1
|
Wang J, Song Y, Tan X, Wang T, Shi Y, Xu X, Du J, Yu Z, Song B. Targeting PIM1 by Bruceine D attenuates skin fibrosis via myofibroblast ferroptosis. Redox Biol 2025; 82:103619. [PMID: 40168881 PMCID: PMC11993190 DOI: 10.1016/j.redox.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Skin pan-fibrosis diseases-such as hypertrophic scar (HS), keloid scar (KS), and systemic sclerosis (SSc)-pose significant threats to patients' health and quality of life. In this study, the authors conducted both in vivo and in vitro experiments and discovered that the serine/threonine kinase PIM1 is upregulated in the myofibroblasts of human HS, KS, and SSc tissues, as well as in various animal models of skin fibrosis. Overexpression of PIM1 enhanced the profibrotic phenotypes of human hypertrophic scar fibroblasts (HSFs), which serve as key effector cells in the pathogenesis of skin pan-fibrosis diseases. Through high-throughput screening and subsequent laboratory assays, we identified the small molecule Bruceine D (BD) as a direct binder of PIM1. BD promoted ferroptosis in HSFs by selectively suppressing the PIM1-KEAP1-NRF2 pathway through augmented degradation of PIM1. In various in vivo models-including a hypertrophic scar mouse model, a rabbit ear hypertrophic scar model, and a bleomycin (BLM)-induced skin fibrosis mouse model-BD effectively attenuated fibrotic phenotypes. Collectively, these findings demonstrate that PIM1 serves as a common biomarker and therapeutic target for skin pan-fibrosis diseases. BD mitigates skin fibrosis by activating ferroptosis via PIM1 inhibition, highlighting its great translational potential and high promise to be developed to a clinical drug in treating these conditions, especially those with abnormally elevated PIM1 expression.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Li B, Jiang X, Liu C, Ma Y, Zhao R, Zhang H. Exploring the preventive effects of Jie Geng Tang on pulmonary fibrosis induced in vitro and in vivo: a network pharmacology approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10005-10016. [PMID: 38961002 DOI: 10.1007/s00210-024-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Pulmonary fibrosis is a debilitating lung disease marked by excessive fibrotic tissue accumulation, which significantly impairs respiratory function. Given the limitations of current therapies, there is an increasing interest in exploring traditional herbal formulations like Jie Geng Tang (JGT) for treatment. This study examines the potential of JGT and its bioactive component, quercetin, in reversing bleomycin (BLM)-induced pulmonary fibrosis in mice. We employed a BLM-induced MLE-12 cell damage model for in vitro studies and a bleomycin-induced fibrosis model in C57BL/6 mice for in vivo experiments. In vitro assessments showed that JGT significantly enhanced cell viability and reduced apoptosis in MLE-12 cells treated with BLM. These findings underscore JGT's potential for cytoprotection against fibrotic agents. In vivo, JGT was effective in modulating the expression of E-cadherin and vimentin, key markers of the epithelial-mesenchymal transition (EMT) pathway, indicating its role in mitigating EMT-associated fibrotic changes in lung tissue. Quercetin, identified through network pharmacology analysis as a potential key bioactive component of JGT, was highlighted for its role in the regulatory mechanisms underlying fibrosis progression, particularly through the modulation of the IL-17 pathway and Il6 expression. By targeting inflammatory pathways and key processes like EMT, JGT and quercetin offer a potent alternative to conventional therapies, meriting further clinical exploration to harness their full therapeutic potential in fibrotic diseases.
