1
|
Huang Z, Shi N, Luo Z, Chen F, Feng X, Lai Y, Li J, Yi X, Xia W, Tang A. Identification and characterization of the tumor necrosis factor receptor superfamily in the Chinese tree shrew (Tupaia belangeri chinensis). BMC Genomics 2025; 26:338. [PMID: 40186114 PMCID: PMC11969777 DOI: 10.1186/s12864-025-11451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025] Open
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) plays a vital role in eliciting immune responses against infections. The tree shrew, closely related to primates, is often utilized in human disease models. Here, we analyzed TNFRSF members from 11 different animal species, including the Chinese tree shrew, and identified 24 tree shrew TNFRSF (tTNFRSF) genes, which were grouped into seven subcategories with similar motifs, sequences, and gene structures. As expected, the multi-species collinearity analysis revealed that tTNFRSF genome bears a greater resemblance to humans than to mice. Transcriptome data from 28 samples across ten organ types showed high TNFRSF expression predominantly in immune organs. It was seen that TNFRSF13C co-expresses consistently with the B cell surface marker CD79A, which is consistent with its characteristics in humans. The tissue distribution and co-expression were confirmed via RT-qPCR and immunofluorescence. Evaluation of transcriptome data from 70 samples infected with six types of viruses showed that most TNFRSF genes were upregulated in tree shrew post-viral infection. TNFRSF exerts antiviral function most probably through the activation of the NF-κB pathway, subsequently causing apoptosis of infected cells. Our findings provide evolutionary and functional insights into tTNFRSF, indicating its potential utility in human viral infection models.
Collapse
Affiliation(s)
- Zongjian Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Zhenqiu Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Fangfang Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Xunwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Yongjing Lai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Jian Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Xiang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China.
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530000, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Zhang Z, Ren X, Zhang Y, Zhang J, Li X, Zeng F, Yue R, Li Q, Zhang H, Ma D, Liao Y, Liao Y, Li D, Yu L, Jiang G, Zhao H, Zheng H, Li H, Zhao X, Liu L, Li Q. Analysis of the Interaction Between the Attenuated HSV-1 Strain M6 and Macrophages Indicates Its Potential as an Effective Vaccine Immunogen. Viruses 2025; 17:392. [PMID: 40143320 PMCID: PMC11945479 DOI: 10.3390/v17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a very concerning pathogen due to its ability to persist in the host's nervous system and continuously interfere with the immune system, which complicates treatment. Therefore, the development of an effective HSV-1 vaccine is crucial. In this study, we focused on an HSV-1 mutant strain, M6, which includes several deleted genes associated with viral infection virulence and latent infection function, and explored its infection of macrophages and immunological characteristics. The study found that both the attenuated strain M6 and the wild-type strain infect macrophages through the binding of the gD protein to the HVEM receptor on the macrophage surface. Compared to the wild-type strain, the attenuated M6 strain induced a milder immune response, characterized by the lower expression of immune signaling molecules and inflammatory cytokine levels. Upon reintroducing macrophages infected with the two strains into mice, the M6 strain induced lower levels of inflammatory cytokines and higher levels of chemokines in spleen cells and also slightly lower humoral and cellular immune responses than the wild-type strain. Further histopathological analysis revealed that mice in the attenuated M6 group showed more stable body weight changes and milder pathological damage in immune organs such as the liver, spleen, and lymph nodes. In conclusion, the attenuated M6 strain exhibits good immunogenicity and mild pathological side effects, suggesting its potential as an effective immunogen.
