1
|
Wight J, Rahman I, Wallace HL, Cunningham JT, Roul S, Robertson GJ, Russell RS, Xu W, Zhmendak D, Alkie TN, Berhane Y, Hargan KE, Lang AS. Avian influenza virus circulation and immunity in a wild urban duck population prior to and during a highly pathogenic H5N1 outbreak. Vet Res 2024; 55:154. [PMID: 39578905 PMCID: PMC11585116 DOI: 10.1186/s13567-024-01397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 11/24/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses were first detected in St. John's, Canada in late 2021. To investigate the patterns of avian influenza virus (AIV) infection and immune responses subsequent to the arrival of H5N1, we sampled the wild urban duck population in this area for a period of 16 months after the start of the outbreak and compared these findings to those from archived samples. Antibody seroprevalence was relatively stable before the outbreak (2011-2014) at 27.6% and 3.9% for anti-AIV (i.e., NP) and H5-specific antibodies, respectively. During the winter of 2022, AIV-NP and H5-specific antibody seroprevalence both reached 100%, signifying a population-wide infection event, which was observed again in late February 2023 following a second H5N1 incursion from Eurasia. As expected, population-level immunity waned over time, with ducks seropositive for anti-AIV-NP antibodies for approximately twice as long as for H5-specific antibodies, with the population seronegative to the latter after approximately six months. We observed a clear relationship of increasing antibody levels with decreasing viral RNA loads that allowed for interpretation of the course of infection and immune response in infected individuals and applied these findings to two cases of resampled ducks to infer infection history. Our study highlights the value of applying both AIV surveillance and seroprevalence monitoring to provide a better understanding of AIV dynamics in wild populations, which may be crucial following the global dissemination of clade 2.3.4.4b H5Nx subtypes to assess the threats they pose to both wild and domestic animals, and to humans.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ishraq Rahman
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hannah L Wallace
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joshua T Cunningham
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Sheena Roul
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Rodney S Russell
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Dmytro Zhmendak
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Kathryn E Hargan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
2
|
Hossain I, Shila RA, Uddin MM, Chowdhury EH, Parvin R, Begum JA. Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. BMC Vet Res 2024; 20:500. [PMID: 39482682 PMCID: PMC11529290 DOI: 10.1186/s12917-024-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. METHODS Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. RESULTS Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. CONCLUSION This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rupaida Akter Shila
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mohi Uddin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
3
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Jax E, Franchini P, Sekar V, Ottenburghs J, Monné Parera D, Kellenberger RT, Magor KE, Müller I, Wikelski M, Kraus RHS. Comparative genomics of the waterfowl innate immune system. Mol Biol Evol 2022; 39:6649919. [PMID: 35880574 PMCID: PMC9356732 DOI: 10.1093/molbev/msac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Vaishnovi Sekar
- Department of Biology, Lund University, Lund, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Inge Müller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Should I stay, should I go, or something in between? The potential for parasite-mediated and age-related differential migration strategies. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSeasonal long-distance migratory behaviour of trillions of animals may in part have evolved to reduce parasite infection risk, and the fitness costs that may come with these infections. This may apply to a diversity of vertebrate migration strategies that can sometimes be observed within species and may often be age-dependent. Herein we review some common age-related variations in migration strategy, discussing why in some animal species juveniles preferentially forego or otherwise rearrange their migrations as compared to adults, potentially as an either immediate (proximate) or anticipatory (ultimate) response to infection risk and disease. We notably focus on the phenomenon of “oversummering”, where juveniles abstain from migration to the breeding grounds. This strategy is particularly prevalent amongst migratory shorebirds and has thus far received little attention as a strategy to reduce parasite infection rate, while comparative intra-specific research approaches have strong potential to elucidate the drivers of differential behavioural strategies.
Collapse
|
6
|
Zhai B, Liu L, Li X, Lv X, Wu J, Li J, Lin S, Yin Y, Lan J, Du J, Wu C, Wen Y, Wang Y, Wang Y, Hou Z, Li Y, Chai H, Zeng X. The Variation of Duck RIG-I-Mediated Innate Immune Response Induced by Different Virulence Avian Influenza Viruses. Front Microbiol 2022; 13:842721. [PMID: 35300481 PMCID: PMC8921926 DOI: 10.3389/fmicb.2022.842721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
In recent years, the emerging highly pathogenic avian influenza (HPAI) A(H5N8) virus has been reported with features of widely spread, an expanding host range, and cross-species transmission, attracting wide attention. The domestic duck plays a major role in the epidemiological cycle of the HPAI H5N8 virus, but little is known concerning innate immune responses during influenza infection in duck species. In this study, we used two wild-bird-origin viruses, H5N8 and H4N6, to conduct duck infection experiments, and detect the load of the two viruses, and retinoic acid-inducible gene I (RIG-I) and interferon β (IFN-β) in the host's natural immune response. Through comparison, it is found that the expression levels of RIG-I and IFN-β are both fluctuating. The innate immunity starts rapidly within 6 h after infection and is inhibited by the virus to varying degrees. The expression of RIG-I and IFN-β decreased on 1-2 days post-infection (dpi). The HPAI H5N8 virus has a stronger inhibitory effect on RIG-I than the low pathogenic avian influenza (LPAI) H4N6 virus and is the strongest in the lungs. After infection with HPAI H5N8 virus, 2 dpi, viral RNA replicates in large amounts in the lungs. It has been proven that RIG-I and IFN-β play an important role in the innate immune response of ducks to HPAI H5N8 virus infection, especially in the lungs. The main battlefield of RIG-I and IFN-β after infection with the LPAI H4N6 virus is in the rectum. Both viruses have been effectively controlled after 7 dpi. These results will help to understand the transmission mechanisms of avian influenza virus in wild ducks and help effectively prevent and control avian influenza.
