1
|
Binte Hanafi Z, Mei Y, Teo HY, Zhu Y, Yong Lionel CC, Chiu JW, Lu J, Liu H. Calpain 2 regulates IL-1α secretion and inhibits tumor development via modulating calpain 1 expression in the tumor microenvironment. Oncoimmunology 2025; 14:2451444. [PMID: 39803956 PMCID: PMC11730618 DOI: 10.1080/2162402x.2025.2451444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells. In this study, we report that calpain 2 also modulates IL-1α secretion. Notably, a deficiency in calpain 2 resulted in enhanced hepatocellular carcinoma development within an IL-1α-enriched tumor microenvironment. Further investigations revealed that calpain 2 deficiency increased calpain 1 expression, implying a compensatory mechanism between the two calpains. Mechanistically, calpain 2 deficiency led to increased expression of FoxO3, which is a forkhead transcription factor that promotes calpain 1 expression. Collectively, these results suggest that calpain 2 modulates calpain 1 expression, and therefore IL-1α secretion through the induction of FoxO3, offering novel potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Zuhairah Binte Hanafi
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Mei
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chew Chin Yong Lionel
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Wen Chiu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinhua Lu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Zhang J, Wise SG, Zuo S, Bao S, Zhang X. The distinct roles of IL-37 and IL-38 in non-small cell lung carcinoma and their clinical implications. Front Immunol 2025; 16:1564357. [PMID: 40191189 PMCID: PMC11968353 DOI: 10.3389/fimmu.2025.1564357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Lung cancer, a significant global health challenge, is primarily classified into non-small cell lung cancer (NSCLC) and small cell lung cancer. Despite advancements in targeted therapies and immunotherapies, NSCLC outcomes remain poor, with low five-year survival rates. Given the lung's constant exposure to the environment and the presence of mucosal-associated lymphoid tissues, immunity plays a crucial role in NSCLC development. Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have shown promise. However, adverse immune events limit their efficacy. This review highlights the contrasting roles of IL-37 and IL-38 in NSCLC pathogenesis. IL-37, an anti-inflammatory cytokine, suppresses tumour growth. It achieves this by modulating macrophage polarization and dendritic cell maturation. Correlations between intra-tumoral IL-37 expression and improved survival suggest a protective role in NSCLC. This may be mediated through VEGF inhibition and immune regulation. Conversely, IL-38, while anti-inflammatory in certain contexts, exhibits a pro-tumorigenic role in NSCLC. IL-38 enhances tumour progression by increasing pro-inflammatory cytokine secretion and facilitating immune evasion, potentially through NF-κB signalling. Notably, IL-38 negatively regulates IL-37, further promoting tumorigenesis. Emerging data suggest that IL-37 has therapeutic potential in inhibiting NSCLC metastasis and supporting immune modulation. In contrast, IL-38 presents a potential target for mitigating pro-inflammatory microenvironment effects. The distinct roles of these cytokines emphasize the complex immune dynamics in NSCLC. Further exploration of their molecular mechanisms and therapeutic implications is warranted. Targeting IL-37 and IL-38 may offer novel strategies for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NS, Australia
| | - Shunqing Zuo
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Shisan Bao
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xufeng Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Feng Y, Feng L, Wang B, Zhang T, Cui B. Therapeutic Potential of IL-37 in Cervical Cancer: Suppression of Tumour Progression and Enhancement of CD47-Mediated Macrophage Phagocytosis. Mol Carcinog 2025; 64:425-439. [PMID: 39620401 PMCID: PMC11814915 DOI: 10.1002/mc.23855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 02/13/2025]
Abstract
As a promising therapeutic approach, immunotherapy is being extensively investigated in cervical cancer. Although immunotherapy has been validated to improve progression-free survival and overall survival in clinical trials, the overall response rate for cervical cancer remains inadequate, necessitating further improvement. Interleukin (IL)-37, an emerging immunomodulator, exhibits antitumour potentials by inhibiting tumour progression and regulating tumour-associated macrophage recognition. We found a significant downregulation of IL-37 expression in cervical cancer, correlated with a poor prognosis. Moreover, the upregulation of IL-37 expression exhibited a suppressive effect on various tumorigenic processes, suppressing the proliferation, invasion, migration, apoptosis and angiogenesis of tumour cells. We also found that the upregulation of IL-37 suppressed cluster of differentiation 47 (CD47) expression in tumour cells via suppression of the signal transducer and activator of transcription 3 (STAT3) expression and phosphorylation, thereby enhancing macrophage recognition and phagocytosis to tumour cells, ultimately reducing immune evasion. Overall, our study highlighted the crucial role of IL-37 in antitumour efficacy and downregulating the expression of CD47 in tumour cells to reduce immune evasion, suggesting the potential of IL-37 as a prognostic biomarker in cervical cancer and offering innovative therapeutic strategies to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Yuan Feng
