1
|
Zhang B, Li S, Ding J, Guo J, Ma Z, Duan H. Rho-GTPases subfamily: cellular defectors orchestrating viral infection. Cell Mol Biol Lett 2025; 30:55. [PMID: 40316910 PMCID: PMC12049043 DOI: 10.1186/s11658-025-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
Ras homolog gene family-guanosine triphosphatases (Rho-GTPases), key molecular switches regulating cytoskeletal dynamics and cellular signaling, play a pivotal role in viral infections by modulating critical processes such as viral entry, replication, and release. This review elucidates the intricate mechanisms through which Rho-GTPases, via interactions with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and other signaling pathways, including the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), rat sarcoma (Ras), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, facilitate viral pathogenesis. Specific viruses, such as influenza A virus (IAV), herpesviruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), exploit Rho-GTPase-mediated cytoskeletal reorganization to enhance infectivity. For example, Rho-GTPases promote actin remodeling and membrane fusion, which are essential for viral entry and intracellular transport. Furthermore, Rho-GTPases modulate immune responses, often suppressing antiviral defenses to favor viral replication. Despite these insights, the molecular mechanisms underlying Rho-GTPase regulation during viral infections remain incompletely understood. Future research should focus on delineating the precise roles of Rho-GTPases in distinct viral life cycles, uncovering novel regulatory mechanisms, and developing targeted antiviral therapies that selectively inhibit Rho-GTPase signaling without compromising host cell functions. Such advancements could pave the way for broad-spectrum antiviral strategies, particularly against viruses that heavily rely on cytoskeletal manipulation for infection.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shuli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jingxia Guo
- Disease Prevention and Control Center of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Zhao Y, Zhang Q, Wu B, Zhu Y, Ren H, Diao Y, Tang Y, Hu J. Expression characteristics of miR-222b-5p/MAPK10 in major immune organs of SPF chickens infected with avian reticuloendotheliosis virus strain SNV (REV-SNV). Comp Immunol Microbiol Infect Dis 2025; 116:102290. [PMID: 39675224 DOI: 10.1016/j.cimid.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Reticuloendotheliosis virus (REV) is a retrovirus in poultry that can atrophy immune organs and cause immunosuppression and tumor diseases. Our previous results revealed that, in the spleen of SPF chickens infected with REV-SNV, gga-miR-222b-5p expression was upregulated at 7, 14 and 21 dpi, and MAPK10 expression was downregulated, both of which were negatively correlated, with a targeted relationship between the two at 28, 35 and 42 dpi. To understand and analyze the expression patterns of MAPK10 and gga-miR-222b-5p in infected chickens at different times and in different immune organs, qRT-PCR was used to analyze the spleen, bursa of Fabricius and thymus samples of SPF chickens at 7, 14, 21, 28, 35 and 42 dpi. The results revealed that, in the spleen, MAPK10 gene expression was highly significantly downregulated at 7, 14, 21, 35 and 42 dpi, and gga-miR-222b-5p expression was significantly upregulated at six-time points. In the bursa of Fabricius, MAPK10 expression was significantly downregulated at six-time points, and gga-miR-222b-5p expression was upregulated at 7, 21, 28, 35 and 42 dpi. In the thymus, MAPK10 and gga-miR-222b-5p expression was upregulated at six-time points. A negative regulatory relationship was evident in the spleen and bursa of Fabricius but not in the thymus. This study suggested that gga-miR-222b-5p may induce the downregulation of MAPK10 in the spleen and bursa of Fabricius and promote tumor formation.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yudong Zhu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Hui Ren
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
3
|
