1
|
Zhang Z, Song B, Wei H, Liu Y, Zhang W, Yang Y, Sun B. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1. Drug Resist Updat 2024; 73:101040. [PMID: 38228036 DOI: 10.1016/j.drup.2023.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Bojiao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haowei Wei
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuhong Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol 2023; 19:363-377. [PMID: 37161083 DOI: 10.1038/s41584-023-00966-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.
Collapse
Affiliation(s)
- Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ahmed Abu El-Asrar
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia.
- University Hospitals Gasthuisberg, UZ Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Yee Mon KJ, Blander JM. TAP-ing into the cross-presentation secrets of dendritic cells. Curr Opin Immunol 2023; 83:102327. [PMID: 37116384 DOI: 10.1016/j.coi.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Viral blockade of the transporter associated with antigen processing (TAP) diminishes surface and endosomal recycling compartment levels of major histocompatibility complex class-I (MHC-I) in dendritic cells (DCs), and compromises both classical MHC-I presentation and canonical cross-presentation during infection to impair CD8 T-cell immunity. Virus-specific CD8 T cells are thought to be cross-primed mostly by uninfected TAP-sufficient DCs through cross-presentation of viral peptides from internalized virus-infected dying cells. The dilemma is that CD8 T cells primed to TAP-dependent viral peptides are mismatched to the TAP-independent epitopes presented on tissues infected with immune-evasive viruses. Noncanonical cross-presentation in DCs overcomes cell-intrinsic TAP blockade to nevertheless prime protective TAP-independent CD8 T cells best-matched against the infection. Exploitation of noncanonical cross-presentation may prevent chronic infections with immune-evasive viruses. It may also control immune-evasive cancers that have downmodulated TAP expression.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA; Department of Microbiology and Immunology, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Leddy O, White FM, Bryson BD. Immunopeptidomics reveals determinants of Mycobacterium tuberculosis antigen presentation on MHC class I. eLife 2023; 12:e84070. [PMID: 37073954 PMCID: PMC10159623 DOI: 10.7554/elife.84070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
CD8+ T cell recognition of Mycobacterium tuberculosis (Mtb)-specific peptides presented on major histocompatibility complex class I (MHC-I) contributes to immunity to tuberculosis (TB), but the principles that govern presentation of Mtb antigens on MHC-I are incompletely understood. In this study, mass spectrometry (MS) analysis of the MHC-I repertoire of Mtb-infected primary human macrophages reveals that substrates of Mtb's type VII secretion systems (T7SS) are overrepresented among Mtb-derived peptides presented on MHC-I. Quantitative, targeted MS shows that ESX-1 activity is required for presentation of Mtb peptides derived from both ESX-1 substrates and ESX-5 substrates on MHC-I, consistent with a model in which proteins secreted by multiple T7SSs access a cytosolic antigen processing pathway via ESX-1-mediated phagosome permeabilization. Chemical inhibition of proteasome activity, lysosomal acidification, or cysteine cathepsin activity did not block presentation of Mtb antigens on MHC-I, suggesting involvement of other proteolytic pathways or redundancy among multiple pathways. Our study identifies Mtb antigens presented on MHC-I that could serve as targets for TB vaccines, and reveals how the activity of multiple T7SSs interacts to contribute to presentation of Mtb antigens on MHC-I.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Center for Precision Cancer MedicineCambridgeUnited States
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
| |
Collapse
|
7
|
Blander JM. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol 2023; 66:101713. [PMID: 36706521 PMCID: PMC10023361 DOI: 10.1016/j.smim.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.