- Cheeloo College of MedicineShandong UniversityJinan CityShandong ProvinceChina
| | - Lianlian Feng
- Cheeloo College of MedicineShandong UniversityJinan CityShandong ProvinceChina
| | - Bingyu Wang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| | - Teng Zhang
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| | - Baoxia Cui
- Department of Obstetrics and GynecologyQilu Hospital of Shandong UniversityJinan CityShandong ProvinceChina
| |
Collapse
|
4
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
5
|
Liu S, Ba Y, Li C, Xing M, Zhang T, Liu Y, Gao Y, Xu G. Interleukin 37 inhibits the migration and invasion of Glioma cells. Biotechnol Genet Eng Rev 2024; 40:926-942. [PMID: 36951225 DOI: 10.1080/02648725.2023.2191084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Glioma is a medical term that describes a tumor originating in the brain. Several risk factors could develop glioma such as occupational exposure, gene mutation and ionizing radiation. Therefore, we aim to determine the expression and biological function of interleukin 37 (IL-37) in gliomas with different pathological grades. We used 95 participants with different pathological grades of glioma as our data subjects. We used CCK-8 assay and transwell assay to explore the proliferation of U251 over-expressing IL-37 and migration and invasion of U251. We found that IL-37 expression in tumor tissues was significantly higher than in normal tissue. The reduced IL-37 expression in gliomas was significantly associated with a higher WHO grade and lower Karnofsky Performance Status score. IL-37 expression in glioma tissues showed a decline with the increase of the WHO glioma grade. Patients with low IL-37 expression showed a shorter median survival. Transwell assay indicated that migration and invasion of U251 over-expressing IL-37 was significantly lower than that of the control at 24 h. Our findings showed that low IL-37 expression was negatively correlated with pathological grade and was positively correlated with survival time.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Ying Ba
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Chenglong Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Mengyang Xing
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Tao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yongliang Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yang Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wang Q, Zhang G, An C, Hambly BD, Bao S. The role of IL-37 in gastrointestinal diseases. Front Immunol 2024; 15:1431495. [PMID: 39206201 PMCID: PMC11349528 DOI: 10.3389/fimmu.2024.1431495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal mucosal surface is frequently under challenge due to it's the large surface area and most common entry of microbes. IL-37, an anti-inflammatory cytokine, regulates local and systemic host immunity. H. pylori infection leads to the inhibition of IL-37 in the gastric mucosa, contributing to heightened mucosal inflammation and destruction, thereby facilitating increased proliferation of H. pylori. Food allergy, due to immune dysregulation, also contribute to GI injury. On the other hand, elevated levels of IL-37 observed in gastric cancer patients align with reduced host immunity at the cellular and humoral levels, indicating that IL-37 may contribute to the development of gastric cancer via suppressing pro-inflammatory responses. While IL-37 provides protection in an IBD animal model, the detection of highly produced IL-37 in IBD patients suggests a stage-dependent role, being protective in acute inflammation but potentially exacerbates the development of IBD in chronic conditions. Moreover, elevated colonic IL-37 in CRC correlates with overall survival time and disease time, indicating a protective role for IL-37 in CRC. The differential regulation and expression of IL-37 between upper- and lower-GI organs may be attributed to variations in the microbial flora. This information suggests that IL-37 could be a potential therapeutic agent, depending on the stage and location.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Guangrun Zhang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Caiping An
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Brett D. Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Foreign Affairs Office, The Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
- Foreign Affairs Office, The First People’s Hospital of Baiyin, Baiyin, China
| |
Collapse
|
8
|