Jia F, Wang W, Tian Y, Zahra A, He Y, Ge C, Zhang T, Wang M, Gong J, Zhang G, Yang G, Yang W, Shi C, Wang J, Huang H, Cao X, Zeng Y, Wang N, Wang Z, Wang C, Jiang Y. Delivery of dendritic cells targeting 3M2e-HA2 nanoparticles with a CpG adjuvant via lysosomal escape of Salmonella enhances protection against H9N2 avian influenza virus. Poult Sci 2025; 104:104616. [PMID: 39631272 PMCID: PMC11665339 DOI: 10.1016/j.psj.2024.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Avian influenza virus (AIV) subtype H9N2 still poses a great threat to the poultry farming industry and public health worldwide, and the development of a new influenza vaccine that is safe and conservative and able to address influenza virus mutations is highly promising for application. HA2, the neck of the HA protein, and M2e, the extracellular N-terminal structural domain of the M2 protein, are conserved and effective protective antigens. In this study, the HA2 sequences were fused with three M2e copies (H9N2, H1N1 and H5N1) to the norovirus VP1 protein via the SpyTag-SpyCatcher platform to form self-assembled nanoparticles and display antigenic proteins on its surface, yielding pYL262. The chicken dendritic cells (DCs) targeting the nanobody phage-54 were then fused to HA2-3M2e to yield pYL327. Finally, a synthesized 20-repeat CpG adjuvant gene fragment was inserted into pYL327, resulting in the plasmid pYL331. All the constructed plasmids were then transformed into the sifA gene-deficient Salmonella vector χYL56 for oral immunization. The results showed that sifA-deficient Salmonella could efficiently increase antigen-specific mucosal sIgA antibody titers, especially in alveolar lavage samples, whereas the presence of the phage-54 nanobody could dramatically increase intracellular IFN-γ mRNA levels, indicating its ability to enhance the Th1-type immune response. Finally, the presence of the CpG adjuvant clearly increased T-cell proliferation and promoted DC activation, with elevated splenic TLR21 levels observed. Strikingly, after oral immunization with χYL56 (pYL331), chickens were protected against challenge with the G57 genotype H9N2 virus, which presented similar or even better levels of virus shedding and body weight gain compared with the commercial inactivated vaccine, providing a new option for controlling H9N2 virus infection in the future.
Collapse
Affiliation(s)
- Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ainul Zahra
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyue Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingshuo Gong
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gerui Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Fu L, Wang X, Yang Y, Chen M, Kuerban A, Liu H, Dong Y, Cai Q, Ma M, Wu X. Septin11 promotes hepatocellular carcinoma cell motility by activating RhoA to regulate cytoskeleton and cell adhesion. Cell Death Dis 2023; 14:280. [PMID: 37080972 PMCID: PMC10119145 DOI: 10.1038/s41419-023-05726-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
Septins as GTPases in the cytoskeleton, are linked to a broad spectrum of cellular functions, including cell migration and the progression of hepatocellular carcinoma (HCC). However, roles of SEPT11, the new member of septin, have been hardly understood in HCC. In the study, the clinical significance and biological function of SEPT11 in HCC was explored. SEPT11 was screened out by combining ATAC-seq with mRNA-seq. Role of SEPT11 in HCC was further investigated by using overexpression, shRNA and CRISPR/Cas9-mediated SEPT11-knockout cells or in vivo models. We found RNA-seq and ATAC-seq highlights LncRNA AY927503 (AY) induced SEPT11 transcription, resulting in Rho GTPase activation and cytoskeleton actin aggregation. The GTP-binding protein SEPT11 is thus considered, as a downstream factor of AY, highly expressed in various tumors, including HCC, and associated with poor prognosis of the patients. In vitro, SEPT11 overexpression promotes the migration and invasion of HCC cells, while SEPT11-knockout inhibits migration and invasion. In vivo, SEPT11-overexpressed HCC cells show high metastasis incidents but don't significantly affect proliferation. Meanwhile, we found SEPT11 targets RhoA, thereby regulating cytoskeleton rearrangement and abnormal cell adhesion through ROCK1/cofilin and FAK/paxillin signaling pathways, promoting invasion and migration of HCC. Further, we found SEPT11 facilitates the binding of GEF-H1 to RhoA, which enhances the activity of RhoA. Overall, our study confirmed function of SEPT11 in promoting metastasis in HCC, and preliminarily explored its related molecular mechanism. SEPT11 acts as an oncogene in HCC, also draws further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Lisheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, People's Republic of China
| | - Ying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - MeiHua Chen
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Adilijiang Kuerban
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Fudan University, 200040, Shanghai, People's Republic of China
| | - Haojie Liu
- NHC Key Laboratory of Glycoconjugates, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, People's Republic of China
| | - Yiwei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China
| | - QianQian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China.
| | - Mingzhe Ma
- Department of Gastric Surgery, Shanghai Cancer Center of Fudan University, 200032, Shanghai, People's Republic of China.
| | - XingZhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Department of Cardiology of Huadong Hospital Affiliated to Fudan University, Fudan University, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Effects of Reticuloendotheliosis virus on TLR-3/IFN-Β pathway in specific pathogen-free chickens. Res Vet Sci 2023; 156:36-44. [PMID: 36774696 DOI: 10.1016/j.rvsc.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/17/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Birds infected by Reticuloendotheliosis virus (REV) are vulnerable to other microorganisms. This immunosuppression is related to the immune organs (thymus, bursa of Fabricius, and spleen) damaged by REV. The regulation of IFN-β greatly depends on pattern recognition receptor TLR-3 and nuclear factors IRF-7, NF-κB. To address if and how the TLR-3/IFN-β pathway is disturbed by REV, 60 one-day-old specific-pathogen-free chickens were intraperitoneally injected with RE virus dilution (n = 30) or stroke-physiological saline solution (n = 30). At 1, 3, 7, 21, and 28 days post-infection, after collecting thymuses, bursas, and spleens, we monitor the kinetics of TLR-3, IFN-β, NF-κB p65, and IRF-7 at transcriptional and translational levels using qPCR, Western blotting, and ELISA separately. As a result, compared with control chickens, the mRNA levels of TLR-3, IRF-7, and NF-κB p65 showed increasingly differences in the early period of REV infection. Synchronal changes occurred at translation levels. In the latter infection period, a decrease of NF-κB p65 was contemporaneous with a fall in IFN-β at both transcriptional and translational levels in the thymuses and bursas. These data suggest that the changes of IFN-β content are closely related to NF-κB p65 when REV invades chicken central immune organs. That reveals new insights into the immunosuppression mechanism of REV in avian.
Collapse
|
6
|
Wu Y, Li N, Zhang T, Che Y, Duan K, Wang Y, Zhou H, Wan X, Lei H, Nguyễn AD, De Souza C, Li K, Wu Y, Liu J, Wang D. Glycyrrhiza polysaccharides can improve and prolong the response of chickens to the Newcastle disease vaccine. Poult Sci 2022; 101:101549. [PMID: 34837761 PMCID: PMC8626840 DOI: 10.1016/j.psj.2021.101549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Licorice is a medicinal and food plant widely used to treat diseases and produce food additives, because of its unique chemical constituents like polysaccharides, flavones, and saponins. Glycyrrhiza Polysaccharides (GPS-1) are water-soluble neutral polysaccharides extracted from licorice. Currently, GPS-1 is administrated to chickens by gavage every d for 14 d to observe the impact of GPS-1 on the Newcastle disease vaccine. To determine the immunity of these chickens to NDV, blood serum levels of hemagglutinin-inhibition (HI) antibody, and immunoglobulins IgA and IgG were measured. Meanwhile, the expression levels of cytokines IL-2, IL-4, IL-17, and IFN-γ were measured to evaluate the degree of immune booster activity. The chickens' spleen and peripheral blood lymphocytes displayed a significant increase in the proportion of CD4+ and CD8+ T cells after booster treatments with GPS-1. The results indicated that GPS-1 had a significant, dose-dependent, immune-boosting effect which could enhance NDV vaccine immunity in chickens.
Collapse
Affiliation(s)
- Yu Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Nannan Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, PR China
| | - Kun Duan
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Yuedi Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Hui Zhou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xin Wan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Audrey D Nguyễn
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| |
Collapse
|
7
|
Bai Y, Cui X, Gao X, Liu C, Lv X, Zheng S. Poly (I: C) inhibits reticuloendothelial virus replication in chicken macrophage-like cells through the activation of toll-like receptor-3 signaling. Mol Immunol 2021; 136:110-117. [PMID: 34098343 DOI: 10.1016/j.molimm.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Reticuloendothelial virus (REV) is widely found in many domestic poultry areas and results in severe immunosuppression of infected chickens. This increases the susceptibility to other pathogens, which causes economic losses to the poultry industry. The aim of our study was to determine whether polyinosinic-polycytidylic acid [Poly (I: C)] treatment could inhibit REV replication in chicken macrophage-like cell line, HD11. We found that Poly (I: C) treatment could markedly inhibit REV replication in HD11 from 24 to 48 h post infection (hpi). Additionally, Poly (I: C) treatment could switch HD11 from an inactive type into M1-like polarization from 24 to 48 hpi. Furthermore, Poly (I: C) treatment promoted interferon-β secretion from HD11 post REV infection. Moreover, Toll-like receptor-3 (TLR-3) mRNA and protein levels in HD11 treated with Poly (I: C) were markedly increased compared to those of HD11 not treated with Poly (I: C). The above results suggested that Poly (I: C) treatment switches HD11 into M1-like polarization to secret more interferon-β and activate TLR-3 signaling, which contributes to block REV replication. Our findings provide a theoretical reference for further studying the underlying pathogenic mechanism of REV and Poly (I: C) as a potential therapeutic intervention against REV infection.