Collapse
Affiliation(s)
- J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, USA; Joan and Sanford I. Weill Department of Medicine, USA; Department of Microbiology and Immunology, USA; Sandra and Edward Meyer Cancer Center, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
8
|
Müller L, Burton AK, Tayler CL, Rowedder JE, Hutchinson JP, Peace S, Quayle JM, Leveridge MV, Annan RS, Trost M, Peltier-Heap RE, Dueñas ME. A high-throughput MALDI-TOF MS biochemical screen for small molecule inhibitors of the antigen aminopeptidase ERAP1. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:3-11. [PMID: 36414185 DOI: 10.1016/j.slasd.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
MALDI-TOF MS is a powerful analytical technique that provides a fast and label-free readout for in vitro assays in the high-throughput screening (HTS) environment. Here, we describe the development of a novel, HTS compatible, MALDI-TOF MS-based drug discovery assay for the endoplasmic reticulum aminopeptidase 1 (ERAP1), an important target in immuno-oncology and auto-immune diseases. A MALDI-TOF MS assay was developed beginning with an already established ERAP1 RapidFire MS (RF MS) assay, where the peptide YTAFTIPSI is trimmed into the product TAFTIPSI. We noted low ionisation efficiency of these peptides in MALDI-TOF MS and hence incorporated arginine residues into the peptide sequences to improve ionisation. The optimal assay conditions were established with these new basic assay peptides on the MALDI-TOF MS platform and validated with known ERAP1 inhibitors. Assay stability, reproducibility and robustness was demonstrated on the MALDI-TOF MS platform. From a set of 699 confirmed ERAP1 binders, identified in a prior affinity selection mass spectrometry (ASMS) screen, active compounds were determined at single concentration and in a dose-response format with the new MALDI-TOF MS setup. Furthermore, to allow for platform performance comparison, the same compound set was tested on the established RF MS setup, as the new basic peptides showed fragmentation in ESI-MS. The two platforms showed a comparable performance, but the MALDI-TOF MS platform had several advantages, such as shorter sample cycle times, reduced reagent consumption, and a lower tight-binding limit.
Collapse
Affiliation(s)
- Leonie Müller
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Amy K Burton
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Chloe L Tayler
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - James E Rowedder
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Jonathan P Hutchinson
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Simon Peace
- GSK, Medicinal Chemistry, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Julie M Quayle
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Melanie V Leveridge
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Roland S Annan
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Matthias Trost
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| | | | - Maria Emilia Dueñas
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
9
|
Farriol-Duran R, Vallejo-Vallés M, Amengual-Rigo P, Floor M, Guallar V. NetCleave: An Open-Source Algorithm for Predicting C-Terminal Antigen Processing for MHC-I and MHC-II. Methods Mol Biol 2023; 2673:211-226. [PMID: 37258917 DOI: 10.1007/978-1-0716-3239-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
T cell epitopes presented on the surface of mammalian cells are subjected to a complex network of antigen processing and presentation. Among them, C-terminal antigen processing constitutes one of the main bottlenecks for the generation of epitopes, as it defines the C-terminal end of the final epitope and delimits the peptidome that will be presented downstream. Previously (Amengual-Rigo and Guallar, Sci Rep 111(11):1-8, 2021), we demonstrated that NetCleave stands out as one of the best algorithms for the prediction of C-terminal processing, which in its turn can be crucial to design peptide-based vaccination strategies. In this chapter, we provide a pipeline to exploit the full capabilities of NetCleave, an open-source and retrainable algorithm for predicting the C-terminal antigen processing for the MHC-I and MHC-II pathways.
