1
|
Lu Z, Zhu L, Yi C, Su B, Wang R. C5a/C5aR regulates Th1/Th2 imbalance in sepsis-associated lung injury by promoting neutrophil activation to increase PAD4 expression. Ann Med 2025; 57:2447406. [PMID: 39831526 PMCID: PMC11749016 DOI: 10.1080/07853890.2024.2447406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Multi-organ failure frequently complicates sepsis, with lungs being the primary target. T helper (Th) cell activation and phenotypic imbalance among them contribute significantly to sepsis-associated lung injury. Additionally, the complement system could regulate the polarized phenotype of T lymphocytes. Therefore, this study investigated the effect of C5a/C5a receptor (C5aR)/Peptidylarginine deiminase 4 (PAD4) on the Th1/Th2 ratio in sepsis-induced lung injury. METHODS ELISA was used to detect the expression of PAD4, HBP, MPO, IL-1β, IL-10, IL-6, IL-4, syndecan-1, endocan and H3Cit. An LPS-induced septic lung injury mouse model was constructed, with HE and PAS stains evaluating lung damage. BCA kit quantified BALF total protein, Western blot examined C5aR, syndecan-1, endocan, PAD4 levels, while TUNEL and flow cytometry assessed tissue cellular apoptosis. Furthermore, flow cytometry was used to detect the +Th1 and Th2 cells proportion in peripheral blood, and CCK-8 was used to detect BEAS-2B activity. RESULTS The results indicated that PAD4 and inflammatory factors were increased in lesion samples compared with controls. In sepsis-induced lung injury mice, addition of GSK484, a PAD4 inhibitor, effectively alleviated sepsis-induced lung edema and inflammatory responses. GSK484 was found to inhibit C5a/C5aR expression and suppress apoptosis and lung injury. Furthermore, GSK484 markedly inhibited Th1 cell phenotypes in vitro. Additionally, GSK484 intervention on Th1 cell phenotype further affected lung epithelial cell injury. CONCLUSION In summary, we revealed the mechanism of C5a/C5aR-induced PAD4 upregulation via neutrophil activation in sepsis-associated lung injury, causing a Th1/Th2 imbalance and lung injury, providing a novel approach for sepsis-associated lung injuries treatment.
Collapse
Affiliation(s)
- Zhenbing Lu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changlin Yi
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bi Su
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Luo R, Wang Z, Xu F, Xie K. Dexmedetomidine improve lung inflammation by regulating autophagy and apoptosis of CD4+ T cell via AMPK/mTOR signaling. Mol Immunol 2025; 183:1-11. [PMID: 40311186 DOI: 10.1016/j.molimm.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES To investigate the protective effect and potential mechanism of dexmedetomidine (Dex) in acute lung injury (ALI). MATERIALS AND METHODS C57BL/6 mice and EL-4 cells were used for in vivo and in vitro studies, respectively. Cecal ligation and puncture (CLP) method was used to prepare an acute lung injury model. After dexmedetomidine intervention, tissue and cell samples were collected to evaluate and measure the severity of lung damage, the proportion of Treg cells, the expression of autophagy-related protein levels and AMPK/mTOR pathways. RESULTS Dex reduced lung damage, and IL-17a, MPO positive cells in the lung, decreased the levels of pro-inflammatory cytokines, and restrain autophagy and apoptosis via the activation of the AMPK/mTOR pathway and increase of the proportion of Tregs. CONCLUSIONS Dex can inhibit the levels of autophagy and apoptosis, increase the proportion of Treg cells, and reduce CLP induced acute lung injury through regulating AKMP/MTOR pathway.
Collapse
Affiliation(s)
- Renjie Luo
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Zhao Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sepsis Diagnosis and Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ke Xie
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sepsis Diagnosis and Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Veskemaa L, Taher M, Graw JA, Gonzalez-Lopez A, Francis RCE. Slow releasing sulphide donor GYY4137 protects mice against ventilator-induced lung injury. Intensive Care Med Exp 2025; 13:45. [PMID: 40263160 PMCID: PMC12014871 DOI: 10.1186/s40635-025-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Cyclic stretching of the lung during mechanical ventilation induces inflammation that contributes to the development of ventilator induced lung injury. Hydrogen sulphide (H2S) is an endogenous gasotransmitter known for its anti-inflammatory properties. However, the administration of exogenous H2S is constrained by its narrow therapeutic window, rapidly leading to potentially toxic peak concentrations. Alternatively, slow-release sulphide donors, such as GYY4137, offer a more controlled delivery. The primary aim of this study is to assess the efficacy and safety of GYY4137 in mitigating VILI. METHODS Anaesthetised male C57BL/6 J mice were pretreated with an intraperitoneal injection of GYY4137 (50 mg/kg, n = 14) or an equivalent volume of phosphate-buffered saline (controls, n = 13) and were then subjected to high tidal volume ventilation (VT 40-42.5 ml/kg) for a maximum of 4 h. RESULTS GYY4137 pretreatment led to a notable 50% increase in survival rates compared to controls (p = 0.0025). It also improved arterial oxygenation after high VT ventilation, with arterial partial pressure of oxygen (PaO2) of 64 mmHg (IQR 49-125 mmHg) vs. 44 mmHg (IQR 42-51 mmHg) in controls (p < 0.001). Additionally, GYY4137 reduced total protein concentration in bronchoalveolar lavage fluid by 30% (p = 0.024) and lowered IL-1β levels by 40% (p = 0.006). GYY4137 mitigated the decline in dynamic respiratory system compliance caused by high VT ventilation, showing values of 24 μl/cmH2O (IQR 22-27) compared to 22 μl/cmH2O (IQR 22-24) in controls (p = 0.017). GYY4137 had minimal effects on antioxidant gene expression related to the erythroid nuclear factor 2, and it did not affect glutathione metabolism, the nuclear factor kappa B pathway, or the endoplasmic reticulum stress response. CONCLUSIONS In this mouse model of VILI, pretreatment with GYY4137 showed protective effects. GYY4137 significantly improved survival. It also improved arterial blood oxygenation and dynamic respiratory system compliance, and mitigated the development of lung oedema and inflammation.