Collapse
Affiliation(s)
- Yu Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Veterinary Pathophysiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinhua Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xueli Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chaonan Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoping Lv
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shimin Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Pathophysiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Yang D, Zhao C, Zhang M, Zhang S, Zhai J, Gao X, Liu C, Lv X, Zheng S. Changes in oxidation-antioxidation function on the thymus of chickens infected with reticuloendotheliosis virus. BMC Vet Res 2020; 16:483. [PMID: 33308224 PMCID: PMC7731740 DOI: 10.1186/s12917-020-02708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reticuloendotheliosis virus (REV) is a retrovirus that causes severe immunosuppression in poultry. Animals grow slowly under conditions of oxidative stress. In addition, long-term oxidative stress can impair immune function, as well as accelerate aging and death. This study aimed to elucidate the pathogenesis of REV from the perspective of changes in oxidative-antioxidative function following REV infection. Methods A total of 80 one-day-old specific pathogen free (SPF) chickens were randomly divided into a control group (Group C) and an REV-infected group (Group I). The chickens in Group I received intraperitoneal injections of REV with 104.62/0.1 mL TCID50. Thymus was collected on day 1, 3, 7, 14, 21, 28, 35, and 49 for histopathology and assessed the status of oxidative stress. Results In chickens infected with REV, the levels of H2O2 and MDA in the thymus increased, the levels of TAC, SOD, CAT, and GPx1 decreased, and there was a reduction in CAT and Gpx1 mRNA expression compared with the control group. The thymus index was also significantly reduced. Morphological analysis showed that REV infection caused an increase in the thymic reticular endothelial cells, inflammatory cell infiltration, mitochondrial swelling, and nuclear damage. Conclusions These results indicate that an increase in oxidative stress enhanced lipid peroxidation, markedly decreased antioxidant function, caused thymus atrophy, and immunosuppression in REV-infected chickens.
Collapse
Affiliation(s)
- Dahan Yang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chenhui Zhao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Meixi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,WuXi AppTec (Suzhou)Co., Ltd, 215000, Suzhou, People's Republic of China
| | - Shujun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Jie Zhai
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - XueLi Gao
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Chaonan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Xiaoping Lv
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China.,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China
| | - Shimin Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory of Laboratory Animals and Comparative Medicine Harbin, 150030, Harbin, People's Republic of China.