Gryziak M, Kraj L, Stec R. The role of tumor-associated macrophages in hepatocellular carcinoma-from bench to bedside: A review. J Gastroenterol Hepatol 2024; 39:1489-1499. [PMID: 38651642 DOI: 10.1111/jgh.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma is one of the most common cancers worldwide. Despite progress in treatment, recurrence after radical treatment is common, and the prognosis remains poor for patients with advanced disease. Therefore, there is a need to identify prognostic and predictive factors for the response to therapy or more intensive surveillance or treatment. Because the tumor microenvironment plays a crucial role in the development of cancer and metastasis, it is a crucial need to understand processes that are involved in carcinogenesis. Within the microenvironment, several immune cells with different roles are present. One of the most important of these is tumor-associated macrophages. These cells may exert either antitumor or protumor roles. Several studies have suggested that tumor-associated macrophages can be used as prognostic markers. Furthermore, they may be involved in resistance to immunotherapy or systemic treatment. As they play an important role in cancer development, tumor-associated macrophages are also a good target for therapy. In this review, we briefly summarize recent progress on knowledge regarding the basic molecular characteristics, impact on prognosis and potential clinical implications of tumor-associated macrophages in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Maciej Gryziak
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, Jastrzebiec, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
10
|
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, Liu H. IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep 2024; 43:113835. [PMID: 38412100 DOI: 10.1016/j.celrep.2024.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Interleukin-37 (IL-37) has been shown to inhibit tumor growth in various cancer types. However, the immune regulatory function of IL-37 in the tumor microenvironment is unclear. Here, we established a human leukocyte antigen-I (HLA-I)-matched humanized patient-derived xenograft hepatocellular carcinoma (HCC) model and three murine orthotopic HCC models to study the function of IL-37 in the tumor microenvironment. We found that IL-37 inhibited HCC growth and promoted T cell activation. Further study revealed that IL-37 impaired the immunosuppressive capacity of myeloid-derived suppressor cells (MDSCs). Pretreatment of MDSCs with IL-37 before adoptive transfer attenuated their tumor-promoting function in HCC tumor-bearing mice. Moreover, IL-37 promoted both glycolysis and oxidative phosphorylation in MDSCs, resulting in the upregulation of ATP release, which impaired the immunosuppressive capacity of MDSCs. Collectively, we demonstrated that IL-37 inhibited tumor development through dampening MDSCs' immunosuppressive capacity in the tumor microenvironment via metabolic reprogramming, making it a promising target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Mei
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ying Zhu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore
| | - Zuhairah Binte Hanafi
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P.R. China
| | - Yonghao Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Huey Yee Teo
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Muslima Hussain
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Yuan Song
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore 138673, Singapore.
| | - Haiyan Liu
- Immunology Program, Life Sciences Institute, Immunology Translational Research Program, and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
11
|
Ding X, Liu X, Qiu T, Zhou Y, Michał N, Roman S, Liu Q, Liu Y, Peng N. Modulation of macrophage polarity with carboxymethyl chitin gated hollow mesoporous silica nanoparticles for elevating anti-tumor chemotherapy. Int J Biol Macromol 2024; 261:129761. [PMID: 38290634 DOI: 10.1016/j.ijbiomac.2024.129761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The weak immunity of tumors after chemotherapy could cause tumor metastasis and progression. Therefore, to overcome the dilemma of obvious immune deficiency caused by chemotherapy, a nanosystem (N-IL-12/DOX/α-TOS) consisted of thioketal (TK) bonds linked-hollow mesoporous silica nanoparticles (HMSNs) coated with carboxymethyl chitin (CMCH) by electrostatic interaction, and surface-functionalized glucose-regulated protein 78 binding peptide was prepared for loading doxorubicin (DOX), IL-12 and α-tocopheryl succinate (α-TOS). N-IL-12/DOX/α-TOS displayed a mean size of 275 nm after encapsulated DOX, IL-12 and α-TOS with loading contents of 2.04 × 10-4, 4.01 × 10-2 and 7.12 × 10-2, respectively. The drug-free nanoparticles (NPs) showed good biocompatibility to both 4 T1 cells and RAW264.7 macrophages. N-IL-12/DOX/α-TOS could achieve localized release of IL-12, DOX and α-TOS by pH and H2O2 trigger in the tumor microenvironment (TME). Moreover, the combined therapy by N-IL-12/DOX/α-TOS remarkably elevated the anti-tumor therapeutic efficacy, enhanced immune responses via promoting tumor-associated macrophage (TAM) polarization into tumoricidal M1 phenotypes, and decreased lung metastasis with reduced side effects. N-IL-12/DOX/α-TOS exhibited as a promising strategy for combining chemotherapy and local macrophage modulation-immunotherapy for anti-tumor therapy.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xiyu Liu
- The Ninth Hospital of Wuhan City, Wuhan, Hubei 430081, PR China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yu Zhou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China
| | - Nowicki Michał
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Szewczyk Roman
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw 00-661, Poland
| | - Qingtao Liu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, Hubei 430200, PR China.