Collapse
Affiliation(s)
- Lilly Veskemaa
- Department of Anaesthesiology and Intensive Care Medicine CCM/CVK, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mahdi Taher
- Department of Anaesthesiology and Intensive Care Medicine CCM/CVK, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Adriaan Graw
- Department of Anaesthesiology and Intensive Care Medicine, Universitätsklinikum Ulm, Ulm University, 89081, Ulm, Germany
| | - Adrian Gonzalez-Lopez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
| | - Roland C E Francis
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Wang Y, Wang W, Zhang Y, Fleishman JS, Wang H. Targeting ferroptosis offers therapy choice in sepsis-associated acute lung injury. Eur J Med Chem 2025; 283:117152. [PMID: 39657462 DOI: 10.1016/j.ejmech.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-associated acute lung injury (SALI) is a common complication of sepsis, consisting of a dysfunctional host response to infection-mediated heterogenous complexes. SALI is reported in up to 50 % of patients with sepsis and causes poor outcomes. Despite high incidence, there is a lack of understanding in its pathogenesis and optimal treatment. A better understanding of the molecular mechanisms underlying SALI may help produce better therapeutics. The effects of altered cell-death mechanisms, such as non-apoptotic regulated cell death (RCD) (i.e., ferroptosis), on the development of SALI are beginning to be discovered, while targeting ferroptosis as a meaningful target in SALI is increasingly being recognized. Here, we outline how a susceptible lung alveoli may develop SALI. Then we discuss the general mechanisms underlying ferroptosis, and how it contributes to SALI. We then outline the chemical structures of the emerging agents or compounds that can protect against SALI by inhibiting ferroptosis, summarizing their potential pharmacological effects. Finally, we highlight key limitations and possible strategies to overcome them. This review suggests that a detailed mechanistic and biological understanding of ferroptosis can foster the development of pharmacological antagonists in the treatment of SALI.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
5
|
Li Q, Yu X, Yu R, Shi X, Lu Y. Therapeutic Potential of Inhibiting Hmox1 in Sepsis-Induced Lung Injury: A Molecular Mechanism Study. J Biochem Mol Toxicol 2025; 39:e70134. [PMID: 39959930 DOI: 10.1002/jbt.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 05/09/2025]
Abstract
Sepsis induces severe multiorgan dysfunction, with the lungs being particularly susceptible to damage. This study reveals that Hmox1 inhibitors effectively activate the FSP1/CoQ10/NADPH pathway, significantly enhancing autophagic activity while suppressing ferroptosis in alveolar epithelial cells, thereby alleviating lung injury in septic mice. To identify key gene modules and regulatory factors associated with sepsis-induced lung injury, we analyzed public transcriptomic data, including bulk RNA-seq datasets (GSE236391 and GSE263867) and a single-cell RNA-seq (scRNA-seq) data set (GSE207651). In vitro experiments were conducted using an LPS-induced alveolar epithelial cell injury model to evaluate the effects of Hmox1 inhibitors on cell viability, autophagy markers (LC3-II/LC3-I and p62), ROS levels, and intracellular iron content. Transmission electron microscopy was used to observe mitochondrial structural changes. In vivo, a cecal ligation and puncture (CLP)-induced sepsis mouse model was established to assess the therapeutic effects of Hmox1 inhibitors. This included evaluating survival rates, lung histopathological scores, lung wet-to-dry weight ratios, myeloperoxidase (MPO) activity, inflammatory cytokine levels, and changes in autophagy and ferroptosis markers. The results demonstrated that Hmox1 inhibitors effectively mitigate lung injury by modulating the autophagy-ferroptosis pathway, highlighting their potential as a therapeutic strategy for sepsis-induced lung damage.
Collapse
Affiliation(s)
- Qingying Li
- Department of Critical Care Medicine, Xinyang Central Hospital, Xinyang, China
| | - Xu Yu
- Department of Critical Care Medicine, Xinyang Central Hospital, Xinyang, China
| | - Renjie Yu
- Department of Critical Care Medicine, Xinyang Central Hospital, Xinyang, China
| | - Xinge Shi
- Department of Critical Care Medicine, Xinyang Central Hospital, Xinyang, China
| | - Yibin Lu
- Department of Critical Care Medicine, Xinyang Central Hospital, Xinyang, China
| |
Collapse
|
6
|
Ju M, Tong W, Bi J, Zeng X, Qi A, Sun M, Wen J, Zhao L, Wei M. Hydrogen Sulfide Promotes TAM-M1 Polarization through Activating IRE-1α Pathway via GRP78 S-Sulfhydrylation to against Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413607. [PMID: 39755930 PMCID: PMC11848574 DOI: 10.1002/advs.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Hydrogen sulfide (H2S)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC). Therefore, the aim is to investigate whether protein S-sulfhydration can regulate TAM reprogramming and its underlying mechanism in BC. The results showed that in BC, the CTH-H2S axis is positively correlated with the presence of an anti-tumor phenotype in TAMs. NaHS, as an H2S donor, repolarized TAMs into M1 macrophages to block the tumor-promoting activities of TAMs both in vitro and in vivo. Mechanistically, H2S-mediated S-sulfhydration of the protein chaperone glucose-regulated-protein 78 (GRP78) induced endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α) dissociation from GRP78, which enhanced the phosphatase activity of IRE-1α itself in BC-TAMs, while the Cys420 site mutation of GRP78 interfered with these effects. Collectively, GRP78 S-sulfhydrylation mediated by H2S at the Cys420 residue decreased the tumor burden and inhibited lung metastasis of BC through reprograming TAMs via activating the IRE-1α pathway, indicating that targeting GRP78 S-sulfhydration represents a promising intervention for TAM-M1 repolarization in BC.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Weiwei Tong
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Laboratory MedicineShengjing Hospital of China Medical UniversityShenyang110122China
| | - Jia Bi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Xianxin Zeng
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Aoshuang Qi
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Mingli Sun
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Jian Wen
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- Department of Breast SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyang110122China
| | - Lin Zhao
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
| | - Minjie Wei
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122China
- Liaoning Key Laboratory of molecular targeted anti‐tumor drug development and evaluationChina Medical UniversityShenyang110122China
- School of PharmacyQiqihar Medical UniversityQiqihar161006China
| |
Collapse
|
7
|
Tao L, Xu J, Jiang L, Hu J, Tang Z. Investigation into the influence of mild hypothermia on regulating ferroptosis through the P53-SLC7A11/GPX4 signaling pathway in sepsis-induced acute lung injury. Intensive Care Med Exp 2025; 13:4. [PMID: 39812923 PMCID: PMC11735705 DOI: 10.1186/s40635-025-00713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes. P53 has been reported to downregulate the transcriptional activity of solute carrier family 7 member 11 (SLC7A11), thereby limiting cystine uptake. This reduction in cystine availability compromises the activity of Glutathione peroxidase 4 (GPX4), a cystine-dependent enzyme, ultimately increasing cellular susceptibility to ferroptosis. However, it remains unclear whether mild hypothermia exerts protective effects through the P53-SLC7A11/GPX4 signaling pathway. This study investigates the influence of mild hypothermia on ferroptosis mediated by the P53-SLC7A11/GPX4 pathway in S-ALI. METHODS This study utilized both in vivo and in vitro models. In the vivo model, 64 Sprague-Dawley rats were employed, with 40 analyzed for survival outcomes. Sepsis was induced using the cecum ligation and puncture (CLP) method, after which rats were subjected to either normothermic (36-38 °C) or mild hypothermic (32-34 °C) conditions for a duration of 10 h. Twelve hours post-surgery, blood samples, bronchoalveolar lavage fluid, and lung tissue samples were harvested for histological analysis, measurement of inflammatory markers, wet/dry ratios, blood gas analysis, assessment of oxidative stress and ferroptosis, Western blotting, and RT-qPCR analysis. In the in vitro model, RLE-6TN cells were exposed to lipopolysaccharide (LPS) for 24 h under normothermic and mild hypothermic conditions. These cells were then evaluated for cell viability, inflammatory markers, oxidative stress levels, ferroptosis markers, as well as Western blot and RT-qPCR analyses. RESULTS CLP-induced sepsis led to elevated levels of inflammatory markers, increased lung injury scores, and heightened oxidative stress markers. These detrimental effects were significantly ameliorated by mild hypothermia. Furthermore, mild hypothermia reversed the modified expression of P53, SLC7A11, and GPX4 signaling molecules. Notably, mild hypothermia also improved the 5-day survival rate of CLP rats. CONCLUSION Mild hypothermia attenuates S-ALI and modulates ferroptosis through the P53-SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Liujun Tao
