1
|
Sifontes-Rodríguez S, Hernández-Aceves JA, Salas- Garrido CG, Rocha DM, Pérez-Osorio IN, Villalobos N, Sciutto E, Fragoso G. In silico, in vitro and in vivo toxicity assessment of the antitumoral peptide GK-1. Toxicol Rep 2025; 14:101962. [PMID: 40034548 PMCID: PMC11875144 DOI: 10.1016/j.toxrep.2025.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
Peptide drugs have emerged as an attractive alternative for cancer treatment due to their potency, high specificity, general safety and low cost. GK-1 is a linear 18 amino acid peptide with proven immunomodulator, antitumor and antimetastatic capacity in animal models. Preclinical toxicity studies for its use as a vaccine adjuvant demonstrated its safety in various assay systems, but a comprehensive exploration of its toxicity profile is required to be used in cancer immunotherapy. Therefore, in the present work, the potential toxicity of GK-1 was predicted with ToxinPred 3.0 software, and its in vitro cytotoxicity, and single-dose and repeated-dose toxicity by subcutaneous route in mice were experimentally assessed. GK-1 peptide was predicted as a non-toxic and did not exhibit in vitro cytotoxicity for several non-tumor and tumor cell lines and primary cell cultures at concentrations up to 500 µM, reinforcing previous studies pointing that the antitumoral effect of GK-1 was not mediated by tumor cell cytotoxicity. The single-dose toxicity study did not evidence local or systemic toxicity up to the maximum tested dose of 1000 mg/kg. Moreover, no toxic effects were observed in the repeated-dose toxicity study based on four doses administered weekly at up to 300 mg/kg. Considering that GK-1 is effective in triple-negative breast cancer and melanoma models in mice at doses as low as 5 mg/kg, the present results support the safety of GK-1 as an antitumoral peptide candidate.
Collapse
Affiliation(s)
- Sergio Sifontes-Rodríguez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Alberto Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Carlos Gerardo Salas- Garrido
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Diego Moctezuma Rocha
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Iván Nicolás Pérez-Osorio
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Nelly Villalobos
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Hernández-Aceves JA, Cervantes-Torres J, Cruz-Gregorio A, Aranda-Rivera AK, Moctezuma D, Peña-Agudelo JA, Patiño-Chávez OJ, Hernández M, Sifontes-Rodríguez S, Rodriguez T, Pedraza-Chaverri J, Sciutto E, Fragoso G. Antitumoral effectiveness and safety of intravenous versus subcutaneous administration of immunomodulatory peptide GK-1 in a murine breast cancer model. Vaccine 2025; 50:126814. [PMID: 39893770 DOI: 10.1016/j.vaccine.2025.126814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/23/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION GK-1 is a safe and effective molecule with high antimetastatic activity against murine breast and skin cancer. GK-1 treatment enhances cytotoxic response of CD8+ lymphocytes against the tumor and modifies the oxidative stress in the tumor. This study was designed to compare the antitumor efficacy of GK-1 by subcutaneous (SC) versus intravenous (IV) route of administration in the 4T1 mouse mammary carcinoma model and to extend its innocuity in heart and kidney, key tissues for observing damage induced by anticancer drugs and immunotherapy. MATERIAL AND METHODS BALB/c female mice were injected orthotopically with 1000 4T1 cells. When palpable primary tumors of about 1 mm3 were detected, GK-1 (5 mg/kg) was administered IV or SC weekly for 21 days. Tumor growth and mouse weight were monitored weekly. The primary tumor weight and volume, the number of lung metastases, and programmed cell death protein 1 (PD-1) expression were recorded after 28 days of starting treatment. Kidney, heart, spleen, serum, and blood samples from naïve mice were obtained to evaluate the safety of GK-1 administration by measuring the degree of damage to these tissues with specific cytotoxic markers. RESULTS Subcutaneous or intravenous administration of GK-1 significantly increased the lifespan of mice and significantly reduced the primary tumor weight and volume and the number of lungs macrometastases. GK-1 reduced the expression of PD-1 in tumor-infiltrating lymphocytes in mice regardless of the route of immunization used, which is especially encouraging. No evidence of damage to kidney or heart tissues was detected in the tumor-free mice. CONCLUSIONS This study supports that subcutaneous GK-1 administered, has an efficacy non-inferior to intravenous administration, well-tolerated with a similar safety profile and therefore offers a less invasive valid treatment alternative.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chavéz, Mexico City, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego Moctezuma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña-Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisela Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Sifontes-Rodríguez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tonathiu Rodriguez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Cervantes-Torres J, Hernández-Aceves JA, Gajón Martínez JA, Moctezuma-Rocha D, Vázquez Ramírez R, Sifontes-Rodríguez S, Ramírez-Salinas GL, Mendoza Sierra L, Alfonzo LB, Sciutto E, Fragoso G. Exploring the Mechanisms Underlying Cellular Uptake and Activation of Dendritic Cells by the GK-1 Peptide. ACS OMEGA 2024; 9:49625-49638. [PMID: 39713707 PMCID: PMC11656211 DOI: 10.1021/acsomega.4c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on in vitro studies using HEK293 and HEK293-TLR4-MD2 cells and in vivo using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.
