1
|
La Distia Nora R, Putera I, Schrijver B, Singh G, Bakker M, Riasanti M, Edwar L, Susiyanti M, Aziza Y, Ten Berge JCEM, Rombach SM, van Hagen PM, Sitompul R, Dik WA. Ocular Tuberculosis Diagnosis Through Biomarkers: Clinical Relevance of Serum C1q and Whole Blood Interferon Gene Signature Score. Ocul Immunol Inflamm 2025; 33:113-124. [PMID: 38913993 DOI: 10.1080/09273948.2024.2368670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE To assess the clinical relevance of pathophysiology-based biomarkers, specifically serum C1q and whole blood interferon gene signature score (IGSS), in ocular tuberculosis (OTB) diagnosis by conducting an integrative analysis of clinical presentations and treatment response. METHODS This retrospective cohort study analysed data from 70 patients with suspected OTB at a tertiary care uveitis practice in Indonesia. Serum C1q levels and whole blood IGSS were quantified. Patients were categorized into four quadrants based on their biomarker profiles: quadrant 1 (high C1q & low IGSS), quadrant 2 (high C1q & high IGSS), quadrant 3 (low C1q & high IGSS), and quadrant 4 (low C1q & low IGSS). Characteristics of clinical presentations, work-up results, and treatment outcomes were explored according to the predefined quadrants. RESULTS We identified that the majority of OTB patients diagnosed with concurrent active pulmonary TB were in quadrant 1, 2, or 3 (20/23, 87.0%). Twenty-seven patients (27/47, 57.4%) with clinically undifferentiated uveitis were in quadrant 4 (p < 0.001). Among patients in quadrants 1, 2, and 3, completion of a full course of antitubercular treatment (ATT) was associated with a lower number of patients showing persistence or recurrence of ocular inflammation compared to those who were not fully treated with ATT (14.3% vs 85.7%, p = 0.001). CONCLUSIONS Based on the analysis of clinical features and treatment outcomes, patients with elevated levels of either or both serum C1q and whole blood IGSS may reflect active TB disease in the eye, necessitating full ATT management.
Collapse
Affiliation(s)
- Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gurmeet Singh
- Department of Internal Medicine, Respirology and Critical Illness Division, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marleen Bakker
- Department of Pulmonary Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mei Riasanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Lukman Edwar
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Made Susiyanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Yulia Aziza
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Saskia M Rombach
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ratna Sitompul
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Shan Q, Li Y, Yuan K, Yang X, Yang L, He JQ. Distinguish active tuberculosis with an immune-related signature and molecule subtypes: a multi-cohort analysis. Sci Rep 2024; 14:29564. [PMID: 39609541 PMCID: PMC11605007 DOI: 10.1038/s41598-024-80072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Distinguishing latent tuberculosis infection (LTBI) from active tuberculosis (ATB) is very important. This study aims to analyze cases from multiple cohorts and get the signature that can distinguish LTBI from ATB. METHODS Thirteen datasets were downloaded from the gene expression omnibus (GEO) database. Three datasets were selected as discovery datasets, and the hub genes were discovered through WGCNA. In the training cohort, we use machine learning to establish the signature, verify the authentication ability of the signature in the remaining datasets, and compare it with other signatures. Cluster analysis was carried out on ATB cases, immune cell infiltration analysis, GSVA analysis, and drug sensitivity analysis were carried out on different clusters. RESULTS In the discovery datasets, we discovered five hub genes. A signature (SLC26A8, ANKRD22, and FCGR1B) is obtained in the training cohort. In the total cohort, the three-gene signature can separate LTBI from ATB (the total area under ROC curve (AUC) is 0.801, 95% CI 0.771-0.830). Compared with other author's signatures, our signature shows good identification ability. Immunological analysis showed that SLC26A8, ANKRD22, and FCGR1B were closely related to the infiltration of immune cells. According to the expression of the three genes, ATB can be divided into two clusters, which are different in immune cell infiltration analysis, gene set variation, and drug sensitivity. CONCLUSION Our study produced an immune-related three-gene signature to distinguish LTBI from ATB, which may help us to manage and treat tuberculosis patients.