Collapse
MESH Headings
- Animals
- Macrophages/immunology
- Macrophages/virology
- Mice
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/genetics
- Vaccines, Attenuated/immunology
- Female
- Cytokines/metabolism
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpes Simplex/prevention & control
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Mice, Inbred BALB C
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Chlorocebus aethiops
- Herpes Simplex Virus Vaccines/immunology
- Herpes Simplex Virus Vaccines/genetics
- Vero Cells
- Antibodies, Viral/immunology
- Immunity, Cellular
Collapse
Affiliation(s)
- Zhenxiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Xiaohong Ren
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Xinghang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Fengyuan Zeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Rong Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Qi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Haobo Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Danjing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Yuansheng Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| |
Collapse
|
3
|
Wang G, Huang Z, Wu Y, Xu R, Li J. Revealing the molecular landscape of calcium oxalate renal calculi utilizing a tree shrew model: a transcriptomic analysis of the kidney. Urolithiasis 2024; 52:161. [PMID: 39546021 DOI: 10.1007/s00240-024-01661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Our comprehensive genomic investigation employing tree shrew calcium oxalate stone models unveils intricate links between kidney stone formation and diverse physiological systems. We identify a constellation of genes whose expression patterns point to multifaceted interactions among cardiovascular health, renal fibrosis, and bone homeostasis in the pathogenesis of renal calculi. Key players include CHIT1, TNFRSF18, CLEC4E, RGS1, DCSTAMP, and SLC37A2, which emerge as pivotal actors in arteriosclerosis, renal fibrosis, and osteoclastogenesis respectively, showcasing the complexity of stone disease. The downregulation of ADRA1D, LVRN, and ABCG8 underscores roles in urodynamics, epithelial-mesenchymal transition, and vitamin D metabolism, linking these to nephrolithiasis. Comparative genomics across tree shrew, human (Randall's plaque), rat, and mouse identifies shared KEGG pathways including Calcium signaling, Actin cytoskeleton regulation, Neuroactive ligand-receptor interactions, Complement and coagulation cascades, TRP channel regulation by inflammatory mediators, p53 signaling, and Fc gamma R-mediated phagocytosis. These pathways underscore the interconnectedness of immune, inflammatory, and metabolic processes in stone development. Our findings suggest novel targets for future therapeutics and prevention strategies against nephrolithiasis, highlighting the need for a holistic view of the disease encompassing multiple pathogenic factors.
Collapse
Affiliation(s)
- Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Rui Xu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China.
| |
Collapse
|
4
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
5
|
He J, Zhao Y, Fu Z, Chen L, Hu K, Lin X, Wang N, Huang W, Xu Q, He S, He Y, Song L, Xia Fang M, Zheng J, Chen B, Cai Q, Fu J, Su J. A novel tree shrew model of lipopolysaccharide-induced acute respiratory distress syndrome. J Adv Res 2024; 56:157-165. [PMID: 37037373 PMCID: PMC10834818 DOI: 10.1016/j.jare.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 03/25/2023] [Indexed: 04/12/2023] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure, with substantial attributable morbidity and mortality. The small animal models that are currently used for ARDS do not fully manifest all of the pathological hallmarks of human patients, which hampers both the studies of disease mechanism and drug development. OBJECTIVES To examine whether the phenotypic changes of primate-like tree shrews in response to a one-hit lipopolysaccharides (LPS) injury resemble human ARDS features. METHODS LPS was administered to tree shrews through intratracheal instillation; then, the animals underwent CT or PET/CT imaging to examine the changes in the structure and function of the whole lung. The lung histology was analyzed by H&E staining and immunohistochemical staining of inflammatory cells. RESULTS Results demonstrated that tree shrews exhibited an average survival time of 3-5 days after LPS insult, as well as an obvious symptom of dyspnea before death. The ratios of PaO2 to FiO2 (P/F ratio) were close to those of moderate ARDS in humans. CT imaging showed that the scope of the lung injury in tree shrews after LPS treatment were extensive. PET/CT imaging with 18F-FDG displayed an obvious inflammatory infiltration. Histological analysis detected the formation of a hyaline membrane, which is usually present in human ARDS. CONCLUSION This study established a lung injury model with a primate-like small animal model and confirmed that they have similar features to human ARDS, which might provide a valuable tool for translational research.