Collapse
Affiliation(s)
- Jacquelynne Cervantes-Torres
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
- Departamento
de Microbiología e Inmunología, Facultad de Medicina
Veterinaria y Zootecnia, Universidad Nacional
Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Juan A. Hernández-Aceves
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Julián A. Gajón Martínez
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Diego Moctezuma-Rocha
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Ricardo Vázquez Ramírez
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Sergio Sifontes-Rodríguez
- Investigador
por México del CONAHCyT adscrito al Departamento de Inmunología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Sede Circuito
Escolar Edificio A 1er Piso, Ciudad
de México MX 04510, Mexico
| | - Gemma L. Ramírez-Salinas
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Luis Mendoza Sierra
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Laura Bonifaz Alfonzo
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Edda Sciutto
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Gladis Fragoso
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| |
Collapse
|
4
|
Hernández-Aceves JA, Cervantes-Torres J, Torres-García D, Zuñiga-Flores FJ, Patiño-Chávez OJ, Peña Agudelo JA, Aguayo-Flores JE, Garfias Y, Montero-León L, Romero-Romero L, Pérez-Torres A, Fragoso G, Sciutto E. GK-1 effectively reduces angiogenesis and prevents T cell exhaustion in a breast cancer murine experimental model. Cancer Immunol Immunother 2023; 72:3825-3838. [PMID: 37736849 PMCID: PMC10576684 DOI: 10.1007/s00262-023-03538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Torres-García
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francisco J Zuñiga-Flores
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Yonathan Garfias
- Unidad de Investigación, Conde de Valenciana, Instituto de Oftalmología, Mexico City, Mexico
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Montero-León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Romero-Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Ghorbani P, Kim SY, Smith TKT, Minarrieta L, Robert-Gostlin V, Kilgour MK, Ilijevska M, Alecu I, Snider SA, Margison KD, Nunes JRC, Woo D, Pember C, O’Dwyer C, Ouellette J, Kotchetkov P, St-Pierre J, Bennett SAL, Lacoste B, Blais A, Nair MG, Fullerton MD. Choline metabolism underpins macrophage IL-4 polarization and RELMα up-regulation in helminth infection. PLoS Pathog 2023; 19:e1011658. [PMID: 37747879 PMCID: PMC10553840 DOI: 10.1371/journal.ppat.1011658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/05/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.