Collapse
Affiliation(s)
- Qingqing Shan
- Department of Respiration, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610095, China
| | - Yangke Li
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610095, China
| | - Kun Yuan
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610095, China
| | - Xiao Yang
- Department of Respiration, Chengdu First People's Hospital, Chengdu, 610095, China
| | - Li Yang
- Xiaojiahe Community Health Service Center, Chengdu, 610094, China
| | - Jian-Qing He
- Department of Respiration, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
3
|
Muwanga VM, Mendelsohn SC, Leukes V, Stanley K, Mbandi SK, Erasmus M, Flinn M, Fisher TL, Raphela R, Bilek N, Malherbe ST, Tromp G, Van Der Spuy G, Walzl G, Chegou NN, Scriba TJ. Blood transcriptomic signatures for symptomatic tuberculosis in an African multicohort study. Eur Respir J 2024; 64:2400153. [PMID: 38964778 PMCID: PMC11325265 DOI: 10.1183/13993003.00153-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Multiple host blood transcriptional signatures have been developed as non-sputum triage tests for tuberculosis (TB). We aimed to compare the diagnostic performance of 20 blood transcriptomic TB signatures for differentiating between symptomatic patients who have TB versus other respiratory diseases (ORD). METHODS As part of a nested case-control study, individuals presenting with respiratory symptoms at primary healthcare clinics in Ethiopia, Malawi, Namibia, Uganda, South Africa and The Gambia were enrolled. TB was diagnosed based on clinical, microbiological and radiological findings. Transcriptomic signatures were measured in whole blood using microfluidic real-time quantitative PCR. Diagnostic performance was benchmarked against the World Health Organization Target Product Profile (TPP) for a non-sputum TB triage test. RESULTS Among 579 participants, 158 had definite, microbiologically confirmed TB, 32 had probable TB, while 389 participants had ORD. Nine signatures differentiated between ORD and TB with equivalent performance (Satproedprai7: area under the curve 0.83 (95% CI 0.79-0.87); Jacobsen3: 0.83 (95% CI 0.79-0.86); Suliman2: 0.82 (95% CI 0.78-0.86); Roe1: 0.82 (95% CI 0.78-0.86); Kaforou22: 0.82 (95% CI 0.78-0.86); Sambarey10: 0.81 (95% CI 0.77-0.85); Duffy9: 0.81 (95% CI 0.76-0.86); Gliddon3: 0.8 (95% CI 0.75-0.85); Suliman4 0.79 (95% CI 0.75-0.84)). Benchmarked against a 90% sensitivity, these signatures achieved specificities between 44% (95% CI 38-49%) and 54% (95% CI 49-59%), not meeting the TPP criteria. Signature scores significantly varied by HIV status and country. In country-specific analyses, several signatures, such as Satproedprai7 and Penn-Nicholson6, met the minimal TPP criteria for a triage test in Ethiopia, Malawi and South Africa. CONCLUSION No signatures met the TPP criteria in a pooled analysis of all countries, but several signatures met the minimum criteria for a non-sputum TB triage test in some countries.
Collapse
Affiliation(s)
- Vanessa Mwebaza Muwanga
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Vinzeigh Leukes
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kim Stanley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marika Flinn
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tarryn-Lee Fisher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rodney Raphela
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian Van Der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Kraaijvanger R, Janssen Bonás M, Grutters JC, Paspali I, Veltkamp M, de Kleijn DPV, van Moorsel CHM. Decreased serpin C1 in extracellular vesicles predicts response to methotrexate treatment in patients with pulmonary sarcoidosis. Respir Res 2024; 25:166. [PMID: 38627696 PMCID: PMC11020913 DOI: 10.1186/s12931-024-02809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Sarcoidosis is a systemic granulomatous disease of unknown etiology primarily affecting the lungs. Treatment is needed when disease symptoms worsen and organ function deteriorates. In pulmonary sarcoidosis, prednisone and methotrexate (MTX) are the most common anti-inflammatory therapies. However, there is large inter-patient variability in response to treatment, and predictive response markers are currently lacking. OBJECTIVE In this study, we investigated the predictive potential of biomarkers in extracellular vesicles (EVs) isolated from biobanked serum of patients with pulmonary sarcoidosis stored prior to start of therapy. METHODS Protein concentrations of a four-protein test panel of inflammatory proteins were measured in a discovery (n = 16) and replication (n = 129) cohort of patients with sarcoidosis and 47 healthy controls. Response to therapy was defined as an improvement of the absolute score of > 5% forced vital capacity (FVC) and/or > 10% diffusion lung of carbon monoxide (DLCO) after 24 weeks compared to baseline (before treatment). RESULTS Serum protein levels differed between EV fractions and serum, and between sarcoidosis cases and controls. Serpin C1 concentrations in the low density lipid particle EV fraction were lower at baseline in the group of patients with a good response to MTX treatment in both the discovery cohort (p = 0.059) and in the replication cohort (p = 0.032). EV Serpin C1 showed to be a significant predictor for response to treatment with MTX (OR 0.4; p = 0.032). CONCLUSION This study shows that proteins isolated from EVs harbor a distinct signal and have potential as new predictive therapy response biomarkers in sarcoidosis.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
| | - Montse Janssen Bonás
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Ioanna Paspali
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | | | - Coline H M van Moorsel
- Department of Pulmonology, St Antonius Hospital, Interstitial Lung Diseases Center of Excellence, Nieuwegein, The Netherlands.