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jie Xu
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Liangyan Jiang
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Juntao Hu
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhanhong Tang
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Chen K, Lu S, Shi K, Ali MH, Liu J, Yin F, Yin W. Hyperoside attenuates sepsis-induced acute lung injury by Nrf2 activation and ferroptosis inhibition. Int Immunopharmacol 2025; 145:113734. [PMID: 39657533 DOI: 10.1016/j.intimp.2024.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening condition associated with high morbidity and mortality rates in intensive care units (ICUs). Emerging evidence from clinical studies suggests that compounds derived from traditional Chinese medicine (TCM) have shown promising therapeutic effects in treating sepsis-induced ALI. Hyperoside is a bioactive compound extracted from TCM. Prior studies reported that hyperoside exhibits potent anti-inflammatory, antioxidant, and organ-protective properties, however, the underlying mechanisms of its effects on ALI remain unclear. Hyperoside pretreatment significantly reduced inflammation, iron accumulation, and lipid peroxidation in the pulmonary tissues of ALI mice induced by CLP and in LPS-stimulated MLE-12 cells. In particular, hyperoside preferentially binds with Keap1 at Arg380 and Arg415, thereby inhibiting the ubiquitin-mediated degradation of nuclear Nrf2, promoting its translocation to the nucleus, and leading to upregulation of anti-ferroptosis gene expression. Moreover, the protective effects of hyperoside were significantly abrogated after Nrf2 expression was silenced or its activity was inhibited by chemical inhibitors, highlighting that Nrf2 is critically involved in the impact of hyperoside. This study confirms that hyperoside exhibits a therapeutically protective effect against sepsis-induced ALI by inhibiting ferroptosis through Nrf2-mediated signaling pathway. Hyperoside acts as an Nrf2 activator by preferentially binding to Arg380 and Arg415 of Keap1 and disrupting the Keap1/Nrf2 interaction.
Collapse
Affiliation(s)
- Kuida Chen
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shipeng Lu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China; Medical Research Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Mustafa Hussein Ali
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Duan H, Yang X, Cai S, Zhang L, Qiu Z, Wang J, Wang S, Li Z, Li X. Nrf2 mitigates sepsis-associated encephalopathy-induced hippocampus ferroptosis via modulating mitochondrial dynamic homeostasis. Int Immunopharmacol 2024; 143:113331. [PMID: 39396427 DOI: 10.1016/j.intimp.2024.113331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious neurological complication accompanied with acute and long-term cognitive dysfunction. Ferroptosis is a newly discovered type of cell death that is produced by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis is involved in SAE. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a mitochondria related gene involved in ferroptosis. However, the role of Nrf2 in SAE and the mechanisms remains elusive. In this study, we found that Nrf2 knockout aggravated cognitive and emotional dysfunction and promoted caecal ligation and puncture (CLP)-induced brain injury and hippocampus ferroptosis as indicated by the increase of ROS, Fe2+ and the levels of proinflammatory cytokines. Meanwhile, the levels of glutathione peroxidase 4 (GPX4), SLC7A11 and glutathionewere downregulatedin Nrf2 knockout group. In vitro experiments showed that mitochondrial ROS, Fe2+ and the expression of Fis1 and Drp1 decreased, and the level of Mfn1 and Opa-1 increased after Nrf2 overexpression. The silence of Nrf2 increased the expression of ROS, MDA and Fe2+, while decreased glutathione, mitochondrial membrane potential (MMP) and cell viability in vitro, indicating Nrf2 improved LPS-induced mitochondrial dysfunction and mitigated hippocampal cells ferroptosis. These results suggest that Nrf2 could inhibit ferroptosis and neuroinflammation in hippocampus and reduce cognitive dysfunction in SAE mice, making it a potential therapeutic target in the treatment of SAE. The protective effects of Nrf2 on the brain may be mediated by maintaining mitochondrial dynamic homeostasis.
Collapse
Affiliation(s)
- Haifeng Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Shuhan Cai
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Lei Zhang
- Department of Anesthesiology, the First Clinical College of Hubei University of Medicine, Shiyan, Hubei, China
| | - Zebao Qiu
- Department of Anesthesiology, Suizhou Zengdu Hospital, Suizhou, Hubei, China
| | - Jin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China.
| |
Collapse
|
10
|
Zhang P, Liu W, Wang S, Wang Y, Han H. Ferroptosisand Its Role in the Treatment of Sepsis-Related Organ Injury: Mechanisms and Potential Therapeutic Approaches. Infect Drug Resist 2024; 17:5715-5727. [PMID: 39720615 PMCID: PMC11668052 DOI: 10.2147/idr.s496568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis is a complicated clinical disease caused by a defective host response to infection, leading to elevated morbidity and fatality globally. Sepsis patients have a significant risk of life-threatening organ damage, including hearts, brains, lungs, kidneys, and livers. Nevertheless, the molecular pathways driving organ injury in sepsis are not well known. Ferroptosis, a non-apoptotic cell death, occurs due to iron metabolism disturbance and lipid peroxide buildup. Multiple studies indicate that ferroptosis has a significant role in decreasing inflammation and lipid peroxidation during sepsis. Ferroptosis inhibitors and medications, aimed at the most studied ferroptosis process, including Xc-system, Nrf2/GPX4 axis, and NCOA4-FTH1-mediated ferritinophagy, alleviating sepsis effectively. However, few clinical trials demonstrated ferroptosis-targeted drugs's effectiveness in sepsis. Our study examines ferroptosis-targeted medicinal agents and their potential benefits for treating sepsis-associated organ impairment. This review indicates that ferroptosis suppression by pharmaceutical means may be a useful therapy for sepsis-associated organ injury.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shu Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Han Han
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
12
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
14
|
Song C, Chen Q, Xu J, He K, Guo Q, Teng X, Xue H, Xiao L, Tian D, Jin S, An C, Wu Y. H 2S alleviated sepsis-induced acute kidney injury by inhibiting PERK/Bax-Bcl2 pathway. Nitric Oxide 2024; 152:11-18. [PMID: 39271041 DOI: 10.1016/j.niox.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
To investigate the protective mechanisms of hydrogen sulfide (H2S) in sepsis-induced acute kidney injury (SAKI), we conducted an in vivo study using a SAKI mouse model induced by intraperitoneal lipopolysaccharide (LPS) injection. Following 6 h of LPS injection, levels of tumor necrosis factor-alpha (TNF-α) and blood urea nitrogen (Bun) were significantly elevated in mouse plasma. In the kidneys of SAKI mice, expression of H2S-generating enzymes cysteinyl-tRNA synthetase (CARS), cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) was markedly downregulated, while glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phosphorylated protein kinase R-like endoplasmic reticulum kinase/protein kinase R-like endoplasmic reticulum kinase (p-PERK/PERK), and B-cell lymphoma-2 recombinant protein X/B-cell lymphoma-2 (Bax/Bcl2) expression was significantly upregulated. H2S improved renal function and attenuated renal histopathological changes in SAKI mice, thereby alleviating LPS-induced endoplasmic reticulum stress (ERS). Additionally, it inhibited the expression of p-PERK/PERK and Bax/Bcl2. After inhibiting CSE activity with dl-propargylglycine (PPG i. p.), the renal tissue pathology in LPS-induced AKI mice was further exacerbated, leading to enhanced activation of the PERK/Bax-Bcl2 pathway. Our findings suggest that endogenous H2S influences the pathogenesis of SAKI, while exogenous H2S protects against LPS-induced AKI by inhibiting the PERK/Bax-Bcl2 pathway involved in ERS.