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China; Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
12
|
Wang D, Zhang B, Liu X, Kan LLY, Leung PC, Wong CK. Agree to disagree: The contradiction between IL-18 and IL-37 reveals shared targets in cancer. Pharmacol Res 2024; 200:107072. [PMID: 38242220 DOI: 10.1016/j.phrs.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
IL-37 is a newly discovered member of the IL-1 cytokine family which plays an important role in regulating inflammation and maintaining physiological homeostasis. IL-37 showed a close relationship with IL-18, another key cytokine in inflammation regulation and cancer development. IL-37 affects the function of IL-18 either by binding to IL-18Rα, a key subunit of both IL-37 and IL-18 receptor, or by drastically neutralizing the IL-18 protein expression of IL-18 binding protein, an important natural inhibitory molecule of IL-18. Moreover, as another subunit receptor of IL-37, IL-1R8 can suppress IL-18Rα expression, functioning as a surveillance mechanism to prevent overactivation of both IL-18 and IL-37 signaling pathways. While IL-18 and IL-37 share the same receptor subunit, IL-18 would in turn interfere with IL-37 signal transduction by binding to IL-18Rα. It is also reported that IL-18 and IL-37 demonstrated opposing effects in a variety of cancers, such as glioblastoma, lung cancer, leukemia, and hepatocellular cancer. Although the mutual regulation of IL-18 and IL-37 and their diametrically opposed effects in cancers has been reported, IL-18 has not been taken into consideration when interpreting clinical findings and conducting mechanism investigations related to IL-37 in cancer. We aim to review the recent progress in IL-18 and IL-37 research in cancer and summarize the correlation between IL-18 and IL-37 in cancer based on their expression level and underlying mechanisms, which would provide new insights into elucidating the conflicting roles of IL-18 and IL-37 in cancer and bring new ideas for translational research related to IL-18 and IL-37.
Collapse
Affiliation(s)
- Dongjie Wang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Bitian Zhang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaolin Liu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Cao J, Liu JH, Wise SG, Fan J, Bao S, Zheng GS. The role of IL-36 and 37 in hepatocellular carcinoma. Front Immunol 2024; 15:1281121. [PMID: 38312834 PMCID: PMC10834741 DOI: 10.3389/fimmu.2024.1281121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has garnered considerable attention due to its morbidity and mortality. Although the precise mechanisms underlying HCC tumorigenesis remain to be elucidated, evidence suggests that host immunity plays a pivotal role in its development. IL-36 and IL-37 are important immunoregulatory cytokines classified as pro-inflammatory and anti-inflammatory respectively. In the context of HCC, the downregulation of intrahepatic IL-36 is inversely correlated with cirrhosis, but positively correlated with 5-year survival rates, suggesting that IL-36 offers protection during HCC development. However, IL-36 may lose its hepatoprotective effects as the disease progresses to HCC in the context of dysregulated immunity in cirrhotic patients. Substantially increased circulating IL-36 in HCC patients is likely a systemic response to HCC stimulation, but is insufficient to suppress progression towards HCC. Intrahepatic IL-37 is suppressed in HCC patients, consistent with the inverse correlation between intrahepatic IL-37 and the level of AFP in HCC patients, suggesting IL-37 exerts hepatoprotection. There is no significant difference in IL-37 among differentiations of HCC or with respect to clinical BCLC stages or cirrhosis status in HCC patients. However, IL-37 protection is demonstrated in an IL-37 transfected HCC animal model, showing significantly reduced tumour size. IL-36/37 may inhibit HCC by enhancing M1 tumour-associated macrophages while not affecting M2 macrophages. The interplay between IL-36 (pro-inflammatory) and IL-37 (anti-inflammatory) is emerging as a crucial factor in host protection against the development of HCC. Further research is needed to investigate the complex mechanisms involved and the therapeutic potential of targeting these cytokines in HCC management.
Collapse
Affiliation(s)
- Juan Cao
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun-Hong Liu
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial Integrated Traditional Chinese and Western Medicine Digestive Disease Clinical Research Centre, Lanzhou, China
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jingchun Fan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shisan Bao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gui-Sen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
14
|
Landolina N, Mariotti FR, Pelosi A, D’Oria V, Ingegnere T, Alicata C, Vacca P, Moretta L, Maggi E. The anti-inflammatory cytokine IL-37 improves the NK cell-mediated anti-tumor response. Oncoimmunology 2023; 13:2297504. [PMID: 38170019 PMCID: PMC10761114 DOI: 10.1080/2162402x.2023.2297504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
IL-37 is a member of the IL-1 superfamily exerting anti-inflammatory functions in a number of diseases. Extracellular IL-37 triggers the inhibitory receptor IL-1R8 that is known to regulate different NK cell pathways and functional activities including their anti-tumor effect. However, the effect of IL-37 on human NK cell functions is still to be unveiled. This study aimed to investigate the functional effect of IL-37 in human NK cells activated with IL-15. We found that IL-37 enhanced both NK cell cytotoxic activity against different tumor cell lines and cytokines production. These effects were associated with increased phosphorylation of ERK and NF-Kb. The improved NK cell activity was also strictly related to a time-dependent GSK3β-mediated degradation of IL-1R8. The enhanced activation profile of IL-37 treated NK cells possibly due to IL-1R8 degradation was confirmed by the results with IL-1R8-silenced NK cells. Lastly, in line with these data, through the analysis of the TNM plot database of a large group of patients, IL-37 mRNA expression was found to be significantly lower in colon and skin cancers than in normal tissues. Colon adenocarcinoma and neuroblastoma patients with higher IL-37 mRNA levels had significantly higher overall survival, suggesting that the presence of IL-37 might be considered an independent positive prognostic factor for this tumor. Our results provide novel information on the mechanisms regulating IL-1R8 function in human NK cells, highlighting the IL-37-IL-1R8 axis as a potential new target to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Nadine Landolina
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
16
|
Kumari A, Veena SM, Luha R, Tijore A. Mechanobiological Strategies to Augment Cancer Treatment. ACS OMEGA 2023; 8:42072-42085. [PMID: 38024751 PMCID: PMC10652740 DOI: 10.1021/acsomega.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cancer cells exhibit aberrant extracellular matrix mechanosensing due to the altered expression of mechanosensory cytoskeletal proteins. Such aberrant mechanosensing of the tumor microenvironment (TME) by cancer cells is associated with disease development and progression. In addition, recent studies show that such mechanosensing changes the mechanobiological properties of cells, and in turn cells become susceptible to mechanical perturbations. Due to an increasing understanding of cell biomechanics and cellular machinery, several approaches have emerged to target the mechanobiological properties of cancer cells and cancer-associated cells to inhibit cancer growth and progression. In this Perspective, we summarize the progress in developing mechano-based approaches to target cancer by interfering with the cellular mechanosensing machinery and overall TME.
