Taenia solium. ACTA ACUST UNITED AC 2010; 15:1268-73. [PMID: 20974903 DOI: 10.1177/1087057110385229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the authors have generated a tapeworm Taenia solium genomic DNA expression library where foreign peptides/proteins were fused to N-termini of M13 cpVIII and expressed at a high copy number on the phage surface, and they showed that this library may be used in bioselection against antipathogen immune sera, allowing the identification of disease-related antigens recognizing antibodies present in clinical samples. They isolated 2 phage clones expressing T. solium-derived antigens specifically reacting with antibodies present in plasma and cerebrospinal fluid samples of neuroimaging-confirmed neurocysticercosis patients. The described antigen discovery strategy may be used for the direct identification of antigens useful for host-pathogen interaction studies as well as for the development of molecular vaccines and diagnostics.
Collapse
Affiliation(s)
- Erik González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | | | | | |
Collapse
|