Collapse
Affiliation(s)
| | | | | | - Martin Floor
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Víctor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Lopes-Ribeiro Á, Araujo FP, Oliveira PDM, Teixeira LDA, Ferreira GM, Lourenço AA, Dias LCC, Teixeira CW, Retes HM, Lopes ÉN, Versiani AF, Barbosa-Stancioli EF, da Fonseca FG, Martins-Filho OA, Tsuji M, Peruhype-Magalhães V, Coelho-dos-Reis JGA. In silico and in vitro arboviral MHC class I-restricted-epitope signatures reveal immunodominance and poor overlapping patterns. Front Immunol 2022; 13:1035515. [PMID: 36466864 PMCID: PMC9713826 DOI: 10.3389/fimmu.2022.1035515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The present work sought to identify MHC-I-restricted peptide signatures for arbovirus using in silico and in vitro peptide microarray tools. METHODS First, an in-silico analysis of immunogenic epitopes restricted to four of the most prevalent human MHC class-I was performed by identification of MHC affinity score. For that, more than 10,000 peptide sequences from 5 Arbovirus and 8 different viral serotypes, namely Zika (ZIKV), Dengue (DENV serotypes 1-4), Chikungunya (CHIKV), Mayaro (MAYV) and Oropouche (OROV) viruses, in addition to YFV were analyzed. Haplotype HLA-A*02.01 was the dominant human MHC for all arboviruses. Over one thousand HLA-A2 immunogenic peptides were employed to build a comprehensive identity matrix. Intending to assess HLAA*02:01 reactivity of peptides in vitro, a peptide microarray was designed and generated using a dimeric protein containing HLA-A*02:01. RESULTS The comprehensive identity matrix allowed the identification of only three overlapping peptides between two or more flavivirus sequences, suggesting poor overlapping of virus-specific immunogenic peptides amongst arborviruses. Global analysis of the fluorescence intensity for peptide-HLA-A*02:01 binding indicated a dose-dependent effect in the array. Considering all assessed arboviruses, the number of DENV-derived peptides with HLA-A*02:01 reactivity was the highest. Furthermore, a lower number of YFV-17DD overlapping peptides presented reactivity when compared to non-overlapping peptides. In addition, the assessment of HLA-A*02:01-reactive peptides across virus polyproteins highlighted non-structural proteins as "hot-spots". Data analysis supported these findings showing the presence of major hydrophobic sites in the final segment of non-structural protein 1 throughout 2a (Ns2a) and in nonstructural proteins 2b (Ns2b), 4a (Ns4a) and 4b (Ns4b). DISCUSSION To our knowledge, these results provide the most comprehensive and detailed snapshot of the immunodominant peptide signature for arbovirus with MHC-class I restriction, which may bring insight into the design of future virus-specific vaccines to arboviruses and for vaccination protocols in highly endemic areas.
Collapse
Affiliation(s)
- Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franklin Pereira Araujo
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena de Almeida Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovane Marques Ferreira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Aparecida Lourenço
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura Cardoso Corrêa Dias
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio Wilker Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Morais Retes
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Élisson Nogueira Lopes
- Laboratorio de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Genética, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Freitas Versiani
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Pathology da University of Texas Medical Branch, Galveston, TX, United States
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Irving Medical School, Columbia University, New York City, NY, United States
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, Wiertz EJ, Santegoets SJ, Hardwick JC, Van Hall T, Neefjes J, Van der Burg SH, Hawinkels LJ, Verdegaal EM. Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer 2022; 10:jitc-2021-003591. [PMID: 35264435 PMCID: PMC8915372 DOI: 10.1136/jitc-2021-003591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
Background Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. Methods In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. Results Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. Conclusion These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.
Collapse
Affiliation(s)
- Tom J Harryvan
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Léonie Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marlieke Lm Jongsma
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - James Ch Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald Van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell & Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas Jac Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els Me Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Kubiniok P, Marcu A, Bichmann L, Kuchenbecker L, Schuster H, Hamelin DJ, Duquette JD, Kovalchik KA, Wessling L, Kohlbacher O, Rammensee HG, Neidert MC, Sirois I, Caron E. Understanding the constitutive presentation of MHC class I immunopeptidomes in primary tissues. iScience 2022; 25:103768. [PMID: 35141507 PMCID: PMC8810409 DOI: 10.1016/j.isci.2022.103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular principles that govern the composition of the MHC-I immunopeptidome