Collapse
Affiliation(s)
| | | | | | - Ajay Tijore
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
17
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
18
|
Yuan Y, Wu D, Li J, Huang D, Zhao Y, Gao T, Zhuang Z, Cui Y, Zheng DY, Tang Y. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. Front Pharmacol 2023; 14:1217400. [PMID: 37663266 PMCID: PMC10470150 DOI: 10.3389/fphar.2023.1217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.
Collapse
Affiliation(s)
- Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dailin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianqi Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Cui
- Department of Psychiatry, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Yong Zheng
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
20
|
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023; 24:ijms24119258. [PMID: 37298214 DOI: 10.3390/ijms24119258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Collapse
Affiliation(s)
- Maria Papasavva
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Styliana Amvrosiou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Panayiota Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Yuan Ji
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
21
|
Aberrant Expression and Prognostic Potential of IL-37 in Human Lung Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123037. [PMID: 36551790 PMCID: PMC9775426 DOI: 10.3390/biomedicines10123037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin-37 (IL-37) is a relatively new IL-1 family cytokine that, due to its immunoregulatory properties, has lately gained increasing attention in basic and translational biomedical research. Emerging evidence supports the implication of this protein in any human disorder in which immune homeostasis is compromised, including cancer. The aim of this study was to explore the prognostic and/or diagnostic potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) in human tumors. We utilized a series of bioinformatics tools and -omics datasets to unravel possible associations of IL-37 and SIGIRR expression levels and genetic aberrations with tumor development, histopathological parameters, distribution of tumor-infiltrating immune cells, and survival rates of patients. Our data revealed that amongst the 17 human malignancies investigated, IL-37 exhibits higher expression levels in tumors of lung adenocarcinoma (LUAD). Moreover, the expression profiles of IL-37 and SIGIRR are associated with LUAD development and tumor stage, whereas their high mRNA levels are favorable prognostic factors for the overall survival of patients. What is more, IL-37 correlates positively with a LUAD-associated transcriptomic signature, and its nucleotide changes and expression levels are linked with distinct infiltration patterns of certain cell subsets known to control LUAD anti-tumor immune responses. Our data indicate the potential value of IL-37 and its receptor SIGIRR to serve as biomarkers and/or immune-checkpoint therapeutic targets for LUAD patients. Further, the data highlight the urgent need for further exploration of this cytokine and the underlying pathogenetic mechanisms to fully elucidate its implication in LUAD development and progression.
Collapse
|
22
|
Ma Y, Su H, Wang X, Niu X, Che Y, Hambly BD, Bao S, Wang X. The role of IL-35 and IL-37 in breast cancer - potential therapeutic targets for precision medicine. Front Oncol 2022; 12:1051282. [PMID: 36483045 PMCID: PMC9723453 DOI: 10.3389/fonc.2022.1051282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
Breast cancer is still a major concern due to its relatively poor prognosis in women, although there are many approaches being developed for the management of breast cancer. Extensive studies demonstrate that the development of breast cancer is determined by pro versus anti tumorigenesis factors, which are closely related to host immunity. IL-35 and IL-37, anti-inflammatory cytokines, play an important role in the maintenance of immune homeostasis. The current review focuses on the correlation between clinical presentations and the expression of IL-35 and IL-37, as well as the potential underlying mechanism during the development of breast cancer in vitro and in vivo. IL-35 is inversely correlated the differentiation and prognosis in breast cancer patients; whereas IL-37 shows dual roles during the development of breast cancer, and may be breast cancer stage dependent. Such information might be useful for both basic scientists and medical practitioners in the management of breast cancer patients.