Collapse
Affiliation(s)
- Bingxin Li
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Xiaojie Jiang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Chang Liu
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Yun Ma
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Ruining Zhao
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China
| | - Haijun Zhang
- School of Life Science, Huaibei Normal University, Dongshan Road 100, Huaibei, 235000, China.
| |
Collapse
|
3
|
Araldi GL, Hwang YW, Raghu G. Development and Evaluation of ABI-171, a New Fluoro-Catechin Derivative, for the Treatment of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11827. [PMID: 39519378 PMCID: PMC11546061 DOI: 10.3390/ijms252111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
The persistent challenge of idiopathic pulmonary fibrosis (IPF), characterized by disease progression and high mortality, underscores the urgent need for innovative therapeutic strategies. We have developed a novel small molecule-catechin derivative ABI-171-selectively targeting dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinases, crucial in the pathogenesis of fibrotic processes. We employed the Bleomycin-induced (intratracheal) mouse model of pulmonary fibrosis (PF) to evaluate the therapeutic efficacy of ABI-171. Mice with induced PF were treated QD with ABI-171, either prophylactically or therapeutically, using oral and intranasal routes. Pirfenidone (100 mg/kg, TID) and Epigallocatechin gallate (EGCG, 100 mg/kg, QD), a natural catechin currently in a Phase 1 clinical trial, were used as reference compounds. ABI-171, administered prophylactically, led to a significant reduction in hydroxyproline levels and fibrotic tissue formation compared to the control group. Treatment with ABI-171 improved body weight, indicating mitigation of disease-related weight loss. Additionally, ABI-171 demonstrated anti-inflammatory activity, reducing lymphocyte and neutrophil infiltration. In the therapeutic setting, ABI-171, administered 7 days post-induction, reduced mortality rates (p = 0.04) compared with the bleomycin and EGCG control groups. ABI-171 also ameliorated the severity of lung injuries assessed by improved Masson's trichrome scores when administered both orally and intranasally. ABI-171 significantly decreases bleomycin-induced PF and improves survival in mice, showcasing promising therapeutic potential beyond current medications like pirfenidone and EGCG for patients with IPF. Based on these results, further studies with ABI-171 are ongoing in preclinical studies.
Collapse
Affiliation(s)
- Gian Luca Araldi
- Avanti Biosciences, Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Yu-Wen Hwang
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Wang Y, He X, Wang H, Hu W, Sun L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117820. [PMID: 38286157 DOI: 10.1016/j.jep.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS TGF-β induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS TGF-β induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-β-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-β-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-β-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, PR China.
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Huijie Wang
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China.
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Park YS, kim J, Ryu YS, moon JH, shin YJ, kim JH, hong SW, jung SA, lee S, kim SM, lee DH, kim DY, yun H, you JE, yoon DI, kim CH, koh DI, jin DH. Mutant PIK3CA as a negative predictive biomarker for treatment with a highly selective PIM1 inhibitor in human colon cancer. Cancer Biol Ther 2023; 24:2246208. [PMID: 37621144 PMCID: PMC10461515 DOI: 10.1080/15384047.2023.2246208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 08/26/2023] Open
Abstract
Significant improvement in targeted therapy for colorectal cancer (CRC) has occurred over the past few decades since the approval of the EGFR inhibitor cetuximab. However, cetuximab is used only for patients possessing the wild-type oncogene KRAS, NRAS, and BRAF, and even most of these eventually acquire therapeutic resistance, via activation of parallel oncogenic pathways such as RAS-MAPK or PI3K/Akt/mTOR. The two aforementioned pathways also contribute to the development of therapeutic resistance in CRC patients, due to compensatory and feedback mechanisms. Therefore, combination drug therapies (versus monotherapy) targeting these multiple pathways may be necessary for further efficacy against CRC. In this study, we identified PIK3CA mutant (PIK3CA MT) as a determinant of resistance to SMI-4a, a highly selective PIM1 kinase inhibitor, in CRC cell lines. In CRC cell lines, SMI-4a showed its effect only in PIK3CA wild type (PIK3CA WT) cell lines, while PIK3CA MT cells did not respond to SMI-4a in cell death assays. In vivo xenograft and PDX experiments confirmed that PIK3CA MT is responsible for the resistance to SMI-4a. Inhibition of PIK3CA MT by PI3K inhibitors restored SMI-4a sensitivity in PIK3CA MT CRC cell lines. Taken together, these results demonstrate that sensitivity to SMI-4a is determined by the PIK3CA genotype and that co-targeting of PI3K and PIM1 in PIK3CA MT CRC patients could be a promising and novel therapeutic approach for refractory CRC patients.