across different primary tissues is fundamentally important to predict how T cells respond in different contexts in vivo. Here, we performed a global analysis of the MHC-I immunopeptidome from 29 to 19 primary human and mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and HLA-C allotypes do not contribute evenly to the global composition of the MHC-I immunopeptidome across multiple human tissues. Second, we found that tissue-specific and housekeeping MHC-I peptides share very distinct properties. Third, we discovered that proteins that are evolutionarily hyperconserved represent the primary source of the MHC-I immunopeptidome at the organism-wide scale. Fourth, we uncovered new components of the antigen processing and presentation network, including the carboxypeptidases CPE, CNDP1/2, and CPVL. Together, this study opens up new avenues toward a system-wide understanding of antigen presentation in vivo across mammalian species. Tissue-specific and housekeeping MHC class I peptides share distinct properties HLA-A, HLA-B, and HLA-C allotypes contribute very unevenly to the pool of class I peptides MHC-I immunopeptidomes are represented by evolutionarily conserved proteins An extended antigen processing and presentation pathway is uncovered
Collapse
Affiliation(s)
- Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Ana Marcu
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Leon Kuchenbecker
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, 72076 Tübingen, Baden-Württemberg, Germany
| | - David J. Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | | | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC 2064), University of Tübingen, 72074 Tübingen, Baden-Württemberg, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
- DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Baden-Württemberg, Germany
| | - Marian C. Neidert
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zürich, 8057&8091 Zürich, Switzerland
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada
- Corresponding author
| |
Collapse
|
14
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
15
|
Pasharawipas T. Different Aspects Concerning Viral Infection and the Role of MHC Molecules in Viral Prevention. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Major Histocompatibility Complex (MHC) molecules play a crucial role in inducing an adaptive immune response. T-cell epitopes require compatible MHC molecules to form MHC-peptide Complexes (pMHC) that activate the T-cell Receptors (TCR) of T-lymphocyte clones. MHCs are polymorphic molecules with wide varieties of gene alleles. There are two classes of MHC molecules, class I and II. Both classes have three classical loci HLA-A, -B, and –C are present in class I and HLA-DP, -DQ, and -DR in class II. To induce a compatible T-lymphocyte clone, the T-cell epitope requires the association of the compatible MHC molecule to form pMHC. Each MHC variant possesses a different groove that is capable of binding a different range of antigenic epitopes. Without the compatible MHC molecule, a T cell clone cannot be activated by a particular viral epitope. With the aim of preventing viral transmission, the efficiency of a viral vaccine is related to the existence of specific MHC alleles in the individual. This article proposes the roles of the MHC molecule to prevent viral infection. In addition, the association of the viral receptor molecule with the viral infection will also be discussed.
Collapse
|
16
|
A chimeric HLA-A2:β2M:Ig fusion protein for the study of virus-specific CD8 + T-cells. J Immunol Methods 2021; 492:112997. [PMID: 33600818 DOI: 10.1016/j.jim.2021.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The response mediated by CD8+ T-cells in the context of infection and vaccination has been thoroughly investigated and represents one of the most important branches that allow for the development of immunity against intracellular pathogens and, thus, the establishment of robust antiviral responses. However, there is a lack of methods to assess antigen-specific CD8+ T-cells. OBJECTIVE Search for the ideal assays to assess the function of antigen-specific CD8+ T-cells. METHODS In the present study a chimeric HLA-A2:β2M:Ig fusion protein was produced, purified, and evaluated in functional CD8+ T-cell response studies using samples from Influenza A patients and humanized mice upon adenoviral vaccination. RESULTS The HLA-A2:β2M:Ig molecule, bound to immunodominant viral peptides by passive transfer, was able to induce robust antiviral CD8+ T-cell responses mediated by IFN-γ. The in vitro IFN-γ release assay using the chimeric HLA-A2:β2M:Ig fusion protein detected bona fide human CD8+ T-cells, demonstrating superior production of IFN-γ by human CD8+ T-cells induced by Influenza A immunodominant GILGFVFTL peptide. Removal of antigen-presenting cells and CD8+ T-cell enrichment improved significantly the IFN-γ production. The chimeric HLA-A2:β2M:Ig fusion protein also triggered HLA-A2-restricted CD8+ T-cell response in a humanized mouse model upon vaccination with adenovirus encoding HLA-A2-restricted HIV p24 antigen. The results strongly suggest the use of tailor-made assays for detecting HLA-A2-restricted CD8+ T-cell Responses in the Humanized Mouse Model. CONCLUSION The chimeric HLA-A2:β2M:Ig fusion protein-based assays provided a sensitive tool that may be paramount to measure virus-specific CD8+ T-cell response in a range of viral infections of clinical relevance.