Collapse
Affiliation(s)
- Chengqing Song
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Qian Chen
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Jiao Xu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Kaichuan He
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Metabolic Diseases, Clinical Medicine Research Center, Hebei General Hospital, 050051, Shijiazhuang, Hebei, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, 050031, Shijiazhuang, Hebei, China.
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Shijiazhuang, Hebei, China.
| |
Collapse
|
15
|
Yang M, Chen T, Xu Y, Liu Q, Xu X. Study on the mechanism of Shenmai injection in the treatment of sepsis. J Cell Mol Med 2024; 28:e70201. [PMID: 39584444 PMCID: PMC11586680 DOI: 10.1111/jcmm.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Shenmai injection (SMI) is widely used in the clinical treatment of sepsis, but its mechanism is not yet clear. This study aimed to explore the molecular mechanism through network pharmacology, bioinformatics, and molecular docking technologies. The active ingredients and targets of SMI were screened through traditional Chinese medicine databases and the Swiss Target Prediction database, respectively. The disease genes were searched using GEO and GeneCards databases, and Venn mapping was used to screen potential therapeutic targets. The key targets were selected using Cytoscape 3.9.1 software. The BioGPS database was used to evaluate the expression of these targets in tissues/cells. The DAVID database is used for enrichment analysis. Molecular docking technology was used to evaluate the interaction between these targets and core active ingredients. 122 potential therapeutic targets and 28 key targets were identified. Forty-six potential therapeutic targets showed highly specific expression in 40 tissues/cells. The PI3K-AKT, RAP1, and MAPK signalling pathways are highly enriched. The molecular docking results showed good interactions. This study systematically analysed the mechanism of SMI in treating sepsis, involving multiple targets and pathways, possibly related to anti-inflammatory, anti-oxidative stress, and immune regulation, providing reference value for future basic research of sepsis.
Collapse
Affiliation(s)
- Mengxia Yang
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
- Graduate School of Beijing University of Chinese MedicineBeijingChina
| | - Tengfei Chen
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yue Xu
- China Science and Technology Development Center for Chinese MedicineBeijingChina
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing institute of Traditional Chinese MedicineBeijingChina
| |
Collapse
|
16
|
Li K, Wang XQ, Liao ZL, Liu JY, Feng BH, Ren YC, Dai NN, Yu K, Yu H, Chen HJ, Mei H, Qin S. Wedelolactone inhibits ferroptosis and alleviates hyperoxia-induced acute lung injury via the Nrf2/HO-1 signaling pathway. Toxicol Sci 2024; 202:25-35. [PMID: 39110510 DOI: 10.1093/toxsci/kfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry (W/D) weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kang Li
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiao-Qin Wang
- Department of Pediatric, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhen-Liang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jun-Ya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bang-Hai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563000, P.R. China
| | - Ying-Cong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ni-Nan Dai
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hua-Jun Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
17
|
Zheng H, Chen H, Cai Y, Shen M, Li X, Han Y, Deng X, Cao H, Liu J, Li H, Liu B, Li G, Wang X, Chen H, Hou J, Lin SH, Zong L, Zhang Y. Hydrogen sulfide-mediated persulfidation regulates homocysteine metabolism and enhances ferroptosis in non-small cell lung cancer. Mol Cell 2024; 84:4016-4030.e6. [PMID: 39321805 DOI: 10.1016/j.molcel.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/15/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Hydrogen sulfide (H₂S), a metabolite of the transsulfuration pathway, has been implicated in ferroptosis, a unique form of cell death caused by lipid peroxidation. While the exact mechanisms controlling ferroptosis remain unclear, our study reveals that H₂S sensitizes human non-small cell lung cancer (NSCLC) cells to this process, particularly when cysteine levels are low. Combining H₂S with cystine depletion significantly enhances the effectiveness of ferroptosis-based cancer therapy. Mechanistically, H₂S persulfidates the 195th cysteine on S-adenosyl homocysteine hydrolase (SAHH), reducing its enzymatic activity. This leads to decreased homocysteine levels, subsequently lowering cysteine and glutathione concentrations under cystine depletion conditions. These changes ultimately increase the vulnerability of NSCLC cells to ferroptosis. Our findings establish H₂S as a key regulator of homocysteine metabolism and a critical factor in determining NSCLC cell susceptibility to ferroptosis. These results highlight the potential of H₂S-based therapies to improve the efficacy of ferroptosis-targeted cancer treatments for NSCLC.
Collapse
Affiliation(s)
- Hualei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Huidi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunjie Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Min Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xilin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yi Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xusheng Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongjie Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Benchao Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ganlin Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xindong Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hui Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Lili Zong
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
18
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Yu Z, Ren H, Hao H. Ferroptosis: a potential target for acute lung injury. Inflamm Res 2024; 73:1615-1629. [PMID: 39152299 DOI: 10.1007/s00011-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/19/2024] Open
Abstract
Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.