Collapse
Affiliation(s)
- Yuntao Ma
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - He Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuyun Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiangdong Niu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yang Che
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Brett D Hambly
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Shisan Bao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
23
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
24
|
Dang J, He Z, Cui X, Fan J, Hambly DJ, Hambly BD, Li X, Bao S. The Role of IL-37 and IL-38 in Colorectal Cancer. Front Med (Lausanne) 2022; 9:811025. [PMID: 35186997 PMCID: PMC8847758 DOI: 10.3389/fmed.2022.811025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major killer. Dysregulation of IL-37 and IL-38, both anti-inflammatory cytokines, is observed in auto-immune diseases. The precise regulatory mechanisms of IL-37/IL-38 during the development of CRC remains unclear, but chronic intestinal inflammation is involved in the carcinogenesis of CRC. Constitutive production of colonic IL-37 and IL-38 is substantially reduced in CRC, consistent with an inverse correlation with CRC differentiation. Reduced colonic IL-37 and IL-38 is relating to CRC invasion and distant metastasis, suggesting a protective role for IL-38 within the tumor micro-environment. IL-38 is reduced in right-sided CRC compared to left-sided CRC, which is in line with multiple risk factors for right-sided CRC, including the embryonic development of the colon, and genetic differences in CRC between these two sides. Finally, colonic IL-37 and tumor associated neutrophils (TAN) seem to be independent biomarkers of prognostic value, whereas colonic IL-38 seems to be a reliable and independent biomarker in predicting the 5-year survival post-surgery in CRC. However, there is room for improvement in available studies, including the extension of these studies to different regions/countries incorporating different races, evaluation of the role of multi-drug resistance, and different subsets of CRC. It would be useful to determine the kinetics of circulating IL-38 and its relationship with drug resistance/targeted therapy. The measurement of colonic IL-38 at the molecular and cellular level is required to explore the contribution of IL-38 pathways during the development of CRC. These approaches could provide insight for the development of personalized medicine.
Collapse
Affiliation(s)
- Jie Dang
- Child and Adolescent Health Management Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiyun He
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Xiang Cui
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jingchun Fan
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - David J Hambly
- Resident Training Program, Gold Coast University Hospital, Southport, QLD, Australia
| | - Brett D Hambly
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China.,Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Xun Li
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Shisan Bao
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
25
|
Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C. Negative Regulation of the IL-1 System by IL-1R2 and IL-1R8: Relevance in Pathophysiology and Disease. Front Immunol 2022; 13:804641. [PMID: 35211118 PMCID: PMC8861086 DOI: 10.3389/fimmu.2022.804641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs to a complex family including ligands with agonist activity, receptor antagonists, and an anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R) family, include signaling receptor complexes, decoy receptors, and negative regulators. Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a tight control of inflammatory responses, which ensures a balance between amplification of innate immunity and uncontrolled inflammation. IL-1 family members interact with innate immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid cells, contributing to their differentiation and functional polarization and plasticity. Here we will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their complex impact in pathology, ranging from infections and inflammatory responses, to cancer and neurologic disorders, as well as clinical implications and potential therapeutic exploitation will be presented.