Collapse
|
17
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Gao Y, Yuan X, Zhu Z, Wang D, Liu Q, Gu W. Research and prospect of peptides for use in obesity treatment (Review). Exp Ther Med 2020; 20:234. [PMID: 33149788 DOI: 10.3892/etm.2020.9364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes, hypertension and cardiovascular disease, are steadily increasing worldwide. Over the past few decades, numerous studies have focused on the differentiation and function of brown and beige fat, providing evidence for their therapeutic potential in treating obesity. However, no specific novel drug has been developed to treat obesity in this way. Peptides are a class of chemically active substances, which are linked together by amino acids using peptide bonds. They have specific physiological activities, including browning of white fat. As signal molecules regulated by the neuroendocrine system, the role of polypeptides, such as neuropeptide Y, brain-gut peptide and glucagon-like peptide in obesity and its related complications has been revealed. Notably, with the rapid development of peptidomics, peptide drugs have been widely used in the prevention and treatment of metabolic diseases, due to their short half-life, small apparent distribution volume, low toxicity and low side effects. The present review summarizes the progress and the new trend of peptide research, which may provide novel targets for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
19
|
Marino F, Semilietof A, Michaux J, Pak HS, Coukos G, Müller M, Bassani-Sternberg M. Biogenesis of HLA Ligand Presentation in Immune Cells Upon Activation Reveals Changes in Peptide Length Preference. Front Immunol 2020; 11:1981. [PMID: 32983136 PMCID: PMC7485268 DOI: 10.3389/fimmu.2020.01981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
Induction of an effective tumor immunity is a complex process that includes the appropriate presentation of the tumor antigens, activation of specific T cells, and the elimination of malignant cells. Potent and efficient T cell activation is dependent on multiple factors, such as timely expression of co-stimulatory molecules, the differentiation state of professional antigen presenting cells (e.g., dendritic cells; DCs), the functionality of the antigen processing and presentation machinery (APPM), and the repertoire of HLA class I and II-bound peptides (termed immunopeptidome) presented to T cells. So far, how molecular perturbations underlying DCs maturation and differentiation affect the in vivo cross-presented HLA class I and II immunopeptidomes is largely unknown. Yet, this knowledge is crucial for further development of DC-based immunotherapy approaches. We applied a state-of-the-art sensitive MS-based immunopeptidomics approach to characterize the naturally presented HLA-I and -II immunopeptidomes eluted from autologous immune cells having distinct functional and biological states including CD14+ monocytes, immature DC (ImmDC) and mature DC (MaDC) monocyte-derived DCs and naive or activated T and B cells. We revealed a presentation of significantly longer HLA peptides upon activation that is HLA allotype specific. This was apparent in the self-peptidome upon cell activation and in the context of presentation of exogenously loaded antigens, suggesting that peptide length is an important feature with potential implications on the rational design of anti-cancer vaccines.
Collapse
Affiliation(s)
- Fabio Marino
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Justine Michaux
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Hui-Song Pak
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - George Coukos
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Markus Müller
- Vital IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
20
|
Hartigan A, Kosakyan A, Pecková H, Eszterbauer E, Holzer AS. Transcriptome of Sphaerospora molnari (Cnidaria, Myxosporea) blood stages provides proteolytic arsenal as potential therapeutic targets against sphaerosporosis in common carp. BMC Genomics 2020; 21:404. [PMID: 32546190 PMCID: PMC7296530 DOI: 10.1186/s12864-020-6705-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/27/2020] [Indexed: 01/24/2023] Open
Abstract
Background Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. Results An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25–30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. Conclusions In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari’s protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.
Collapse
Affiliation(s)
- Ashlie Hartigan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia.