Collapse
Affiliation(s)
- Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China.
| | - Yue Zhao
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Zhenli Fu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kongzhen Hu
- Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Lin
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ning Wang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Weijian Huang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Qi Xu
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Shuhua He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ying He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linliang Song
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Mei Xia Fang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Biying Chen
- Radiology Department of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiuyan Cai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiangnan Fu
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Zheng L, Chen S, Wu Q, Li X, Zeng W, Dong F, An W, Qin F, Lei L, Zhao C. Tree shrews as a new animal model for systemic sclerosis research. Front Immunol 2024; 15:1315198. [PMID: 38343538 PMCID: PMC10853407 DOI: 10.3389/fimmu.2024.1315198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Systemic sclerosis (SSc) is a chronic systemic disease characterized by immune dysregulation and fibrosis for which there is no effective treatment. Animal models are crucial for advancing SSc research. Tree shrews are genetically, anatomically, and immunologically closer to humans than rodents. Thus, the tree shrew model provides a unique opportunity for translational research in SSc. Methods In this study, a SSc tree shrew model was constructed by subcutaneous injection of different doses of bleomycin (BLM) for 21 days. We assessed the degree of inflammation and fibrosis in the skin and internal organs, and antibodies in serum. Furthermore, RNA sequencing and a series of bioinformatics analyses were performed to analyze the transcriptome changes, hub genes and immune infiltration in the skin tissues of BLM induced SSc tree shrew models. Multiple sequence alignment was utilized to analyze the conservation of selected target genes across multiple species. Results Subcutaneous injection of BLM successfully induced a SSc model in tree shrew. This model exhibited inflammation and fibrosis in skin and lung, and some developed esophageal fibrosis and secrum autoantibodies including antinuclear antibodies and anti-scleroderma-70 antibody. Using RNA sequencing, we compiled skin transcriptome profiles in SSc tree shrew models. 90 differentially expressed genes (DEGs) were identified, which were mainly enriched in the PPAR signaling pathway, tyrosine metabolic pathway, p53 signaling pathway, ECM receptor interaction and glutathione metabolism, all of which are closely associated with SSc. Immune infiltration analysis identified 20 different types of immune cells infiltrating the skin of the BLM-induced SSc tree shrew models and correlations between those immune cells. By constructing a protein-protein interaction (PPI) network, we identified 10 hub genes that were significantly highly expressed in the skin of the SSc models compared to controls. Furthermore, these genes were confirmed to be highly conserved in tree shrews, humans and mice. Conclusion This study for the first time comfirmed that tree shrew model of SSc can be used as a novel and promising experimental animal model to study the pathogenesis and translational research in SSc.
Collapse
Affiliation(s)
- Leting Zheng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuyuan Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulin Wu
- Department of General Surgery, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wen Zeng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Dong
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei An
- Respiratory and Critical Care Medicine Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fang Qin
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Lei
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Ma L, Chen R, Zhang Y, Dai Z, Huang G, Yang R, Yang H. The tree shrew as a new animal model for the study of periodontitis. J Clin Periodontol 2023; 50:1075-1088. [PMID: 37353986 DOI: 10.1111/jcpe.13842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
AIM Periodontitis is an inflammatory, infectious disease of polymicrobial origin that can damage tooth-supporting bone and tissue. Tree shrews, evolutionarily closer to humans than commonly used rodent models, have been increasingly used as biomedical models. However, a tree shrew periodontitis model has not yet been established. MATERIALS AND METHODS Periodontitis was induced in male tree shrews/Sprague-Dawley rats by nylon thread ligature placement around the lower first molars. Thereafter, morphometric and histological analyses were performed. The distance from the cemento-enamel junction to the alveolar bone crest was measured using micro-computed tomography. Periodontal pathological tissue damage, inflammation and osteoclastogenesis were assessed using haematoxylin and eosin staining and quantitative immunohistochemistry, respectively. RESULTS Post-operatively, gingival swelling, redness and spontaneous bleeding were observed in tree shrews but not in rats. After peaking, bone resorption decreased gradually until plateauing in tree shrews. Contrastingly, rapid and near-complete bone loss was observed in rats. Inflammatory infiltrates were observed 1 week post operation in both models. However, only the tree shrew model transitioned from acute to chronic inflammation. CONCLUSIONS Our study revealed that a ligature-induced tree shrew model of periodontitis partly reproduced the pathological features of human periodontitis and provided theoretical support for using tree shrews as a potential model for human periodontitis.