Collapse
Affiliation(s)
- Yuqi Wen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenli Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jinyan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qingkuo Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Yu
- Jinan Family Planning Service Center, Jinan, 250014, China
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250014, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
19
|
Huang M, Mo Y, Lei H, Chen M. Edaravone: A Possible Treatment for Acute Lung Injury. Int J Gen Med 2024; 17:3975-3986. [PMID: 39286534 PMCID: PMC11403130 DOI: 10.2147/ijgm.s467891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Despite technological advances in science and medicine, acute lung injury (ALI) is still associated with high mortality rates in the ICU. Therefore, finding novel drugs and treatment approaches is crucial to preventing ALI. Drug repurposing is a common practice in clinical research, primarily for drugs that have previously received approval for use in patients, to investigate novel uses of drugs and therapies. One such medication is edaravone, which is a highly effective free-radical scavenger that also has anti-inflammatory, anti-apoptotic, antioxidant, and anti-fibrotic effects. Both basic and clinical studies have shown that edaravone can treat different types of lung injury through its distinct properties. Edaravone exhibits significant protective benefits and holds promising clinical treatment potential for ALI caused by diverse factors, thereby offering a novel approach to treating ALI. This study aims to provide new insights and treatment options for ALI by reviewing both basic and clinical research on the use of edaravone. The focus is on evaluating the effectiveness of edaravone in treating ALI caused by various factors.
Collapse
Affiliation(s)
- Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yalan Mo
- Centre for Infectious Diseases, General Hospital of Hunan Medical College, Huaihua, Hunan, People's Republic of China
| | - Haiyun Lei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
20
|
Cheng Y, Zhu L, Xie S, Lu B, Du X, Ding G, Wang Y, Ma L, Li Q. Relationship between ferroptosis and mitophagy in acute lung injury: a mini-review. PeerJ 2024; 12:e18062. [PMID: 39282121 PMCID: PMC11397134 DOI: 10.7717/peerj.18062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Acute lung injury (ALI) is one of the most deadly and prevalent diseases in the intensive care unit. Ferroptosis and mitophagy are pathological mechanisms of ALI. Ferroptosis aggravates ALI, whereas mitophagy regulates ALI. Ferroptosis and mitophagy are both closely related to reactive oxygen species (ROS). Mitophagy can regulate ferroptosis, but the specific relationship between ferroptosis and mitophagy is still unclear. This study summarizes previous research findings on ferroptosis and mitophagy, revealing their involvement in ALI. Examining the functions of mTOR and NLPR3 helps clarify the connection between ferroptosis and mitophagy in ALI, with the goal of establishing a theoretical foundation for potential therapeutic approaches in the future management of ALI.
Collapse
Affiliation(s)
- Yunhua Cheng
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Liling Zhu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, Hunan Province, China
| | - Shuangxiong Xie
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Binyuan Lu
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Xiaoyu Du
- Medical College of Northwest Minzu University, Northwest Minzu University, Lanzhou, Gansu Province, China
| | - Guanjiang Ding
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Yan Wang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Linchong Ma
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Qingxin Li
- Department of Thoracic Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| |
Collapse
|
21
|
Li Y, Tang L, Wang F, Gao C, Yang Q, Luo L, Wei J, Tang Q, Qi M. Hub genes identification and validation of ferroptosis in SARS-CoV-2 induced ARDS: perspective from transcriptome analysis. Front Immunol 2024; 15:1407924. [PMID: 39170609 PMCID: PMC11335500 DOI: 10.3389/fimmu.2024.1407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Acute Respiratory Distress Syndrome (ARDS) poses a significant health challenge due to its high incidence and mortality rates. The emergence of SARS-CoV-2 has added complexity, with evidence suggesting a correlation between COVID-19 induced ARDS and post-COVID symptoms. Understanding the underlying mechanisms of ARDS in COVID-19 patients is crucial for effective clinical treatment. Method To investigate the potential role of ferroptosis in SARS-CoV-2 induced ARDS, we conducted a comprehensive analysis using bioinformatics methods. Datasets from the Gene Expression Omnibus (GEO) were utilized, focusing on COVID-19 patients with varying ARDS severity. We employed weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and single-cell sequencing to identify key genes associated with ferroptosis in ARDS. Hub genes were validated using additional GEO datasets and cell experiment. Result The analysis discerned 916 differentially expressed genes in moderate/severe ARDS patients compared to non-critical individuals. Weighted Gene Co-expression Network Analysis (WGCNA) unveiled two modules that exhibited a positive correlation with ARDS, subsequently leading to the identification of 15 hub genes associated with ferroptosis. Among the noteworthy hub genes were MTF1, SAT1, and TXN. Protein-protein interaction analysis, and pathway analysis further elucidated their roles. Immune infiltrating analysis highlighted associations between hub genes and immune cells. Validation in additional datasets confirmed the upregulation of MTF1, SAT1, and TXN in SARS-CoV-2-induced ARDS. This was also demonstrated by qRT-PCR results in the BEAS-2B cells vitro model, suggesting their potential as diagnostic indicators. Discussion This study identifies MTF1, SAT1, and TXN as hub genes associated with ferroptosis in SARS-CoV-2-induced ARDS. These findings provide novel insights into the molecular mechanisms underlying ARDS in COVID-19 patients and offer potential targets for immune therapy and targeted treatment. Further experimental validation is warranted to solidify these findings and explore therapeutic interventions for ARDS in the context of COVID-19.