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Hana Pecková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| | - Edit Eszterbauer
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czechia
| |
Collapse
|
21
|
Marijt KA, van Hall T. To TAP or not to TAP: alternative peptides for immunotherapy of cancer. Curr Opin Immunol 2020; 64:15-19. [PMID: 31952027 DOI: 10.1016/j.coi.2019.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
Intracellular processing of antigens is crucial for the generation of T cell immunity towards cancers, since cleaved protein products are the molecular targets of these adaptive lymphocytes. The majority of antigenic peptides requires the TAP transporter to gain access to the peptide loading complex in the ER lumen where they bind MHC class I (MHC-I). This pivotal role of TAP in antigen processing makes the system vulnerable for modifications in cancer cells and indeed human cancers frequently silence this gene epigenetically. Interestingly, TAP-independent processing pathways then become apparent and partly restore MHC class I presentation with alternative peptides. In this review we discuss recent insights on how TAP-independent processing of immunogenic peptides occurs, and how these antigens can be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Koen A Marijt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
22
|
Filippou PS, Ren AH, Soosaipillai A, Safar R, Prassas I, Diamandis EP, Conner JR. Kallikrein-related peptidases protein expression in lymphoid tissues suggests potential implications in immune response. Clin Biochem 2020; 77:41-47. [PMID: 31904348 DOI: 10.1016/j.clinbiochem.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Kallikrein-related peptidases (KLKs) are a subgroup of 15 secreted chymotrypsin- and trypsin-like serine proteases that have been reported to possess novel functions in innate immunity and inflammation. Since the potential role of KLKs in immunity has not been studied in detail at the protein level, we examined the expression pattern of 12 members of the KLK family in immune-related tissues. DESIGN & METHODS Protein expression in tissue extracts was evaluated using immunoassays (ELISA). Immunohistochemistry (IHC) was performed on representative sections of tonsil and lymph nodes to determine the cellular localization of the KLK family members. RESULTS ELISA profiling of KLK3-KLK15 (except KLK12) revealed higher protein levels in the tonsil, compared to the lymph nodes and spleen. Relatively high protein levels in the tonsil were observed for KLK7, KLK9, KLK10 and KLK13. Expression of these KLKs was significantly lower in lymph nodes and spleen. IHC analysis in tonsil unveiled that KLK9 and KLK10 were differentially expressed in lymphoid cells. KLK9 was strongly expressed in the germinal center of lymphoid follicles where activated B-cells reside, whereas KLK10 was expressed in the follicular dendritic cells (FDCs) that are vital for maintaining the cycle of B cell maturation. CONCLUSION Overall, our study revealed the possible implications of KLK expression and regulation in the immune cells of lymphoid tissues.
Collapse
Affiliation(s)
- Panagiota S Filippou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Annie H Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | - Roaa Safar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - James R Conner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
23
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
24
|
Abstract
Given the many cell types and molecular components of the human immune system, along with vast variations across individuals, how should we go about developing causal and predictive explanations of immunity? A central strategy in human studies is to leverage natural variation to find relationships among variables, including DNA variants, epigenetic states, immune phenotypes, clinical descriptors, and others. Here, we focus on how natural variation is used to find patterns, infer principles, and develop predictive models for two areas: (a) immune cell activation-how single-cell profiling boosts our ability to discover immune cell types and states-and (b) antigen presentation and recognition-how models can be generated to predict presentation of antigens on MHC molecules and their detection by T cell receptors. These are two examples of a shift in how we find the drivers and targets of immunity, especially in the human system in the context of health and disease.
Collapse
Affiliation(s)
- Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Siranush Sarkizova
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA; .,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02142, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA; .,Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
25
|
Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 2019; 177:73-93. [DOI: 10.1016/j.pneurobio.2018.09.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
26
|
Mitochondrial-Derived Vesicles as Candidate Biomarkers in Parkinson's Disease: Rationale, Design and Methods of the EXosomes in PArkiNson Disease (EXPAND) Study. Int J Mol Sci 2019; 20:ijms20102373. [PMID: 31091653 PMCID: PMC6566801 DOI: 10.3390/ijms20102373] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
The progressive loss of dopaminergic neurons in the nigro-striatal system is a major trait of Parkinson’s disease (PD), manifesting clinically as motor and non-motor symptoms. Mitochondrial dysfunction and oxidative stress are alleged pathogenic mechanisms underlying aggregation of misfolded α-synuclein that in turn triggers dopaminergic neurotoxicity. Peripheral processes, including inflammation, may precede and contribute to neurodegeneration. Whether mitochondrial dyshomeostasis in the central nervous system and systemic inflammation are linked to one another in PD is presently unclear. Extracellular vesicles (EVs) are delivery systems through which cells can communicate or unload noxious materials. EV trafficking also participates in mitochondrial quality control (MQC) by generating mitochondrial-derived vesicles to dispose damaged organelles. Disruption of MQC coupled with abnormal EV secretion may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNA can elicit an inflammatory response. Therefore, purification and characterisation of molecules packaged in, and secreted through, small EVs (sEVs)/exosomes in body fluids may provide meaningful insights into the association between mitochondrial dysfunction and systemic inflammation in PD. The EXosomes in PArkiNson Disease (EXPAND) study was designed to characterise the cargo of sEVs/exosomes isolated from the serum of PD patients and to identify candidate biomarkers for PD.