| |
Collapse
|
5
|
Seo MH, Kim SH, Yeo S. Serping1 associated with α-synuclein increase in colonic smooth muscles of MPTP-induced Parkinson's disease mice. Sci Rep 2024; 14:1140. [PMID: 38212417 PMCID: PMC10784473 DOI: 10.1038/s41598-024-51770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Patients with Parkinson's disease (PD) have gastrointestinal motility disorders, which are common non-motor symptoms. However, the reasons for these motility disorders remain unclear. Increased alpha-synuclein (α-syn) is considered an important factor in peristalsis dysfunction in colonic smooth muscles in patients with PD. In this study, the morphological changes and association between serping1 and α-syn were investigated in the colon of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced chronic PD model. Increased serping1 and α-syn were noted in the colon of the PD model, and decreased serping1 also induced a decrease in α-syn in C2C12 cells. Serping1 is a major regulator of physiological processes in the kallikrein-kinin system, controlling processes including inflammation and vasodilation. The kinin system also comprises bradykinin and bradykinin receptor 1. The factors related to the kallikrein-kinin system, bradykinin, and bradykinin receptor 1 were regulated by serping1 in C2C12 cells. The expression levels of bradykinin and bradykinin receptor 1, modulated by serping1 also increased in the colon of the PD model. These results suggest that the regulation of increased serping1 could alleviate Lewy-type α-synucleinopathy, a characteristic of PD. Furthermore, this study could have a positive effect on the early stages of PD progression because of the perception that α-syn in colonic tissues is present prior to the development of PD motor symptoms.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Meridian and Acupoint, College of Korean Medicine, Sang Ji University, Wonju, 26339, Republic of Korea
- Division of Biological Science and Technology, Yonsei University, Yonseidae 1 Gil, Wonju, 26493, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Yonseidae 1 Gil, Wonju, 26493, Republic of Korea.
| | - Sujung Yeo
- Research Institute of Korean Medicine, College of Korean Medicine, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
6
|
Mousavian Z, Källenius G, Sundling C. From simple to complex: Protein-based biomarker discovery in tuberculosis. Eur J Immunol 2023; 53:e2350485. [PMID: 37740950 DOI: 10.1002/eji.202350485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis (TB) is a deadly infectious disease that affects millions of people globally. TB proteomics signature discovery has been a rapidly growing area of research that aims to identify protein biomarkers for the early detection, diagnosis, and treatment monitoring of TB. In this review, we have highlighted recent advances in this field and how it is moving from the study of single proteins to high-throughput profiling and from only using proteomics to include additional types of data in multi-omics studies. We have further covered the different sample types and experimental technologies used in TB proteomics signature discovery, focusing on studies of HIV-negative adults. The published signatures were defined as either coming from hypothesis-based protein targeting or from unbiased discovery approaches. The methodological approaches influenced the type of proteins identified and were associated with the circulating protein abundance. However, both approaches largely identified proteins involved in similar biological pathways, including acute-phase responses and T-helper type 1 and type 17 responses. By analysing the frequency of proteins in the different signatures, we could also highlight potential robust biomarker candidates. Finally, we discuss the potential value of integration of multi-omics data and the importance of control cohorts and signature validation.