Collapse
Affiliation(s)
- Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Tyler K. T. Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucía Minarrieta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Victoria Robert-Gostlin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marisa K. Kilgour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Maja Ilijevska
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shayne A. Snider
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kaitlyn D. Margison
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia R. C. Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Woo
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Ciara Pember
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie Ouellette
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steffany A. L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario, Canada
- Éric Poulin Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
GK-1 Induces Oxidative Stress, Mitochondrial Dysfunction, Decreased Membrane Potential, and Impaired Autophagy Flux in a Mouse Model of Breast Cancer. Antioxidants (Basel) 2022; 12:antiox12010056. [PMID: 36670920 PMCID: PMC9854788 DOI: 10.3390/antiox12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer worldwide in women. During the last decades, the mortality due to breast cancer has progressively decreased due to early diagnosis and the emergence of more effective new treatments. However, human epidermal growth factor receptor 2 (HER2) and triple-negative breast cancer (TNBC) remain with poor prognoses. In our research group, we are proposing the GK-1 immunomodulatory peptide as a new alternative for immunotherapy of these aggressive tumors. GK-1 reduced the growth rate of established tumors and effectively reduced lung metastasis in the 4T1 experimental murine model of breast cancer. Herein, the effect of GK-1 on the redox state, mitochondrial metabolism, and autophagy of triple-negative tumors that can be linked to cancer evolution was studied. GK-1 decreased catalase activity, reduced glutathione (GSH) content and GSH/oxidized glutathione (GSSG) ratio while increased hydrogen peroxide (H2O2) production, GSSG, and protein carbonyl content, inducing oxidative stress (OS) in tumoral tissues. This imbalance between reactive oxygen species (ROS) and antioxidants was related to mitochondrial dysfunction and uncoupling, characterized by reduced mitochondrial respiratory parameters and dissipation of mitochondrial membrane potential (ΔΨm), respectively. Furthermore, GK-1 likely affected autophagy flux, confirmed by elevated levels of p62, a marker of autophagy flux. Overall, the induction of OS, dysfunction, and uncoupling of the mitochondria and the reduction of autophagy could be molecular mechanisms that underlie the reduction of the 4T1 breast cancer induced by GK-1.
Collapse
|
7
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Cruz-Gregorio A, Aranda-Rivera AK, Sciutto E, Fragoso G, Pedraza-Chaverri J. Redox state associated with antitumor and immunomodulatory peptides in cancer. Arch Biochem Biophys 2022; 730:109414. [PMID: 36174750 DOI: 10.1016/j.abb.2022.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Cancer, a major public health problem, is the fourth cause of death in the world. While cancer mortality has decreased in recent decades due to more effective treatments, mostly based on improving antitumor immunity, some forms of cancer are resistant to these immunotherapies. A promising approach for cancer treatment involves the administration of antitumor and immunomodulatory peptides. Immunomodulatory peptides have been proved to exert antitumor and immunomodulatory effects by activating immune cells such as cytotoxic T cells, with fewer side-effects. A process closely related to the regulation of the immune system by immunomodulatory antitumor peptides is the modulation of the redox state, which has been poorly studied. This review focuses on the redox state regulated by antitumor and immunomodulatory peptides in cancer development, and on the potential of redox state as a therapy associated with these peptides in cancer treatment.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Ortiz Caltempa A, Hernández M, Pérez AL, Aguilar L, Guzmán C, Ayón-Núñez DA, Fragoso G, Bobes RJ, López ME, Sciutto E, Villareal ML. Improvement of cell suspension cultures of transformed and untransformed Carica papaya cell lines, towards the development of an antiparasitic product against the gastrointestinal nematode Haemonchus contortus. Front Cell Infect Microbiol 2022; 12:958741. [PMID: 36159651 PMCID: PMC9493254 DOI: 10.3389/fcimb.2022.958741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.
Collapse
Affiliation(s)
- Anabel Ortiz Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Marisela Hernández
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Lilia Pérez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Liliana Aguilar
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Cynthia Guzmán
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Dolores Adriana Ayón-Núñez
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gladis Fragoso
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Raúl J. Bobes
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria Eugenia López
- Centro de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Edda Sciutto
- Laboratorio de Inmunología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: María Luisa Villareal, ; Edda Sciutto,
| | - María Luisa Villareal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: María Luisa Villareal, ; Edda Sciutto,
| |
Collapse
|
10
|
Fragoso G, Sciutto E. GK1: An Alternative Treatment to Control the Respiratory Complications During COVID19. Arch Med Res 2020; 52:354-355. [PMID: 33168195 PMCID: PMC7605854 DOI: 10.1016/j.arcmed.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022]
Affiliation(s)
- Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma De México, Ciudad de México, México
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma De México, Ciudad de México, México.
| |
Collapse
|