Collapse
|
27
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Witkowski JM, Mikosik A, Bryl E, Fulop T. Proteodynamics in aging human T cells - The need for its comprehensive study to understand the fine regulation of T lymphocyte functions. Exp Gerontol 2017; 107:161-168. [PMID: 29038026 DOI: 10.1016/j.exger.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Cellular life depends mostly on the creation, modification, interactions and destruction of proteins. This is true for every cell, including human T lymphocytes. One way these cells can ascertain the fidelity and at least partial functionality of their proteomes under constant attack of irreversible modulations (e.g., ROS- or glycation-dependent) is proteostasis. However, with cellular aging proteostasis progressively fails and proteostenosis (decreased amounts and functionalities of remaining proteins) occurs. There are several mechanisms involved in the modulation and protection of the proteome in the T cells which include mainly multiple layers of vesicle-bound and cytoplasmic proteases (e.g., lysosomal and proteasomal ones) acting mostly by degradation of obsolete and age-modified proteins. Recently it was shown that another not yet so widely known system consisting of obligatorily calcium-dependent cysteine proteases, the calpains and their inhibitor, the calpastatin serves in T cells as a dual switch, either activating or inactivating different proteins depending on intracellular conditions. Thus the proteolytic elimination of altered proteins as well as modulation of activity of those remaining leads to dynamic change of proteome composition and function (proteodynamics) in aging lymphocytes, so far in an almost unknown way. Aging T cell proteodynamics requires further comprehensive analysis of the resulting lysoproteomic patterns and their changes.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Poland.
| | - Anna Mikosik
- Department of Pathophysiology, Medical University of Gdańsk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Poland
| | - Tamas Fulop
- Centre for Aging Research, University of Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Dong S, Wang P, Zhao P, Chen M. Direct Loading of iTEP-Delivered CTL Epitope onto MHC Class I Complexes on the Dendritic Cell Surface. Mol Pharm 2017; 14:3312-3321. [PMID: 28789525 PMCID: PMC5630454 DOI: 10.1021/acs.molpharmaceut.7b00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytotoxic T lymphocyte (CTL)-mediated immune responses are the primary defense mechanism against cancer and infection. CTL epitope peptides have been used as vaccines to boost CTL responses; however, the efficacy of these peptides is suboptimal. Under current vaccine formulation and delivery strategies, these vaccines are delivered into and processed inside antigen-presenting cells such as dendritic cells (DCs). However, the intracellular process is not efficient, which at least partially contributes to the suboptimal efficacy of the vaccines. Thus, we hypothesized that directly loading epitopes onto MHC class I complexes (MHC-Is) on the DC surface would significantly improve the efficacy of the epitopes because the direct loading bypasses inefficient intra-DC vaccine processing. To test the hypothesis, we designed an immune-tolerant elastin-like polypeptide (iTEP)-delivered CTL vaccine containing a metalloproteinase-9 (MMP-9)-sensitive peptide and an CTL epitope peptide. We found that the epitope was released from this MMP-sensitive vaccine through cleavage by DC-secreted MMP-9 outside of the DCs. The released epitopes were directly loaded onto MHC-Is on the DC surface. Ultimately, the MMP-sensitive vaccine strikingly increased epitope presentation by DCs by 7-fold and enhanced the epitope-specific CD8+ T-cell response by as high as 9.6-fold compared to the vaccine that was uncleavable by MMP. In summary, this novel direct-loading strategy drastically boosted vaccine efficacy. This study offered a new avenue to enhance CTL vaccines.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Membrane/immunology
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Drug Delivery Systems
- Elastin/chemistry
- Elastin/genetics
- Elastin/immunology
- Enzyme Assays
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Humans
- Hybridomas
- Matrix Metalloproteinase 9/metabolism
- Mice
- Peptides/chemistry
- Peptides/immunology
- RAW 264.7 Cells
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, U.S.A
| |
Collapse
|
30
|