Collapse
Affiliation(s)
- Yutang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Tang
- The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qi Yang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liyu Luo
- College of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Jiahang Wei
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qiuyun Tang
- Department of Oncology, Health Center of Chicheng Town, Suining, China
| | - Mingran Qi
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Jia YJ, Xiong S, Yao M, Wei Y, He Y. HMGB1 inhibition blocks ferroptosis and oxidative stress to ameliorate sepsis-induced acute lung injury by activating the Nrf2 pathway. Kaohsiung J Med Sci 2024; 40:710-721. [PMID: 38837857 DOI: 10.1002/kjm2.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The proinflammatory properties of high-mobility group box protein 1 (HMGB1) in sepsis have been extensively studied. This study aimed to investigate the impact of HMGB1 on ferroptosis and its molecular mechanism in sepsis-induced acute lung injury (ALI). A septic mouse model was established using the cecal ligation and puncture method. Blocking HMGB1 resulted in improved survival rates, reduced lung injury, decreased levels of ferroptosis markers (reactive oxygen species, malondialdehyde, and Fe2+), and enhanced antioxidant enzyme activities (superoxide dismutase and catalase) in septic mice. In addition, knockdown of HMGB1 reduced cellular permeability, ferroptosis markers, and raised antioxidant enzyme levels in lipopolysaccharide (LPS)-stimulated MLE-12 cells. Silencing of HMGB1 led to elevations in the expressions of ferroptosis core-regulators in LPS-treated MLE-12 cells, such as solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member A2 (SLC3A2), and glutathione peroxidase 4. Furthermore, blocking HMGB1 did not alter ferroptosis, oxidative stress-related changes, and permeability in LPS-treated MLE-12 cells that were pretreated with ferrostatin-1 (a ferroptosis inhibitor). HMGB1 inhibition also led to elevated expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in LPS-treated MLE-12 cells and lung tissues from septic mice. The Nrf2-specific inhibitor ML385 reversed the effects of HMGB1 silencing on ferroptosis and cell permeability in LPS-treated MLE-12 cells. Our findings indicated that the inhibition of HMGB1 restrains ferroptosis and oxidative stress, thereby alleviating sepsis-induced ALI through the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Ya-Jie Jia
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sha Xiong
- Department of Pharmacy, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ming Yao
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yu Wei
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan He
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
25
|
Sun X, Mao C, Wang J, Wu S, Qu Y, Xie Y, Sun F, Jiang D, Song Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr Issues Mol Biol 2024; 46:7147-7168. [PMID: 39057067 PMCID: PMC11275821 DOI: 10.3390/cimb46070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Jiaxin Wang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Xie
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| |
Collapse
|
26
|
Zhu YW, Liu CL, Li XM, Shang Y. Quercetin induces ferroptosis by inactivating mTOR/S6KP70 pathway in oral squamous cell carcinoma. Toxicol Mech Methods 2024; 34:669-675. [PMID: 38736312 DOI: 10.1080/15376516.2024.2325989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 05/14/2024]
Abstract
Although recent studies increasingly suggest the potential anti-cancer effect of quercetin, the exact underlying mechanism remains poorly demonstrated in oral squamous cell carcinoma (oSCC). Therefore, our research explored the impacts of quercetin on the ferroptosis and mTOR/S6KP70 axis in oSCC cell lines. After treating oSCC cells with quercetin or indicated compounds and transfection with SLC7A11- or S6KP70-overexpressing plasmid, cell viability was detected by CCK-8 assay. The level of ferroptosis in oSCC cells was assessed by measuring ROS and GSH levels. The activation of mTOR/S6KP70 axis was assessed by Western blotting. Quercetin promoted ferroptosis in an mTOR/S6KP70-dependent manner to inhibit tumor growth in oSCC cells. Mechanistically, we revealed that quercetin induced lipid peroxidation and reduced GSH levels by repressing SLC7A11 expression in oSCC cells. Specifically, the effects of quercetin on ferroptosis and mTOR and S6KP70 phosphorylation were partially blocked by both mTOR agonist and S6KP70 overexpression. Moreover, mTOR inhibitor promoted ferroptosis in quercetin-treated oSCC cells. Our findings showed that ferroptosis may be a new anti-tumor mechanism of quercetin. Additionally, we identified that quercetin can target mTOR/S6KP70 cascade to inhibit the growth of oSCC cells.
Collapse
Affiliation(s)
- Ya-Wen Zhu
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Chun-Lei Liu
- Department of Dermatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Xiao-Mei Li
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| | - Yu Shang
- Department of Stomatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, PR China
| |
Collapse
|
27
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
28
|
Yavuz A, Küçük A, Ergörün Aİ, Dursun AD, Yiğman Z, Alkan M, Arslan M. Evaluation of the efficacy of silymarin and dexmedetomidine on kidney and lung tissue in the treatment of sepsis in rats with cecal perforation. Exp Ther Med 2024; 27:242. [PMID: 38655036 PMCID: PMC11036365 DOI: 10.3892/etm.2024.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome that develops in the host against microorganisms. This response develops away from the primary infection site and results in end-organ damage. The present study aimed to investigate the protective and therapeutic effects on lung and kidney tissue of silymarin (S) and dexmedetomidine (DEX) applied 1 h before and after sepsis induced by the cecal ligation and puncture (CLP) method in rats. A total of 62 rats was randomly divided into eight groups: i) Control (n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S + CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX administered 1 h before CLP) and viii) CLP + SD (n=8; S and DEX administered 1 h after CLP). After the cecum filled with stool, it was tied with 3/0 silk under the ileocecal valve and the anterior surface of the cecum was punctured twice with an 18-gauge needle. A total of 100 mg/kg silymarin and 100 µg/kg DEX were administered intraperitoneally to the treatment groups. Lung and kidney tissue samples were collected to evaluate biochemical and histopathological parameters. In the histopathological examination, all parameters indicating kidney injury; interstitial edema, peritubular capillary dilatation, vacuolization, ablation of tubular epithelium from the basement membrane, loss of brush border in the proximal tubule epithelium, cell swelling and nuclear defragmentation; were increased in the CLP compared with the control group. Silymarin administration increased kidney damage, including ablation of tubular epithelium from the basement membrane, compared with that in the CLP group. DEX significantly reduced kidney damage compared with the CLP and silymarin groups. The co-administration of DEX + silymarin decreased kidney damage, although it was not as effective as DEX-alone. To conclude, intraperitoneal DEX ameliorated injury in CLP rats. DEX + silymarin partially ameliorated injury but silymarin administration increased damage. As a result, silymarin has a negative effects with this dosage and DEX has a protective effect. In the present study, it was determined that using the two drugs together had a greater therapeutic effect than silymarin and no differences in the effects were not observed any when the application times of the agents were changed.
Collapse
Affiliation(s)
- Aydin Yavuz
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya 43020, Turkey
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Gazi University, Ankara 06510, Turkey
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
29
|
Zheng LY, Duan Y, He PY, Wu MY, Wei ST, Du XH, Yao RQ, Yao YM. Dysregulated dendritic cells in sepsis: functional impairment and regulated cell death. Cell Mol Biol Lett 2024; 29:81. [PMID: 38816685 PMCID: PMC11140885 DOI: 10.1186/s11658-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.
Collapse
Affiliation(s)
- Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shu-Ting Wei
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
30
|
Zhou Y, Yang Y, Yi L, Pan M, Tang W, Duan H. Propofol and Dexmedetomidine Ameliorate Endotoxemia-Associated Encephalopathy via Inhibiting Ferroptosis. Drug Des Devel Ther 2024; 18:1349-1368. [PMID: 38681208 PMCID: PMC11055548 DOI: 10.2147/dddt.s458013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Liang Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Weiqing Tang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
32
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
33
|
Yang J, Yan C, Chen S, Li M, Miao Y, Ma X, Zeng J, Xie P. The possible mechanisms of ferroptosis in sepsis-associated acquired weakness. Front Physiol 2024; 15:1380992. [PMID: 38601213 PMCID: PMC11004370 DOI: 10.3389/fphys.2024.1380992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and its morbidity and mortality rates are increasing annually. It is an independent risk factor for intensive care unit-acquired weakness (ICU-AW), which is a common complication of patients in ICU. This situation is also known as sepsis-associated acquired weakness (SAW), and it can be a complication in more than 60% of patients with sepsis. The outcomes of SAW are often prolonged mechanical ventilation, extended hospital stays, and increased morbidity and mortality of patients in ICUs. The pathogenesis of SAW is unclear, and an effective clinical treatment is not available. Ferroptosis is an iron-dependent type of cell death with unique morphological, biochemical, and genetic features. Unlike other forms of cell death such as autophagy, apoptosis, and necrosis, ferroptosis is primarily driven by lipid peroxidation. Cells undergo ferroptosis during sepsis, which further enhances the inflammatory response. This process leads to increased cell death, as well as multi-organ dysfunction and failure. Recently, there have been sporadic reports suggesting that SAW is associated with ferroptosis, but the exact pathophysiological mechanisms remain unclear. Therefore, we reviewed the possible pathogenesis of ferroptosis that leads to SAW and offer new strategies to prevent and treat SAW.