| |
Collapse
|
9
|
Dai M, Li S, Keyi Shi, Sun H, Zhao L, Deshui Yu, Liao J, Xu C, Liao M. Comparative analysis of key immune protection factors in H9N2 avian influenza viruses infected and immunized specific pathogen-free chicken. Poult Sci 2020; 100:39-46. [PMID: 33357705 PMCID: PMC7772655 DOI: 10.1016/j.psj.2020.09.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
H9N2 avian influenza viruses (AIV) continue to circulate in vaccinated chicken flocks in China, which prompted us to investigate the differential immune protection factors induced by H9N2 AIV infection and immunization for analyzing the reason of protection deficiency of H9N2 AIV inactivated vaccine. In this study, we firstly explored virus-induced optimal immune responses in chicken after H9N2 AIV infection. And, we found that H9N2 hemagglutination inhibition (HI) antibody level, antiviral interferon-stimulated genes including 2′,5’-oligoadenylate synthetase-like and myxovirus resistance 1, CD8+ T cell response in peripheral blood lymphocytes (PBL) accompanied by the cytotoxicity-associated genes, including poly (ADP-ribose) polymerase and IFN-r play important roles in defending against H9N2 infection. Besides, we observed that vaccine immunization triggered the similar H9N2 HI antibody level as viral infection, the increase of CD4+ T cell percentage instead of CD8+ T cell percentage in PBL. Moreover, we further made a comparative analysis of immune-related gene expression profile in PBL and lung after H9N2 AIV infection and immunization, respectively. The results showed that vaccine immunization contributed to the up-regulation of Th2 cytokine. But the deficiency of cytotoxicity-associated genes induced by H9N2 AIV inactivated vaccine may be the potential key reason of protection deficiency. These findings provide evidence and direction for developing effective H9N2 AIV vaccines.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Shibing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Keyi Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hui Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Deshui Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jiayu Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Zuo Z, Li Q, Guo Y, Li X, Huang S, Hegemann JH, He C. Feed-borne Bacillus cereus exacerbates respiratory distress in chickens infected with Chlamydia psittaci by inducing haemorrhagic pneumonia. Avian Pathol 2020; 49:251-260. [PMID: 31951466 DOI: 10.1080/03079457.2020.1716940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chlamydia psittaci is an important zoonotic pathogen and its oral route of infection plays an important role in the transmission and persistence. Bacillus cereus (B. cereus) strain, a common contaminant of animal feed and feedstuffs, can cause severe diarrhoea and malnutrition in poultry. In our previous study, a B. cereus strain (Dawu C), isolated from the haemorrhagic lungs of infected chickens, was shown to harbour two virulence genes (hblC and cytk) and was able to induce haemorrhagic lesions in the lungs, as well as gizzard erosion and ulceration (GEU) syndrome in broilers. In the present study, we tested the hypothesis that B. cereus-induced GEU would aggravate C. psittaci infection. Our results showed that SPF chickens exposed to B. cereus developed a severe GEU syndrome. More interestingly, prior infection with B. cereus facilitated C. psittaci infection, and aggravated GEU and respiratory distress, which were accompanied by high chlamydial loads in the lungs and severe lesions in respiratory organs. Moreover, levels of local inflammatory cytokines were elevated and T cell responses were impaired in the infected birds. In conclusion, GEU caused by B. cereus may facilitate chlamydial transmission from the ventriculus to the lungs.RESEARCH HIGHLIGHTS Bacillus cereus contributes to the gizzard erosion and ulceration syndrome in chickens.Exposure to Bacillus cereus exacerbates pneumonia in birds following chlamydial infection.Bacillus cereus facilitates persistent chlamydial infection and exacerbates immune responses.
Collapse
Affiliation(s)
- Zonghui Zuo
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China.,Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qiang Li
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yongxia Guo
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xiaohui Li
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China
| | - Johannes H Hegemann
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China.,Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Systematic Identification of Host Immune Key Factors Influencing Viral Infection in PBL of ALV-J Infected SPF Chicken. Viruses 2020; 12:v12010114. [PMID: 31963363 PMCID: PMC7019883 DOI: 10.3390/v12010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Although research related to avian leukosis virus subgroup J (ALV-J) has lasted for more than a century, the systematic identification of host immune key factors against ALV-J infection has not been reported. In this study, we establish an infection model in which four-week-old SPF chickens are infected with ALV-J strain CHN06, after which the host immune response is detected. We found that the expression of two antiviral interferon-stimulated genes (ISGs) (Mx1 and IFIT5) were increased in ALV-J infected peripheral blood lymphocytes (PBL). A significant CD8+ T cell response induced by ALV-J appeared as early as seven days post-infection (DPI), and humoral immunity starting from 21 DPI differed greatly in the time scale of induction level. Meanwhile, the ALV-J viremia was significantly decreased before antibody production at 14 DPI, and eliminated at 21 DPI under a very low antibody level. The up-regulated CD8+ T cell in the thymus (14DPI) and PBL (7 DPI and 21 DPI) was detected, indicating that the thymus may provide the output of CD8+ T cell to PBL, which was related to virus clearance. Besides, up-regulated chemokine CXCLi1 at 7 DPI in PBL was observed, which may be related to the migration of the CD8+ T cell from the thymus to PBL. More importantly, the CD8 high+ T cell response of the CD8αβ phenotype may produce granzyme K, NK lysin, or IFN-γ for clearing viruses. These findings provide novel insights and direction for developing effective ALV-J vaccines.
Collapse
|