Collapse
Affiliation(s)
- Yoon Sun Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joseph kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jai-Hee moon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Jin shin
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hee kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Woo hong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Soo-A jung
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seul lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Mi kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dae Hee lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Do Yeon kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeseon yun
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun you
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Il yoon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chul Hee kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-In koh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Hoon jin
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Zhang Z, Xie S, Qian J, Gao F, Jin W, Wang L, Yan L, Chen H, Yao W, Li M, Wang X, Zhu L. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl - efflux signaling pathway. J Transl Med 2023; 21:452. [PMID: 37422640 PMCID: PMC10329339 DOI: 10.1186/s12967-023-04313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, 310006, Hangzhou, China
| | - Jin Qian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjian Jin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lingqiao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Lili Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Wangxiang Yao
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China.
| |
Collapse
|
9
|
Yang J, Chen X. SIRT6 attenuates LPS-induced inflammation and apoptosis of lung epithelial cells in acute lung injury through ACE2/STAT3/PIM1 signaling. Immun Inflamm Dis 2023; 11:e809. [PMID: 36988243 PMCID: PMC10022422 DOI: 10.1002/iid3.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe and fatal respiratory disease. SIRT6 exerts pivotal activities in the process of lung diseases, but whether SIRT6 impacts ALI has not been covered. METHODS Lentivirus recombinant expressing vector SIRT6 gene (Lent-SIRT6) was constructed in mice, and there were control, lipopolysaccharide (LPS), LPS + Vehicle, and LPS + Lent SIRT6 groups. RT-qPCR and western blot detected SIRT6 expression in lung tissues. HE staining observed pathological alternations in lung tissues. Wet-to-dry ratio of the lungs was then measured. The cell count of bronchoalveolar lavage fluid (BALF) was evaluated. Serum inflammation was examined with enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot were to measure apoptosis. Western blot tested the expression of ACE2/STAT3/PIM1 signaling-associated factors. At the cellular level, LPS was used to induce lung epithelial cells BEAS-2B to establish cell injury models. SIRT6 was overexpressed and ACE2 expression was inhibited by cell transfection, and the mechanism of SIRT6 in LPS-induced lung injury model was further explored by Cell Counting Kit-8 (CCK-8), western blot, quantitative reverse-transcription polymerase chain reaction, TUNEL, and other techniques. RESULTS The results of animal experiments showed that SIRT6 overexpression could reduce LPS-induced lung pathological injury, pulmonary edema, and BALF cell ratio and attenuate LPS-induced inflammatory response and cell apoptosis. In the above process, ACE2, STAT3, p-STAT3, and PIM1 expression were affected. In cell experiments, SIRT6 expression was reduced in LPS-induced BEAS-2B cells. Inhibition of ACE2 expression could reverse the inhibitory effect of SIRT6 overexpression on ACE2/STAT3/PIM1 pathway, and cellular inflammatory response and apoptosis. CONCLUSION SIRT6 eased LPS-evoked inflammation and apoptosis of lung epithelial cells in ALI through ACE2/STAT3/PIM1 signaling.