Collapse
Affiliation(s)
- Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Lindenkamp C, Plümers R, Osterhage MR, Vanakker OM, Van Wynsberghe J, Knabbe C, Hendig D. The Activation of JAK/STAT3 Signaling and the Complement System Modulate Inflammation in the Primary Human Dermal Fibroblasts of PXE Patients. Biomedicines 2023; 11:2673. [PMID: 37893046 PMCID: PMC10603841 DOI: 10.3390/biomedicines11102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Previous studies revealed a link between inflammation and overactivation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling in syndromes associated with aging. Pseudoxanthoma elasticum (PXE), a rare autosomal-recessive disorder, arises from mutations in ATP-binding cassette subfamily C member 6 (ABCC6). On a molecular level, PXE shares similarities with Hutchinson-Gilford progeria syndrome, such as increased activity of senescence-associated- beta-galactosidase or high expression of inflammatory factors. Thus, this study's aim was the evaluation of activated STAT3 and the influence of JAK1/2-inhibitor baricitinib (BA) on inflammatory processes such as the complement system in PXE. Analysis of activation of STAT3 was performed by immunofluorescence and Western blot, while inflammatory processes and complement system factors were determined based on mRNA expression and protein level. Our results assume overactivation of JAK/STAT3 signaling, increased expression levels of several complement factors and high C3 protein concentration in the sera of PXE patients. Supplementation with BA reduces JAK/STAT3 activation and partly reduces inflammation as well as the gene expression of complement factors belonging to the C1 complex and C3 convertase in PXE fibroblasts. Our results indicate a link between JAK/STAT3 signaling and complement activation contributing to the proinflammatory phenotype in PXE fibroblasts.
Collapse
Affiliation(s)
- Christopher Lindenkamp
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Ricarda Plümers
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Michel R. Osterhage
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (J.V.W.)
| | - Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; (O.M.V.); (J.V.W.)
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (C.L.); (R.P.); (M.R.O.); (C.K.)
| |
Collapse
|
8
|
Wang L, Zheng X, Ma J, Gu J, Sha W. Comparative Proteomic Analysis of Exosomes Derived from Patients Infected with Non-Tuberculous Mycobacterium and Mycobacterium tuberculosis. Microorganisms 2023; 11:2334. [PMID: 37764178 PMCID: PMC10535683 DOI: 10.3390/microorganisms11092334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The non-tuberculous mycobacterium (NTM) is a very troublesome opportunistic pathogen, placing a heavy burden on public health. The pathogenesis of NTM pulmonary infection is not well-revealed yet, and its diagnosis is always challenging. This study aimed to use a comprehensive proteomics analysis of plasma exosomes to distinguish patients with rapidly growing NTM M. abscessus (MAB), slowly growing NTM M. intracellulare (MAC), and Mycobacterium tuberculosis (MTB). The identified protein components were quantified with label-free proteomics and determined with a bioinformatics analysis. The complement and coagulation were significantly enriched in patients with Mycobacterium infection, and a total of 24 proteins were observed with up-regulation, which included C1R, C1S, C2, MASP2, C4B, C8B, C9, etc. Of them, 18 proteins were significantly up-regulated in patients with MAB, while 6 and 10 were up-regulated in patients with MAC or MTB, respectively. Moreover, MAB infection was also related to the HIF-1 signaling pathway and phagosome processes, and MTB infection was associated with the p53 signaling pathway. This study provided a comprehensive description of the exosome proteome in the plasma of patients infected with MAB, MAC, and MTB and revealed potential diagnostic and differential diagnostic markers.
Collapse
Affiliation(s)
- Li Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xubin Zheng
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jun Ma
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Niewold P, Dijkstra DJ, Cai Y, Goletti D, Palmieri F, van Meijgaarden KE, Verreck FAW, Akkerman OW, Hofland RW, Delemarre EM, Nierkens S, Verheul MK, Pollard AJ, van Dissel JT, Ottenhoff THM, Trouw LA, Joosten SA. Identification of circulating monocytes as producers of tuberculosis disease biomarker C1q. Sci Rep 2023; 13:11617. [PMID: 37464009 DOI: 10.1038/s41598-023-38889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Tuberculosis (TB) is a prevalent disease causing an estimated 1.6 million deaths and 10.6 million new cases annually. Discriminating TB disease from differential diagnoses can be complex, particularly in the field. Increased levels of complement component C1q in serum have been identified as a specific and accessible biomarker for TB disease but the source of C1q in circulation has not been identified. Here, data and samples previously collected from human cohorts, a clinical trial and a non-human primate study were used to identify cells producing C1q in circulation. Cell subset frequencies were correlated with serum C1q levels and combined with single cell RNA sequencing and flow cytometry analyses. This identified monocytes as C1q producers in circulation, with a pronounced expression of C1q in classical and intermediate monocytes and variable expression in non-classical monocytes.