Collapse
Affiliation(s)
- Boyu Zhai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lanlan Liu
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiang Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xinru Lv
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinyan Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jing Li
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shengze Lin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuxiang Yin
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jiaqi Lan
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianan Du
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Chenwei Wu
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yi Wen
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yajun Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yulong Wang
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhijun Hou
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanbing Li
- Chinese Academy of Agricultural Sciences Harbin Veterinary Research Institute, Harbin, China
| | - Hongliang Chai
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiangwei Zeng
- State Forestry Administration Key Laboratory of Wildlife Conservation, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Atraumatic Splenic Rupture Associated with Influenza A (H1N1) Pneumonia: Case Report and Review of the Literature. Case Rep Med 2021; 2021:6516064. [PMID: 34394356 PMCID: PMC8357518 DOI: 10.1155/2021/6516064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus infection may present with fever, chills, headache, myalgia, malaise, and respiratory symptoms, with a few cases developing into pneumonia, respiratory failure, and other organ damage. Very few cases of atraumatic splenic rupture associated with influenza infection have been reported. Atraumatic splenic rupture, while rare, is associated with high mortality. Here, we report the first case of atraumatic splenic rupture associated with influenza infection in the English literature and review the prior reported literature. The patient was diagnosed with influenza A (H1N1) pneumonia and subsequently developed hemorrhagic shock requiring emergency laparotomy and removal of the ruptured spleen.
Collapse
|
9
|
van Dijk JGB, Verhagen JH, Hegemann A, Tolf C, Olofsson J, Järhult JD, Waldenström J. A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards. Front Microbiol 2020; 11:608274. [PMID: 33329501 PMCID: PMC7733965 DOI: 10.3389/fmicb.2020.608274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naïve mallards.
Collapse
Affiliation(s)
- Jacintha G B van Dijk
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Conny Tolf
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jenny Olofsson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
10
|
Guito JC, Prescott JB, Arnold CE, Amman BR, Schuh AJ, Spengler JR, Sealy TK, Harmon JR, Coleman-McCray JD, Kulcsar KA, Nagle ER, Kumar R, Palacios GF, Sanchez-Lockhart M, Towner JS. Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Curr Biol 2020; 31:257-270.e5. [PMID: 33157026 DOI: 10.1016/j.cub.2020.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation ("cytokine storm"), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.
Collapse
Affiliation(s)
- Jonathan C Guito
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Catherine E Arnold
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Brian R Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Amy J Schuh
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Tara K Sealy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kirsten A Kulcsar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elyse R Nagle
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA
| | - Raina Kumar
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA
| | | | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Fleming-Canepa X, Aldridge JR, Canniff L, Kobewka M, Jax E, Webster RG, Magor KE. Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Vet Microbiol 2018; 228:101-111. [PMID: 30593354 DOI: 10.1016/j.vetmic.2018.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
Abstract
Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI). Using qPCR we examined the relative abundance of transcripts for RIG-I and interferon-beta (IFNβ), and downstream interferon stimulated genes (ISGs). The polymerase PA (T515A) mutation did not significantly affect replication in vivo but greatly attenuated host interferon responses. ISG induction was robust for both H5N1 strains, but was three times lower for the PA mutant strain. Low pathogenic viruses elicited detectable induction of RIG-I, IFNβ and ISGs in lung and intestine tissues that correlated with the recovery of viruses from tracheal or cloacal swabs. Several genes in the MAVS signaling pathway were also upregulated by H5N1, which contributed to further amplification of the signal. We also examined hematoxylin-eosin stained tissue sections and observe evidence of lung pathology and splenocyte depletion with both H5N1 viruses at 3 dpi, and recovery by 6 dpi. However, for both H5N1 strains we observed inflammation around neurons in brain, with increased cytokine expression in some individuals. Our findings reveal HPAI H5N1 viruses induced stronger innate immune responses to the infection, while LPAI viruses elicit a milder response.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jerry R Aldridge
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lauren Canniff
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Michelle Kobewka
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Elinor Jax
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, 78315, Germany
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katharine E Magor
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
13
|
Expression of immune genes RIG-I and Mx in mallard ducks infected with low pathogenic avian influenza (LPAI): A dataset. Data Brief 2018; 18:1562-1566. [PMID: 29904657 PMCID: PMC5998173 DOI: 10.1016/j.dib.2018.04.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
This article provides data on primer sequences used to amplify the innate immune genes RIG-I and Mx and a set of normalizing reference genes in mallards (Anas platyrhynchos), and shows which reference genes are stable, per tissue, for our experimental settings. Data on the expressional changes of these two genes over a time-course of infection with low pathogenic avian influenza virus (LPAI) are provided. Individual-level data are also presented, including LPAI infection load, and per tissue gene expression of RIG-I and Mx. Gene expression in two outlier individuals is explored in more depth.
Collapse
|