Collapse
Affiliation(s)
- Juan Yang
- Department of Pediatric, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xing Chen
- Department of Pediatric, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| |
Collapse
|
10
|
Li Q, Deng MS, Wang RT, Luo H, Luo YY, Zhang DD, Chen KJ, Cao XF, Yang GM, Zhao TM, Xu B, Xu CX, Wang JM. PD-L1 upregulation promotes drug-induced pulmonary fibrosis by inhibiting vimentin degradation. Pharmacol Res 2023; 187:106636. [PMID: 36586643 DOI: 10.1016/j.phrs.2022.106636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and limited therapeutic options. The immune checkpoint PD1/PD-L1 axis is related to the pathogenesis of pulmonary fibrosis, and upregulated expression levels of PD-L1 have been demonstrated in IPF patients. However, the mechanism of PD-L1 in pulmonary fibrosis is not fully understood. Here, we demonstrated upregulated expression of PD-L1 in fibrotic lung tissues and sera of IPF patients. Bleomycin (BLM) treatment induced PD-L1 upregulation, EMT (Epithelial-Mesenchymal Transition) and fibrosis-like morphology changes in human pulmonary alveolar epithelial cells (HPAEpiCs). Silencing PD-L1 attenuated BLM-induced EMT and fibrosis-like morphology changes in HPAEpiCs. In addition, we identified that PD-L1 directly binds to vimentin and inhibits vimentin ubiquitination, thereby increasing vimentin levels in HPAEpiCs. Silencing of vimentin inhibited BLM- and PD-L1-induced fibrosis in HPAEpiCs. The correlation between PD-L1 and EMT or vimentin expression was further confirmed in clinical samples and animal models. Finally, we used BLM- and paraquat-induced pulmonary fibrosis animal models to confirm the anti-pulmonary fibrosis effects of PD-L1 silencing. Taken together, our findings suggest that upregulated PD-L1 stimulates EMT of alveolar epithelial cells by increasing vimentin levels by inhibiting vimentin ubiquitination, thereby contributing to pulmonary fibrosis.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China; School of Medicine, Chongqing University, Chongqing 400030, China
| | - Meng-Sheng Deng
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ren-Tao Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Luo
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuan-Yuan Luo
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Dong-Dong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-Fu Cao
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Guang-Ming Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tie-Mei Zhao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
11
|
Gao AY, Diaz Espinosa AM, Gianì F, Pham TX, Carver CM, Aravamudhan A, Bartman CM, Ligresti G, Caporarello N, Schafer MJ, Haak AJ. Pim-1 kinase is a positive feedback regulator of the senescent lung fibroblast inflammatory secretome. Am J Physiol Lung Cell Mol Physiol 2022; 323:L685-L697. [PMID: 36223640 PMCID: PMC9744654 DOI: 10.1152/ajplung.00023.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.
Collapse
Affiliation(s)
- Ashley Y Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Fiorenza Gianì
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Centel, Catania, Italy
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Colleen M Bartman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Bao N, Cheng L, Wang Y, Peng Z, Wang Z, Chen S. Protein-protein interactions between RUNX3 and ZEB1 in chronic lung injury induced by methamphetamine abuse. Front Pharmacol 2022; 13:1025922. [DOI: 10.3389/fphar.2022.1025922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (MA) is the most common and highly addictive substance abuse drug. Runt-related transcription factor 3 (RUNX3) and Zinc finger E-box-binding homeobox 1 (ZEB1) are associated with lung inflammation and fibrosis. However, the protein-protein interactions (PPIs) between RUNX3 and ZEB1 and its involvement in MA-induced chronic lung injury is still unclear. In this study, we evaluated lung injury using echocardiography, hematoxylin and eosin staining, and western blot analysis. The viability of alveolar epithelial cells (AECs) was assessed using cell counting kit-8. Molecular Operating Environment software, Search Tool for the Retrieval of Interacting Genes/Proteins database, co-immunoprecipitation, assay and confocal immunofluorescence assay were used to predict and identify the PPIs between RUNX3 and ZEB1. The expression of RUNX3 and ZEB1 were knockdown in AECs using siRNA. The results revealed that MA exposure increased the peak blood flow velocity of the pulmonary artery and the acceleration time of pulmonary artery blood flow. Further, exposure to MA also causes adhesion and fusion of the alveolar walls and altered AEC activity. A decrease in the expression of RUNX3 and an increase in the expression of ZEB1 and its downstream signaling molecules were observed on MA exposure. The PPIs between RUNX3 and ZEB1 were identified. Further, an increase in the protein binding rate of RUNX3-ZEB1 was observed in MA-induced lung injury. These results show interactions between RUNX3 and ZEB1. RUNX3 protects against lung injury; however, ZEB1 expression and the PPIs between ZEB1 and RUNX3 has deleterious effects on chronic lung injury induced by MA exposure. Our results provide a new therapeutic approach for the treatment of chronic lung injury due to MA exposure.