Collapse
Affiliation(s)
- Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| | - Douwe J Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, Clinical Department, National Institute for Infectious Diseases, Rome, Italy
| | | | - Frank A W Verreck
- Section of TB Research & Immunology, Department of Parasitology, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | - Onno W Akkerman
- Department of Pulmonary Disease and Tuberculosis, University of Groningen, Groningen, the Netherlands
- Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Regina W Hofland
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marije K Verheul
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, UK
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, The Netherlands
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jaap T van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Seo MH, Yeo S. The Effects of Serping1 siRNA in α-Synuclein Regulation in MPTP-Induced Parkinson's Disease. Biomedicines 2023; 11:1952. [PMID: 37509591 PMCID: PMC10377285 DOI: 10.3390/biomedicines11071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Our understanding of the gastrointestinal system in the pathophysiology of Parkinson's disease (PD) has grown considerably over the last two decades. Patients with PD experience notable gastrointestinal symptoms, including constipation. In this study, the effects of knocked-down serping1, associated with the contraction and relaxation of smooth muscle and inflammation responses, by applying the serping1 siRNA were investigated in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced PD mice in an α-syn change aspect. In the result, serping1 expression was knocked down by the treatment of serping1 siRNA, and decreased serping1 induced the decrease α-syn in the colon. Furthermore, the changes in α-syn aggregation were also examined in the brain, and alleviated α-syn aggregation was also observed in an serping1 siRNA treatment group. The results indicated that serping1 siRNA could ease synucleinopathy related to the gastrointestinal system in PD. This study also raises the possibility that serping1 siRNA could alleviate α-syn aggregation in striatum and substantia nigra regions of the brain.
Collapse
Affiliation(s)
- Min Hyung Seo
- Department of Meridian and Acupoint, College of Korean Medicine, Sang Ji University, Wonju 26339, Republic of Korea
| | - Sujung Yeo
- Research Institute of Korean Medicine, Sang Ji University, #83 Sangjidae-Gil, Wonju 26339, Republic of Korea
| |
Collapse
|
11
|
Wang L, Zhu M, Li Y, Yan P, Li Z, Chen X, Yang J, Pan X, Zhao H, Wang S, Yuan H, Zhao M, Sun X, Wan R, Li F, Wang X, Yu H, Rosas I, Ding C, Yu G. Serum proteomics identify biomarkers associated with the pathogenesis of idiopathic pulmonary fibrosis. Mol Cell Proteomics 2023; 22:100524. [PMID: 36870568 PMCID: PMC10113895 DOI: 10.1016/j.mcpro.2023.100524] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by Data-Independent Acquisition (DIA) using mass spectrometry. Differentiated proteins in sera distinguished in IPF patients into three subgroups in signal pathways and overall survival. Aging-associated signatures by WGCNA coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. LDHA and CCT6A expression, which were associated with glucose metabolic reprogramming, were correlated with high serum lactic acid content in the patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished IPF patients from healthy subjects with an AUC of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Minghui Zhu
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Yan Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiuping Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaogang Sun
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fei Li
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Xiaobo Wang
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Hongtao Yu
- Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
12
|
Host biomarker-based quantitative rapid tests for detection and treatment monitoring of tuberculosis and COVID-19. iScience 2022; 26:105873. [PMID: 36590898 PMCID: PMC9791715 DOI: 10.1016/j.isci.2022.105873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
Diagnostic services for tuberculosis (TB) are not sufficiently accessible in low-resource settings, where most cases occur, which was aggravated by the COVID-19 pandemic. Early diagnosis of pulmonary TB can reduce transmission. Current TB-diagnostics rely on detection of Mycobacterium tuberculosis (Mtb) in sputum requiring costly, time-consuming methods, and trained staff. In this study, quantitative lateral flow (LF) assays were used to measure levels of seven host proteins in sera from pre-COVID-19 TB patients diagnosed in Europe and latently Mtb-infected individuals (LTBI), and from COVID-19 patients and healthy controls. Analysis of host proteins showed significantly lower levels in LTBI versus TB (AUC:0 · 94) and discriminated healthy individuals from COVID-19 patients (0 · 99) and severe COVID-19 from TB. Importantly, these host proteins allowed treatment monitoring of both respiratory diseases. This study demonstrates the potential of non-sputum LF assays as adjunct diagnostics and treatment monitoring for COVID-19 and TB based on quantitative detection of multiple host biomarkers.