Lorente E, Barriga A, García-Arriaza J, Lemonnier FA, Esteban M, López D. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Negl Trop Dis 2017; 11:e0006036. [PMID: 29084215 PMCID: PMC5679651 DOI: 10.1371/journal.pntd.0006036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. METHODOLOGY/PRINCIPAL FINDINGS By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. CONCLUSIONS/SIGNIFICANCE Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alejandro Barriga
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - François A. Lemonnier
- Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, France
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Daniel López
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Abstract
Autophagy and the ubiquitin-proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, 60598 Frankfurt am Main, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
32
|
Grotzke JE, Sengupta D, Lu Q, Cresswell P. The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin Immunol 2017; 46:89-96. [PMID: 28528219 PMCID: PMC5554740 DOI: 10.1016/j.coi.2017.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022]
Abstract
Cross-presentation is an MHC-I antigen processing pathway that results in the presentation of peptides from exogenous viral, bacterial, parasitic, and tumor antigens and ultimately leads to priming of naïve CD8+ T cells. This process involves several cellular compartments and multiple components. Successful generation of MHC-I-peptide complexes requires that these components act together in a coordinated fashion. We discuss recent findings on the source of MHC-I, the role of the TAP transporter, the importance of intracellular trafficking events, mechanisms of antigen access the cytosol, and how innate immune signals can affect presentation, with an emphasis on how these pathways compare to conventional antigen presentation and how they correlate with existing data.
Collapse
Affiliation(s)
- Jeff E Grotzke
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, United States; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8011, United States.
| |
Collapse
|
33
|
Wei J, Zanker D, Di Carluccio AR, Smelkinson MG, Takeda K, Seedhom MO, Dersh D, Gibbs JS, Yang N, Jadhav A, Chen W, Yewdell JW. Varied Role of Ubiquitylation in Generating MHC Class I Peptide Ligands. THE JOURNAL OF IMMUNOLOGY 2017; 198:3835-3845. [PMID: 28363906 DOI: 10.4049/jimmunol.1602122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
CD8+ T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins. We show that MLN7243 rapidly inhibits ubiquitylation in a variety of cell lines and can profoundly reduce the generation of cytosolic peptides. Kinetic analysis of specific peptide generation reveals that ubiquitylation of defective ribosomal products is rate limiting in generating class I peptide complexes. More generally, our findings demonstrate that the requirement for ubiquitylation in MHC class I-restricted Ag processing varies with class I allomorph, cell type, source protein, and peptide context. Thus, ubiquitin-dependent and -independent pathways robustly contribute to MHC class I-based immunosurveillance.
Collapse
Affiliation(s)
- Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Anthony R Di Carluccio
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993; and
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ajit Jadhav
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
34
|
Gan J, Zhang H, Humphreys WG. Drug–Protein Adducts: Chemistry, Mechanisms of Toxicity, and Methods of Characterization. Chem Res Toxicol 2016; 29:2040-2057. [DOI: 10.1021/acs.chemrestox.6b00274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinping Gan
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - Haiying Zhang
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - W. Griffith Humphreys
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| |
Collapse
|
35
|
|
36
|
Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem 2015; 290:26021-32. [PMID: 26381406 DOI: 10.1074/jbc.m115.685909] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.
Collapse
Affiliation(s)
- Anastasia Mpakali
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Petros Giastas
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Nikolas Mathioudakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Irene M Mavridis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Emmanuel Saridakis
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| | - Efstratios Stratikos
- From the National Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15310, Greece
| |
Collapse
|