Collapse
|
13
|
Chua HH, Chang MH, Chen YH, Tsuei DJ, Jeng YM, Lee PH, Ni YH. PIM1-Induced Cytoplasmic Expression of RBMY Mediates Hepatocellular Carcinoma Metastasis. Cell Mol Gastroenterol Hepatol 2022; 15:121-152. [PMID: 36191855 PMCID: PMC9672922 DOI: 10.1016/j.jcmgh.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Metastasis indicates a grave prognosis in patients with hepatocellular carcinoma (HCC). Our previous studies showed that RNA binding motif protein Y-linked (RBMY) is potentially a biomarker for poor survival in HCC patients, but its role in metastasis is largely unclear. METHODS A total of 308 male patients with primary HCC were enrolled. RBMY expression was traced longitudinally by immunostaining from the manifestation of a primary HCC tumor to the formation of a distant metastasis, and its upstream regulators were screened with a protein microarray. A series of metastasis assays in mouse models and HCC cell lines were performed to explore new functional insights into RBMY. RESULTS Cytoplasmic expression of RBMY was associated with rapid distant metastasis (approximately 1 year after resection) and had a predictive power of 82.4% for HCC metastasis. RBMY conferred high migratory and invasive potential upon phosphorylation by the provirus integration in Moloney 1 (PIM1) kinase. Binding of PIM1 to RBMY caused mutual stabilization and massive translocation of RBMY from nuclei to mitochondria, thereby preventing mitochondrial apoptosis and augmenting mitochondrial generation of adenosine triphosphate/reactive oxygen species to enhance cell motility. Depletion of RBMY suppressed Snail1/zinc finger E-box binding homeobox transcription factor 1-mediated epithelial-mesenchymal transition and dynamin-related protein 1-dependent mitochondrial fission. Inactivation and knockout of PIM1 down-regulated the expression of RBMY. In nude mice, cytoplasmic RBMY promoted liver-to-lung metastasis by increasing epithelial-mesenchymal transition, mitochondrial proliferation, and mitochondrial fission, whereas nuclear-restricted RBMY impeded the mitochondrial switch and failed to induce lung metastasis. CONCLUSIONS This study showed the regulation of HCC metastasis by PIM1-driven cytoplasmic expression of RBMY and suggested a novel therapeutic target for attenuating metastasis.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Daw-Jen Tsuei
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan,Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Medical Microbiota Center, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Li S, Yang Q, Chen F, Tian L, Huo J, Meng Y, Tang Q, Wang W. The antifibrotic effect of pheretima protein is mediated by the TGF-β1/Smad2/3 pathway and attenuates inflammation in bleomycin-induced idiopathic pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114901. [PMID: 34890730 DOI: 10.1016/j.jep.2021.114901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pheretima is a traditional Chinese medicine that could treat various lung diseases such as asthma, pneumonia, and lung cancer effectively; however, limited studies on the use of Pheretima protein in the treatment of lung diseases have been conducted to date. AIM OF THE STUDY The aim of this study was to explain the antipulmonary fibrosis mechanism of the Pheretima protein and elucidate its possible cell signaling pathways. MATERIAL AND METHODS Fresh pheretima was freeze-dried to obtain the Pheretima protein. Divide C57BL/6 mice into control and bleomycin (BLM)-induced models, pirfenidone, and Pheretima protein-treatment groups. Three weeks later, they were treated with H&E and Masson's trichrome staining to assess lung injury and fibrosis. Pulmonary fibrosis was assessed using immunohistochemistry (IHC), realtime-PCR (RT-PCR), and western blotting. Inflammation was assessed using the alveolar lavage fluid. RESULTS Pheretima protein inhibited epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition and reduced inflammation. It also reduced the levels of Smad2/3, pSmad2/3, and transforming growth factor-beta 1 (TGF-β1). Thus, our results indicate that Pheretima protein can alleviate BLM-induced pulmonary fibrosis in a mouse model. CONCLUSION Pheretima protein inhibits ECM, EMT, and antiinflammatory markers, which in turn ameliorates BLM-induced pulmonary fibrosis. Preliminary mechanistic studies indicated that Pheretima protein can exert its biological activity by downregulating the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Shuyu Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institue of Chinese Medicine, Guangzhou, 510515, PR China
| | - Qixin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institue of Chinese Medicine, Guangzhou, 510515, PR China
| | - Feilong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institue of Chinese Medicine, Guangzhou, 510515, PR China
| | - Linhua Tian
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Yanli Meng
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institue of Chinese Medicine, Guangzhou, 510515, PR China.