Collapse
|
13
|
Hausburg MA, Williams JS, Banton KL, Mains CW, Roshon M, Bar-Or D. C1 esterase inhibitor-mediated immunosuppression in COVID-19: Friend or foe? CLINICAL IMMUNOLOGY COMMUNICATIONS 2022; 2:83-90. [PMID: 38013973 PMCID: PMC9068237 DOI: 10.1016/j.clicom.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 10/10/2023]
Abstract
From asymptomatic to severe, SARS-CoV-2, causative agent of COVID-19, elicits varying disease severities. Moreover, understanding innate and adaptive immune responses to SARS-CoV-2 is imperative since variants such as Omicron negatively impact adaptive antibody neutralization. Severe COVID-19 is, in part, associated with aberrant activation of complement and Factor XII (FXIIa), initiator of contact system activation. Paradoxically, a protein that inhibits the three known pathways of complement activation and FXIIa, C1 esterase inhibitor (C1-INH), is increased in COVID-19 patient plasma and is associated with disease severity. Here we review the role of C1-INH in the regulation of innate and adaptive immune responses. Additionally, we contextualize regulation of C1-INH and SERPING1, the gene encoding C1-INH, by other pathogens and SARS viruses and propose that viral proteins bind to C1-INH to inhibit its function in severe COVID-19. Finally, we review the current clinical trials and published results of exogenous C1-INH treatment in COVID-19 patients.
Collapse
Key Words
- C1 esterase inhibitor
- C1 esterase inhibitor, C1-INH
- C1-INH
- COVID-19
- Complement
- FXII
- Inflammation
- Middle East respiratory syndrome coronavirus, MERS-CoV
- Mycobacterium tuberculosis, Mtb
- Severe acute respiratory syndrome coronavirus, SARS-CoV
- acquired C1-INH deficiency, AEE
- activated plasma kallikrein, PKa
- antibody-mediated rejection, AMR
- bradykinin, BK
- contact system, CS
- coronavirus disease 2019, COVID-19
- exogenous C1-INH, exC1-INH
- hereditary angioedema, HAE
- high-molecular-weight kininogen, HK
- human immunodeficiency virus, HIV
- interferon, IFN
- interleukin, IL
- ischemia/reperfusion injury, IRI
- mannose-binding lectin, MBL
- prekallikrein, PK
- recombinant C1-INH, rhC1-INH
- serine protease inhibitor, serpin
- tuberculosis, TB
Collapse
Affiliation(s)
- Melissa A Hausburg
- Department of Trauma Research, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113, USA
- Department of Trauma Research, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA
- Department of Trauma Research, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - Jason S Williams
- Department of Trauma Research, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113, USA
- Department of Trauma Research, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA
- Department of Trauma Research, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - Kaysie L Banton
- Department of Trauma Research, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113, USA
| | - Charles W Mains
- Centura Health Trauma Systems, Centura Health, 9100 E Mineral Circle, Centennial, CO 80112, USA
| | - Michael Roshon
- Centura Health Trauma Systems, Centura Health, 9100 E Mineral Circle, Centennial, CO 80112, USA
- Department of Emergency Services, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - David Bar-Or
- Department of Trauma Research, Swedish Medical Center, 501 E. Hampden, Englewood, CO 80113, USA
- Department of Trauma Research, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA
- Department of Trauma Research, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
- Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134, USA
| |
Collapse
|
14
|
Mass Spectrometry-Based Proteomic and Metabolomic Profiling of Serum Samples for Discovery and Validation of Tuberculosis Diagnostic Biomarker Signature. Int J Mol Sci 2022; 23:ijms232213733. [PMID: 36430211 PMCID: PMC9694769 DOI: 10.3390/ijms232213733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups—healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.