Collapse
Affiliation(s)
- Liya Ma
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rui Chen
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yelin Zhang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zichao Dai
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Guobin Huang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rongqiang Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
8
|
Zhang J, Xu X, Duan S, Gao Y, Ma D, Yue R, Zeng F, Li X, Meng Z, Li X, Niu Z, Jiang G, Yu L, Liao Y, Li D, Wang L, Zhao H, Zhang Y, Li Q. Characterization of the Immunologic Phenotype of Dendritic Cells Infected With Herpes Simplex Virus 1. Front Immunol 2022; 13:931740. [PMID: 35865514 PMCID: PMC9294641 DOI: 10.3389/fimmu.2022.931740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Due to viral envelope glycoprotein D binding to cellular membrane HVEM receptor, HSV-1 can infect certain dendritic cells, which becomes an event in the viral strategy to interfere with the host’s immune system. We previously generated the HSV-1 mutant strain M6, which produced an attenuated phenotype in mice and rhesus monkeys. The attenuated M6 strain was used to investigate how HSV-1 infection of dendritic cells interferes with both innate and adaptive immunity. Our study showed that dendritic cells membrane HVEM receptors could mediate infection of the wild-type strain and attenuated M6 strain and that dendritic cells infected by both viruses in local tissues of animals exhibited changes in transcriptional profiles associated with innate immune and inflammatory responses. The infection of pDCs and cDCs by the two strains promoted cell differentiation to the CD103+ phenotype, but varied transcriptional profiles were observed, implying a strategy that the HSV-1 wild-type strain interferes with antiviral immunity, probably due to viral modification of the immunological phenotype of dendritic cells during processing and presentation of antigen to T cells, leading to a series of deviations in immune responses, ultimately generating the deficient immune phenotype observed in infected individuals in the clinical.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yang Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Danjing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Rong Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Fengyuan Zeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xueqi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ziyan Meng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xinghang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Zhenye Niu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- *Correspondence: Qihan Li, ; Ying Zhang,
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
- *Correspondence: Qihan Li, ; Ying Zhang,
| |
Collapse
|
9
|
Shi N, Xia W, Ji K, Feng Y, Li H, He G, Tang A. Anatomy and nomenclature of tree shrew lymphoid tissues. Exp Anim 2021; 71:173-183. [PMID: 34853240 PMCID: PMC9130038 DOI: 10.1538/expanim.21-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The immune response plays a key role in the disease development of the organism, while immune function serves as an important indicator for animal models evaluation. The tree shrew
(Tupaia belangeri chinensis), as a new laboratory animal with a close genetic relationship with primates, has been used to construct various disease models. However, the
immune system of tree shrews, especially anatomical descriptions of lymph nodes, is still relatively unknown. In this study, a total of 16 different lymph nodes were identified, including
superficial lymph nodes and deep lymph nodes. Superficial lymph nodes were located in the head and neck region (submandibular lymph node, parotid lymph node, deep and superficial cervical
lymph nodes) and at the forelimb (axillary and accessory axillary lymph nodes, subscapular lymph node) and hindlimb (popliteal, sciatic, and inguinal lymph nodes). Deep lymph nodes comprise
mediastinal lymph nodes located in thoracic cavity and abdominal lymph nodes that are mainly located in each mesentery (mesenteric, gastric, pancreatic-duodenal, renal lymph nodes) or along
the major vessels (iliac lymph nodes). In addition, we described the spleen and thymus of the tree shrew, as well as two lymphoid tissues in the top wall of the nasal cavity and the
oropharynx. This study mainly describes the tree shrew immune system from an anatomical and histopathological perspective and provides fundamental research references for the establishment
of various animal models of tree shrews.
Collapse
Affiliation(s)
- Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Ketong Ji
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Yiwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Hua Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| |
Collapse
|
10
|
Spruit CM, Nemanichvili N, Okamatsu M, Takematsu H, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021; 13:815. [PMID: 34062844 PMCID: PMC8147317 DOI: 10.3390/v13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| | - Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan;
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| |
Collapse
|
11
|
Lu T, Peng H, Zhong L, Wu P, He J, Deng Z, Huang Y. The Tree Shrew as a Model for Cancer Research. Front Oncol 2021; 11:653236. [PMID: 33768009 PMCID: PMC7985444 DOI: 10.3389/fonc.2021.653236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.
Collapse
Affiliation(s)
- Tao Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First People's Hospital of Changde City, Changde, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|