| | - Weiming Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institue of Chinese Medicine, Guangzhou, 510515, PR China; Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150036, China.
| |
Collapse
|
15
|
Pham TX, Lee J, Guan J, Caporarello N, Meridew JA, Jones DL, Tan Q, Huang SK, Tschumperlin DJ, Ligresti G. Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight 2022; 7:153672. [PMID: 35167499 PMCID: PMC8986080 DOI: 10.1172/jci.insight.153672] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and its target nuclear factor of activated T cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation, and this effect was attenuated by NFATc1 inhibition. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Interruption of PIM1 signaling in IPF lung explants ex vivo inhibited prosurvival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.
Collapse
Affiliation(s)
- Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jisu Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Dakota L. Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven K. Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel J. Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Zhou X, Liu G, Xu M, Ying X, Li B, Cao F, Cheng S, Xiao B, Cheng M, Liang L, Jia M, Li W, Liu J, Li Z. Comprehensive analysis of PTEN-related ceRNA network revealing the key pathways WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 as potential biomarker in tumorigenesis and prognosis of kidney renal clear cell carcinoma. Mol Carcinog 2022; 61:508-523. [PMID: 35129856 DOI: 10.1002/mc.23396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most common malignancies, and there is still a lack of effective biomarkers for early detection and prognostic prediction. In here, we compared the characteristics of RNA sequencing data sets of KIRC samples based on the tumor suppressor gene phosphatase and tensin homolog (PTEN). The 1016 long noncoding RNAs, 48 microRNAs (miRNAs), and 2104 messenger RNAs associated with PTEN were identified and these genes were differentially expressed between tumor and paracancerous tissues. The most relevant pathway was found to be WDFY3-AS2 - miR-21-5p/miR-221-3p/miR-222-3p - TIMP3 according to the rules of competing endogenous RNA (ceRNA) regulation. WDFY3-AS2 and TIMP3 expression were positively correlated and reduced in KIRC samples, while miR-21-5p, miR-221-3p, and miR-222-3p were relatively highly expressed. The relatively low expression of WDFY3-AS2 and TIMP3 in KIRC were associated with poor prognosis in KIRC patients, while higher expression of miR-21-5p, miR-221-3p, and miR-222-3p predicted reduced survival (p < 0.05). Univariate and multivariate Cox regression analysis showed that lower expression of WDFY3-AS2 and TIMP3 was significantly related to tumor grade, tumor size, lymph node metastasis, distant metastasis, and TNM stage. The expression of TIMP3 in KIRC tissues was also verified by immunohistochemistry, and the results were consistent with our analytical data. In summary, this study constructed a new model with clinical predictive value and identified the WDFY3-AS2/TIMP3 pathway that was closely associated with the prognosis of KIRC, which could serve as a promising biomarker for the diagnosis and treatment of KIRC.
Collapse
Affiliation(s)
- Xishan Zhou
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Guofeng Liu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mo Xu
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Xintao Ying
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Bianfeng Li
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Fengxi Cao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Shuqiang Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Beibei Xiao
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Miao Cheng
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Liang Liang
- Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, China
| | - Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Jiheng Liu
- Department of Hematology and Oncology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Cummins KA, Bitterman PB, Tschumperlin DJ, Wood DK. A scalable 3D tissue culture pipeline to enable functional therapeutic screening for pulmonary fibrosis. APL Bioeng 2021; 5:046102. [PMID: 34805716 PMCID: PMC8598262 DOI: 10.1063/5.0054967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.