Collapse
|
15
|
Michelotti TC, Kisby BR, Flores LS, Tegeler AP, Fokar M, Crasto C, Menarim BC, Loux SC, Strieder-Barboza C. Single-nuclei analysis reveals depot-specific transcriptional heterogeneity and depot-specific cell types in adipose tissue of dairy cows. Front Cell Dev Biol 2022; 10:1025240. [PMID: 36313560 PMCID: PMC9616121 DOI: 10.3389/fcell.2022.1025240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose tissue (AT) is an endocrine organ with a central role on whole-body energy metabolism and development of metabolic diseases. Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, respectively) analyses in mice and human AT have revealed vast cell heterogeneity and functionally distinct subtypes that are potential therapeutic targets to metabolic disease. In periparturient dairy cows, AT goes through intensive remodeling and its dysfunction is associated with metabolic disease pathogenesis and decreased productive performance. The contributions of depot-specific cells and subtypes to the development of diseases in dairy cows remain to be studied. Our objective was to elucidate differences in cellular diversity of visceral (VAT) and subcutaneous (SAT) AT in dairy cows at the single-nuclei level. We collected matched SAT and VAT samples from three dairy cows and performed snRNA-seq analysis. We identified distinct cell types including four major mature adipocytes (AD) and three stem and progenitor cells (ASPC) subtypes, along with endothelial cells (EC), mesothelial cells (ME), immune cells, and pericytes and smooth muscle cells. All major cell types were present in both SAT and VAT, although a strong VAT-specificity was observed for ME, which were basically absent in SAT. One ASPC subtype was defined as adipogenic (PPARG+) while the other two had a fibro-adipogenic profile (PDGFRA+). We identified vascular and lymphatic EC subtypes, and different immune cell types and subtypes in both SAT and VAT, i.e., macrophages, monocytes, T cells, and natural killer cells. Not only did VAT show a greater proportion of immune cells, but these visceral immune cells had greater activation of pathways related to immune and inflammatory response, and complement cascade in comparison with SAT. There was a substantial contrast between depots for gene expression of complement cascade, which were greatly expressed by VAT cell subtypes compared to SAT, indicating a pro-inflammatory profile in VAT. Unprecedently, our study demonstrated cell-type and depot-specific heterogeneity in VAT and SAT of dairy cows. A better understanding of depot-specific molecular and cellular features of SAT and VAT will aid in the development of AT-targeted strategies to prevent and treat metabolic disease in dairy cows, especially during the periparturient period.
Collapse
Affiliation(s)
- Tainara C. Michelotti
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, United States
| | - Lauryn S. Flores
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Alexandra P. Tegeler
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
- Department of Computer Science, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, United States
- Department of University Studies, Texas Tech University, Lubbock, TX, United States
| | - Bruno C. Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Shavahn C. Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- *Correspondence: Clarissa Strieder-Barboza,
| |
Collapse
|
16
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
17
|
Galbraith MD, Kinning KT, Sullivan KD, Baxter R, Araya P, Jordan KR, Russell S, Smith KP, Granrath RE, Shaw JR, Dzieciatkowska M, Ghosh T, Monte AA, D'Alessandro A, Hansen KC, Benett TD, Hsieh EWY, Espinosa JM. Seroconversion stages COVID19 into distinct pathophysiological states. eLife 2021; 10:e65508. [PMID: 33724185 PMCID: PMC7963480 DOI: 10.7554/elife.65508] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID19 is a heterogeneous medical condition involving diverse underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Low antibody titers associate with hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, and depletion of lymphocytes, neutrophils, and platelets. Upon seroconversion, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased D-dimer, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.
Collapse
Affiliation(s)
- Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, Division of Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ryan Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Seth Russell
- Data Science to Patient Value, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jessica R Shaw
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public HealthAuroraUnited States
| | - Andrew A Monte
- Department of Emergency Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Tellen D Benett
- Department of Pediatrics, Sections of Informatics and Data Science and Critical Care Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Elena WY Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
18
|
Hausburg MA, Banton KL, Roshon M, Bar-Or D. Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis. Heliyon 2021; 7:e05877. [PMID: 33437888 PMCID: PMC7788102 DOI: 10.1016/j.heliyon.2020.e05877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammatory responses to the novel coronavirus SARS-CoV-2, which causes COVID-19, range from asymptomatic to severe. Here we present a follow-up analysis of a longitudinal study characterizing COVID-19 immune responses from a father and son with distinctly different clinical courses. The father required a lengthy hospital stay for severe symptoms, whereas his son had mild symptoms and no fever yet tested positive for SARS-CoV-2 for 29 days. Father and son, as well as another unrelated COVID-19 patient, displayed a robust increase of SERPING1, the transcript encoding C1 esterase inhibitor (C1-INH). We further bolstered this finding by incorporating a serum proteomics dataset and found that serum C1-INH was consistently increased in COVID-19 patients. C1-INH is a central regulator of the contact and complement systems, potentially linking COVID-19 to complement hyperactivation, fibrin clot formation, and immune depression. Furthermore, despite distinct clinical cases, significant parallels were observed in transcripts involved in interferon and B cell signaling. As symptoms were resolving, widespread decreases were seen in immune-related transcripts to levels below those of healthy controls. Our study provides insight into the immune responses of likely millions of people with extremely mild symptoms who may not be aware of their infection with SARS-CoV-2 and implies a potential for long-lasting consequences that could contribute to reinfection risk.