Collapse
Affiliation(s)
- Domenico Supino
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luna Minute
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Mariancini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Elena Magrini
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
26
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
28
|
Zeng Z, Liu Y, Wen Q, Li Y, Yu J, Xu Q, Wan W, He Y, Ma C, Huang Y, Yang H, Jiang O, Li F. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages. Drug Deliv 2021; 28:943-956. [PMID: 33988472 PMCID: PMC8128207 DOI: 10.1080/10717544.2021.1921076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
This study aimed to develop an effective therapy against M2 macrophages and to investigate the effects of imidazole and mannose modified carboxymethyl chitosan-nanoparticles (MIC-NPs) on tumor growth and antitumor immune responses. MIC-NPs were constructed and analyzed through 1H NMR, nano-laser particle size analyzer, and transmission electron microscopy. The nanoparticles were mainly distributed in 75-85 nm, and zeta potential was 1.5 mV. Cytotoxicity studies in vitro and in vivo indicated that MIC-NPs were safe. The targeting effect of MIC-NPs on M2 macrophages was observed through fluorescence microscope and microplate system. The results demonstrated the uptake of a large amount of FITC-loaded MIC-NPs by M2. Cell growth inhibition experiments showed that MIC-NPs significantly inhibited M2 through cell apoptosis. The evaluation of anti-tumor activity in vivo showed that MIC-NPs could accumulate in the tumor site to exert an anti-tumor effect. Flow cytometry showed that the proportion of M2 macrophages at the tumor site in the experimental group was significantly lower than that in the control group, while the Treg cells and cytotoxic T cells (CTL) were found to be increased. PCR detection showed that the cDNA of FIZZ, MR, TGF-β, and arginase, closely related to M2 macrophages, in the experimental group, was significantly lower than that in the control group, but there was no significant difference in the cDNA of Treg cell characteristic Foxp3 between the two groups. These results suggest that MIC-NPs are expected to provide a new and effective treatment for tumor.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Liu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yixian Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Qiang Xu
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Wenwu Wan
- Clinical Medical College of Southwest Medical University, Luzhou, China
| | - Yu He
- Department of Oncology, The Fourth People's Hospital of Neijiang, Neijiang, China
| | - Chen Ma
- Department of Oncology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yan Huang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Helin Yang
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Ou Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Surgical Oncology, The Second People's Hospital of Neijiang, Neijiang, China
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Zhu Y, Qin H, Ye K, Sun C, Qin Y, Li G, Wang H, Wang H. Dual role of IL-37 in the progression of tumors. Cytokine 2021; 150:155760. [PMID: 34800851 DOI: 10.1016/j.cyto.2021.155760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-37 is a novel defined cytokine that belongs to IL-1 family, which possesses potent anti-inflammatory and immunosuppressive properties. The IL-37 protein mainly exists in the cytoplasm of monocytes and is also expressed in epithelial cells and T cells. IL-37 is produced as a precursor which works in mature or immature isoforms without a classic signal peptide, and negatively regulates TLR agonist- mediated signaling pathway, proinflammatory cytokines, and IL-1R ligands. IL-37 has been found to be elevated and plays an anti-tumor role in various types of tumors, such as hepatocellular carcinoma, non-small cell lung cancer, and cervical cancer. The tumor microenvironment (TME) refers to the cellular environment where the tumor or cancer stem cells exist. At present, growing evidence shows that changes in TME can regulate metabolism, immunity, secretion, and function, so as to inhibit or promote the progression of the tumor. Therefore, a thorough understanding of the TME is essential for the occurrence and development of tumors. In this review, we will summarize the role of IL-37 in the microenvironment of different tumors, hoping to provide novel perspectives towards the mechanism, prevention, and treatment of tumors.
Collapse
Affiliation(s)
- Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
30
|
Su Z, Tao X. Current Understanding of IL-37 in Human Health and Disease. Front Immunol 2021; 12:696605. [PMID: 34248996 PMCID: PMC8267878 DOI: 10.3389/fimmu.2021.696605] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
31
|
Zhou J, Wang W, Li Q. Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:73. [PMID: 33596985 PMCID: PMC7890827 DOI: 10.1186/s13046-021-01873-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
In hepatocellular carcinoma patients, due to the microenvironmental specificity of liver, the tumor microenvironment exhibits high immunosuppression and drug resistance, resulting in excessive or insufficient responses to immunotherapy. The dynamic interactions between tumor cells and immune modulators in the TME significantly impact the occurrence and development of tumors, efficacy, and drug resistance, which can create a much more positive response to immunotherapy. Moreover, with the wide application of single-cell sequencing technology in the TME, increasing evidence shows an interaction network among cells. Sequencing results suggest that specific tumor-associated macrophages are a hub node, connecting different cell populations in the cell interaction network, and can could regulate tumor generation and antitumor immunity. This review focused on therapeutic targets that could be targeted to remodel the tumor microenvironment and reprogram the tumor-associated macrophage phenotype in hepatocellular carcinoma patients, thereby improving immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Jingyi Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Weiyu Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
32
|
Mu X, Zhao Q, Chen W, Zhao Y, Yan Q, Peng R, Zhu J, Yang C, Lan K, Gu X, Wang Y. IL-37 Confers Anti-Tumor Activity by Regulation of m6A Methylation. Front Oncol 2021; 10:526866. [PMID: 33489865 PMCID: PMC7821743 DOI: 10.3389/fonc.2020.526866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) is a common transcriptomic modification in cancer. Recently, it has been found to be involved in the regulation of non-small cell lung cancer (NSCLC) formation and metastasis. Interleukin 37 (IL-37) plays a crucial protective role in lung cancer. In our previous studies, we found that IL-37 is a potential novel tumor suppressor by inhibiting IL-6 expression to suppress STAT3 activation and decreasing epithelial-to-mesenchymal transition. Moreover, we found that treatment of IL-37 in lung cancer cells induced widespread and dynamic RNA m6A methylation. The effects of RNA m6A methylation of IL-37 treatment require further study. However, the functions of RNA m6A methylation of IL-37 treatment still await elucidation. Using MeRIP-seq and RNA-seq, we uncovered a unique m6A methylation profile in the treatment of IL-37 on the A549 cell line. We also showed the expression of m6A writers METTL3, METTL14, and WTAP and erasers ALKBH5 and FTO in A549 cells and lung cancer tissues after the treatment of IL-37. This study showed that IL-37 could lead to changes in m6A methylation level and related molecule expression level in A546 cells and may downregulate the proliferation by inhibiting Wnt5a/5b pathway in A549 cells. We conclude that IL-37 suppresses tumor growth through regulation of RNA m6A methylation in lung cancer cells.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Qi Zhao
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Hyperbaric Oxygen, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Yuxiang Zhao
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China.,United New Drug Research and Development Center, Biotrans Technology Co., LTD., Ningbo, China
| | - Qing Yan
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Rui Peng
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Jie Zhu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Chunrui Yang
- Department of Pathology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ketao Lan
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021; 12:54-64. [PMID: 33391402 PMCID: PMC7738842 DOI: 10.7150/jca.49692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.