Collapse
Affiliation(s)
- Katherine A. Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
18
|
Chen L, Alam A, Pac-Soo A, Chen Q, Shang Y, Zhao H, Yao S, Ma D. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo. J Transl Med 2021; 101:1166-1175. [PMID: 34168289 PMCID: PMC8367813 DOI: 10.1038/s41374-021-00617-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of pulmonary fibrosis. This study aims to investigate the effects of valproic acid (VPA) on EMT in vitro and in vivo. In vitro, EMT was induced by the administration of transforming growth factor-β1 (TGF-β1) in a human alveolar epithelial cell line (A549). The dose effects of VPA (0.1-3 mM) on EMT were subsequently evaluated at different timepoints. VPA (1 mM) was applied prior to the administration of TGF-β1 and the expression of E-cadherin, vimentin, p-Smad2/3 and p-Akt was assessed. In addition, the effects of a TGF-β type I receptor inhibitor (A8301) and PI3K-Akt inhibitor (LY294002) on EMT were evaluated. In vivo, the effects of VPA on bleomycin-induced lung fibrosis were evaluated by assessing variables such as survival rate, body weight and histopathological changes, whilst the expression of E-cadherin and vimentin in lung tissue was also evaluated. A8301 and LY294002 were used to ascertain the cellular signaling pathways involved in this model. The administration of VPA prior to TGF-β1 in A549 cells prevented EMT in both a time- and concentration-dependent manner. Pretreatment with VPA downregulated the expression of both p-Smad2/3 and p-Akt. A8301 administration increased the expression of E-cadherin and reduced the expression of vimentin. LY294002 inhibited Akt phosphorylation induced by TGF-β1 but failed to prevent EMT. Pretreatment with VPA both increased the survival rate and prevented the loss of body weight in mice with pulmonary fibrosis. Interestingly, both VPA and A8301 prevented EMT and facilitated an improvement in lung structure. Overall, pretreatment with VPA attenuated the development of pulmonary fibrosis by inhibiting EMT in mice, which was associated with Smad2/3 deactivation but without Akt cellular signal involvement.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Aurelie Pac-Soo
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailin Zhao
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Daqing Ma
- Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
19
|
Guo C, Wang Y, Piao Y, Rao X, Yin D. Chrysophanol Inhibits the Progression of Diabetic Nephropathy via Inactivation of TGF-β Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4951-4962. [PMID: 33235436 PMCID: PMC7678702 DOI: 10.2147/dddt.s274191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022]
Abstract
Background Diabetic nephropathy (DN) is a common form of diabetic complication which threatens the health of patients with diabetes. It has been reported that chrysophanol (CHR) can alleviate the progression of diabetes; however, the role of CHR in DN remains unclear. Methods To mimic DN in vitro, human podocytes (AB8/13 cells) were treated with high glucose (HG). Meanwhile, Western blot was performed to detect protein expressions. CCK-8 assay was used to test cell viability and cell proliferation was detected by Ki-67 staining. In addition, flow cytometry was performed to investigate cell apoptosis and cycle and cell migration was tested by transwell assay. Moreover, in vivo model of DN was established to detect the effect of CHR on DN in vivo. Results HG-induced AB8/13 cell growth inhibition was significantly rescued by CHR. In addition, HG notably promoted the migration of AB8/13 cells, while this phenomenon was obviously reversed by CHR. Moreover, CHR inhibited the progression of DN via inactivation of TGF-β/EMT axis. Furthermore, CHR alleviated the symptom of DN in vivo. Conclusion CHR significantly alleviated the progression of DN via inactivation of TGF-β/EMT signaling in vitro and in vivo. Our findings were helpful to uncover the mechanism by which CHR regulates DN, as well as inspire the development of novel therapy against DN.
Collapse
Affiliation(s)
- Chuan Guo
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, People's Republic of China.,Department of Nephropathy, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Yarong Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, People's Republic of China
| | - Yuanlin Piao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, People's Republic of China
| | - Xiangrong Rao
- Department of Nephropathy, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, People's Republic of China
| | - Dehai Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, People's Republic of China
| |
Collapse
|