Collapse
Affiliation(s)
- Melissa A. Hausburg
- Trauma Research Department, Swedish Medical Center, Englewood, CO, USA
- Trauma Research Department, St. Anthony Hospital, Lakewood, CO, USA
- Trauma Research Department, Penrose Hospital, Colorado Springs, CO, USA
- Emergency Room Department, Penrose Hospital, Colorado Springs, CO, USA
| | - Kaysie L. Banton
- Trauma Research Department, Swedish Medical Center, Englewood, CO, USA
| | - Michael Roshon
- Emergency Room Department, Penrose Hospital, Colorado Springs, CO, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, Englewood, CO, USA
- Trauma Research Department, St. Anthony Hospital, Lakewood, CO, USA
- Trauma Research Department, Penrose Hospital, Colorado Springs, CO, USA
- Emergency Room Department, Penrose Hospital, Colorado Springs, CO, USA
- Department of Molecular Biology, Rocky Vista University, Parker, CO, USA
| |
Collapse
|
19
|
Schrijver B, Dijkstra DJ, Borggreven NV, La Distia Nora R, Huijser E, Versnel MA, van Hagen PM, Joosten SA, Trouw LA, Dik WA. Inverse correlation between serum complement component C1q levels and whole blood type-1 interferon signature in active tuberculosis and QuantiFERON-positive uveitis: implications for diagnosis. Clin Transl Immunology 2020; 9:e1196. [PMID: 33088504 PMCID: PMC7563643 DOI: 10.1002/cti2.1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023] Open
Abstract
Objectives To examine the relation between serum C1q levels and blood type‐1 interferon signature (type‐1 IFN signature) in active pulmonary tuberculosis (APTB) and to determine whether combined measurement of serum C1q and type‐1 IFN signature may add to the diagnosis of QuantiFERON‐positive (QFT+) patients with uveitis of unknown cause. Methods C1q was determined (ELISA) in serum from two distinct Indonesian cohorts, and in total, APTB (n = 72), QFT+ uveitis of unknown aetiology (n = 58), QFT− uveitis (n = 51) patients and healthy controls (HC; n = 73) were included. The type‐1 IFN signature scores were previously determined. Results Serum C1q was higher in APTB than HC (P < 0.001). APTB patients with uveitis had higher serum C1q than APTB patients without uveitis (P = 0.0207). Serum C1q correlated inversely with type‐1 IFN signature scores in APTB (P = 0.0036, r2 = 0.3526), revealing that these biomarkers for active TB disease can be mutually exclusive. Stratification of QFT+ patients with uveitis of unknown cause, by serum C1q and type‐1 IFN signature, yielded four groups with different likelihood of suffering from active TB uveitis. Conclusion Serum C1q is elevated in APTB, especially in those cases with uveitis. We propose that combined measurement of blood type‐1 IFN signature and serum C1q may provide added value in the diagnosis of active TB disease. Combined measurement of type‐1 IFN signature and serum C1q in QFT+ patients without signs of active TB disease, but suffering from uveitis of unknown cause, may be of help to identify cases with low or high likelihood of having active TB uveitis, which may facilitate clinical management decisions.
Collapse
Affiliation(s)
- Benjamin Schrijver
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Douwe J Dijkstra
- Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands
| | - Nicole V Borggreven
- Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands
| | - Rina La Distia Nora
- Department of Ophthalmology Faculty of Medicine University of Indonesia and Cipto Mangunkusumo Hospital Jakarta Indonesia
| | - Erika Huijser
- Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Marjan A Versnel
- Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - P Martin van Hagen
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Department of Internal Medicine Division Clinical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases Leiden University Medical Center Leiden The Netherlands
| | - Leendert A Trouw
- Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands
| | - Willem A Dik
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Department of Internal Medicine Division Clinical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|