Collapse
Affiliation(s)
- Jun Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Caihong Yan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Min Li
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Junfa Zeng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
34
|
Li Z, Yu Y, Bu Y, Liu C, Jin J, Li W, Chen G, Liu E, Zhang Y, Gong W, Luo J, Yue Z. QiShenYiQi pills preserve endothelial barrier integrity to mitigate sepsis-induced acute lung injury by inhibiting ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117610. [PMID: 38122915 DOI: 10.1016/j.jep.2023.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The QiShengYiQi pill (QSYQ) is a traditional Chinese medicinal formulation. The effectiveness and safety of QSYQ in treating respiratory system disorders have been confirmed. Its pharmacological actions include anti-inflammation, antioxidative stress, and improving energy metabolism. However, the mechanism of QSYQ in treating sepsis-induced acute lung injury (si-ALI) remains unclear. AIM OF THE STUDY Si-ALI presents a clinical challenge with high incidence and mortality rates. This study aims to confirm the efficacy of QSYQ in si-ALI and to explore the potential mechanisms, providing a scientific foundation for its application and insights for optimizing treatment strategies and identifying potential active components. MATERIALS AND METHODS The impact of QSYQ on si-ALI was evaluated using the cecal ligation and puncture (CLP) experimental sepsis animal model. The effects of QSYQ on endothelial cells were observed through coculturing with LPS-stimulated macrophage-conditioned medium. Inflammatory cytokine levels, HE staining, Evans blue staining, lung wet/dry ratio, and cell count and protein content in bronchoalveolar lavage fluid were used to assess the degree of lung injury. Network pharmacology was utilized to investigate the potential mechanisms of QSYQ in treating si-ALI. Western blot and immunofluorescence analyses were used to evaluate barrier integrity and validate mechanistically relevant proteins. RESULTS QSYQ reduced the inflammation and alleviated pulmonary vascular barrier damage in CLP mice (all P < 0.05). A total of 127 potential targets through which QSYQ regulates si-ALI were identified, predominantly enriched in the RAGE pathway. The results of protein-protein interaction analysis suggest that COX2, a well-established critical marker of ferroptosis, is among the key targets. In vitro and in vivo studies demonstrated that QSYQ mitigated ferroptosis and vascular barrier damage in sepsis (all P < 0.05), accompanied by a reduction in oxidative stress and the inhibition of the COX2 and RAGE (all P < 0.05). CONCLUSIONS This study demonstrated that QSYQ maintains pulmonary vascular barrier integrity by inhibiting ferroptosis in CLP mice. These findings partially elucidate the mechanism of QSYQ in si-ALI and further clarify the active components of QSYQ, thereby providing a scientific theoretical basis for treating si-ALI with QSYQ.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yongjing Yu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yue Bu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; Department of Pain Medicine, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China
| | - Chang Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China; The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China
| | - Jiaqi Jin
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, 246 Xuefu Road, Harbin, 150001, PR China; Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Road, Beijing, 100053, PR China
| | - Wenqiang Li
- Department of Vascular Surgery, Jinshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, PR China
| | - Guangmin Chen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, 199 Dazhi Road, Harbin, 150001, PR China
| | - Enran Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Yan Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Weidong Gong
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Juan Luo
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China
| | - Ziyong Yue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150001, PR China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, 246 Xuefu Road, Harbin, 150001, PR China.
| |
Collapse
|
35
|
Wang W, Xu R, He P, Xiong Y, Zhao H, Fu X, Lin J, Ye L. CircEXOC5 Aggravates Sepsis-Induced Acute Lung Injury by Promoting Ferroptosis Through the IGF2BP2/ATF3 Axis. J Infect Dis 2024; 229:522-534. [PMID: 37647879 DOI: 10.1093/infdis/jiad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Patients with sepsis resulting in acute lung injury (ALI) usually have increased mortality. Ferroptosis is a vital regulator in sepsis-induced ALI. Exploring the association of ferroptosis and sepsis-induced ALI is crucial for the management of sepsis-induced ALI. METHODS Whole blood was collected from sepsis patients. Mice were treated with cecal ligation and puncture (CLP) to model sepsis. Primary murine pulmonary microvascular endothelial cells were treated with lipopolysaccharide as a cell model. Ferroptosis was evaluated by analyzing levels of iron, malonaldehyde, glutathione, nonheme iron, ferroportin, ferritin, and GPX4. Hematoxylin and eosin and Masson's trichrome staining were applied to examine lung injury and collagen deposition. Cell apoptosis was analyzed by caspase-3 activity and TUNEL assays. Gene regulatory relationship was verified using RNA pull-down and immunoprecipitation assays. RESULTS CircEXOC5 was highly expressed in sepsis patients and CLP-treated mice, in which knockdown alleviated CLP-induced pulmonary inflammation and injury, and ferroptosis. CircEXOC5 recruited IGF2BP2 to degrade ATF3 mRNA. The demethylase ALKBH5 was responsible for circEXOC5 upregulation through demethylation. CircEXOC5 silencing significantly improved sepsis-induced ALI and survival rate of mice by downregulating ATF3. CONCLUSIONS ALKBH5-mediated upregulation of circEXOC5 exacerbates sepsis-induced ALI by facilitating ferroptosis through IGF2BP2 recruitment to degrade ATF3 mRNA.