Collapse
Affiliation(s)
- Shunyao Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyi Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixi Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- Xiaoshan Hosptital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Senlin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
34
|
Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2020; 149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Much recent research has delved into understanding the underlying molecular mechanisms of HCC pathogenesis, which has revealed to be heterogenous and complex. Two major hallmarks of HCC include: (i) a hijacked immunometabolism and (ii) a reprogramming in metabolic processes. We posit that the gut microbiota is a third component in an entanglement triangle contributing to HCC progression. Besides metagenomic studies highlighting the diagnostic potential in the gut microbiota profile, recent research is pinpointing the gut microbiota as an instigator, not just a mere bystander, in HCC. In this chapter, we discuss mechanistic insights on atypical immunometabolism and metabolic reprogramming in HCC, including the examination of tumor-associated macrophages and neutrophils, tumor-infiltrating lymphocytes (e.g., T-cell exhaustion, regulatory T-cells, natural killer T-cells), the Warburg effect, rewiring of the tricarboxylic acid cycle, and glutamine addiction. We further discuss the potential involvement of the gut microbiota in these characteristics of hepatocarcinogenesis. An immediate highlight is that microbiota metabolites (e.g., short chain fatty acids, secondary bile acids) can impair anti-tumor responses, which aggravates HCC. Lastly, we describe the rising 'new era' of immunotherapies (e.g., immune checkpoint inhibitors, adoptive T-cell transfer) and discuss for the potential incorporation of gut microbiota targeted therapeutics (e.g., probiotics, fecal microbiota transplantation) to alleviate HCC. Altogether, this chapter invigorates for continuous research to decipher the role of gut microbiome in HCC from its influence on immunometabolism and metabolic reprogramming.
Collapse
|
35
|
Wang L, Liu Z, Huang D, Ran Y, Zhang H, He J, Yin N, Qi H. IL-37 Exerts Anti-Inflammatory Effects in Fetal Membranes of Spontaneous Preterm Birth via the NF- κB and IL-6/STAT3 Signaling Pathway. Mediators Inflamm 2020; 2020:1069563. [PMID: 32733162 PMCID: PMC7369678 DOI: 10.1155/2020/1069563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Spontaneous preterm birth (sPTB), defined as delivery before 37 weeks of gestation, is thought to be a multifactorial syndrome. However, the inflammatory imbalance at the maternal-fetal interface promotes excessive secretion of inflammatory factors and induces apoptosis and degradation of the extracellular matrix (ECM), which can subsequently lead to preterm birth. As an anti-inflammatory molecule in the IL-1 family, interleukin-37 (IL-37) mainly plays an inhibiting role in a variety of inflammatory diseases. However, as a typical inflammatory disease, no previous studies have been carried out to explore the role of IL-37 in sPTB. In this study, a series of molecular biological experiments were performed in clinical samples and human amniotic epithelial cell line (Wistar Institute Susan Hayflick (WISH)) to investigate the deficiency role of IL-37 and the potential mechanism. Firstly, the results indicated that the expression of IL-37 in human peripheral plasma and fetal membranes was significantly decreased in the sPTB group. Afterward, it is proved that IL-37 could significantly suppress the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in WISH cells. Simultaneously, once silence IL-37, LPS-induced apoptosis and activity of matrix metalloproteinases (MMPs) 2 and 9 were significantly increased. In addition, the western blot data showed that IL-37 performed its biological effects by inhibiting the NF-κB and IL-6/STAT3 pathway. In conclusion, our results suggest that IL-37 limits excessive inflammation and subsequently inhibits ECM remodeling and apoptosis through the NF-κB and IL-6/STAT3 signaling pathway in the fetal membranes.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Dongni Huang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hanwen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Nanlin Yin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|