Collapse
Affiliation(s)
- Wei Wang
- Geriatric Medicine Department, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, P.R.China
| | - Rongli Xu
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Ping He
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Yuqing Xiong
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Haomiao Zhao
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Xuewei Fu
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Jie Lin
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Lijiao Ye
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| |
Collapse
|
36
|
Wang G, Ma F, Xie K, Li X, Tan X, Xia Y, Wang Y, Dong J. Liensinine alleviates mouse intestinal injury induced by sepsis through inhibition of oxidative stress, inflammation, and cell apoptosis. Int Immunopharmacol 2024; 127:111335. [PMID: 38101222 DOI: 10.1016/j.intimp.2023.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Sepsis is a clinical syndrome triggered by an imbalanced host response to pathogens that can lead to multiple organ dysfunction. The immune response and barrier function of the gut play an important role in the pathogenesis and progression of sepsis. This study aimed to explore the potential role of natural alkaloid Liensinine in the treatment of intestinal injury caused by sepsis and its possible molecular mechanism. In this study, a mouse model of sepsis was established by injecting LPS to explore the protective effect of Liensinine on intestinal injury in sepsis. The results showed that Liensinine could reduce the intestinal damage caused by LPS and increase the number of goblet cells. Furthermore, it decreased the release of inflammatory cytokines by inhibiting NF-kB phosphorylation and NLRP3 inflammasome synthesis. Liensinine also reduced the oxidative stress and ROS accumulation caused by LPS, and played an anti-oxidative stress role by regulating the Nrf2/keap1 signaling pathway. In addition, Liensinine alleviated the inhibition of intestinal autophagy caused by LPS by inhibiting the PI3K/Akt/mTOR pathway. And then it reduced the excessive apoptosis of intestinal cells. This study provides valuable insights for sepsis prevention and treatment, offering a potential therapeutic candidate to protect against intestinal injury and regulate the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Kunmei Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, The Second People's Hospital of Lianyungang City, Lianyungang 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
37
|
Bartman CM, Schiliro M, Nesbitt L, Lee KK, Prakash YS, Pabelick CM. Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways. Am J Physiol Lung Cell Mol Physiol 2024; 326:L52-L64. [PMID: 37987780 PMCID: PMC11279744 DOI: 10.1152/ajplung.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Nesbitt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kenge K Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
38
|
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol 2023; 14:1277161. [PMID: 38035100 PMCID: PMC10682474 DOI: 10.3389/fimmu.2023.1277161] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
39
|
Citi V, Barresi E, Piragine E, Spezzini J, Testai L, Da Settimo F, Martelli A, Taliani S, Calderone V. Anti-Proliferative Properties of the Novel Hybrid Drug Met-ITC, Composed of the Native Drug Metformin with the Addition of an Isothiocyanate H 2S Donor Moiety, in Different Cancer Cell Lines. Int J Mol Sci 2023; 24:16131. [PMID: 38003321 PMCID: PMC10671447 DOI: 10.3390/ijms242216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Metformin (Met) is the first-line therapy in type 2 diabetes mellitus but, in last few years, it has also been evaluated as anti-cancer agent. Several pathways, such as AMPK or PI3K/Akt/mTOR, are likely to be involved in the anti-cancer Met activity. In addition, hydrogen sulfide (H2S) and H2S donors have been described as anti-cancer agents affecting cell-cycle and inducing apoptosis. Among H2S donors, isothiocyanates are endowed with a further anti-cancer mechanism: the inhibition of the histone deacetylase enzymes. On this basis, a hybrid molecule (Met-ITC) obtained through the addition of an isothiocyanate moiety to the Met molecule was designed and its ability to release Met has been demonstrated. Met-ITC exhibited more efficacy and potency than Met in inhibiting cancer cells (AsPC-1, MIA PaCa-2, MCF-7) viability and it was less effective on non-tumorigenic cells (MCF 10-A). The ability of Met-ITC to release H2S has been recorded both in cell-free and in cancer cells assays. Finally, its ability to affect the cell cycle and to induce both early and late apoptosis has been demonstrated on the most sensitive cell line (MCF-7). These results confirmed that Met-ITC is a new hybrid molecule endowed with potential anti-cancer properties derived both from Met and H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
40
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
41
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
42
|
Song L, Lu G, Tao Y. Saikosaponin D attenuates inflammatory response and cell apoptosis of lipopolysaccharide-induced lung epithelial cells. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1017-1024. [PMID: 37619985 PMCID: PMC10542997 DOI: 10.1111/crj.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a prevalent complication of sepsis with high mortality rate. Saikosaponin D (SSD) is a triterpenoid saponin that has been reported to alleviate sepsis-triggered renal injury in mice. Nonetheless, the therapeutic effect of SSD on sepsis-evoked ALI is unclarified. METHODS Lipopolysaccharide (LPS) from Escherichia coli 055:B5 was utilized to stimulate lung epithelial cell line MLE-12. A mouse model of sepsis was established. CCK-8 assay was employed for determining cytotoxicity. ELISA was utilized for determining proinflammatory cytokine production. Flow cytometry and western blotting were implemented for evaluating cell apoptosis. Hematoxylin-eosin staining was conducted for histologic analysis of murine lung tissues. RESULTS SSD alleviated LPS-triggered inflammation and cell apoptosis of MLE-12 cells. SSD treatment ameliorated the pathological damages, inflammatory response, and cell apoptosis in the lungs of septic mice. CONCLUSION SSD protects against sepsis-triggered ALI by inhibiting inflammation and cell apoptosis in MLE-12 cells and septic mouse mice.
Collapse
Affiliation(s)
- Lijie Song
- Department of Emergency medicalThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Guoyu Lu
- Department of Emergency medicalThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Yanyan Tao
- Department of Emergency medicalThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| |
Collapse
|
43
|
Manandhar S, Chambers S, Miller A, Ishii I, Bhatia M. Pharmacological Inhibition and Genetic Deletion of Cystathionine Gamma-Lyase in Mice Protects against Organ Injury in Sepsis: A Key Role of Adhesion Molecules on Endothelial Cells. Int J Mol Sci 2023; 24:13650. [PMID: 37686458 PMCID: PMC10487872 DOI: 10.3390/ijms241713650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogen sulfide (H2S), synthesized by cystathionine gamma-lyase (Cth), contributes to the inflammatory response observed in sepsis. This study examines the effect of Cth-derived H2S in adhesion molecules on endothelial cells of vital organs in mice in a cecal ligation puncture (CLP)-induced model of sepsis, using two different and complementary approaches: Cth gene deletion and pharmacological inhibition. Our findings revealed a decreased level of H2S-synthesizing activity (via Cth) in both Cth-/- mice and PAG-treated wild-type (WT) mice following CLP-induced sepsis. Both treatment groups had reduced MPO activity and expression of chemokines (MCP-1 and MIP-2α), adhesion molecules (ICAM-1 and VCAM-1), ERK1/2 phosphorylation, and NF-κB in the liver and lung compared with in CLP-WT mice. Additionally, we found that PAG treatment in Cth-/- mice had no additional effect on the expression of ERK1/2 phosphorylation, NF-κB, or the production of chemokines and adhesion molecules in the liver and lung compared to Cth-/- mice following CLP-induced sepsis. The WT group with sepsis had an increased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung than the WT sham-operated control. The Cth-/-, PAG-treated WT, and Cth-/- groups of mice showed decreased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung following sepsis. Inhibition of H2S production via both approaches reduced adhesion molecule expression on endothelial cells and reduced liver and lung injury in mice with sepsis. In conclusion, this study demonstrates that H2S has an important role in the pathogenesis of sepsis and validates PAG use as a suited tool for investigating the Cth/H2S-signalling axis in sepsis.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Andrew Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| |
Collapse
|
44
|
Dogaru BG, Munteanu C. The Role of Hydrogen Sulfide (H 2S) in Epigenetic Regulation of Neurodegenerative Diseases: A Systematic Review. Int J Mol Sci 2023; 24:12555. [PMID: 37628735 PMCID: PMC10454626 DOI: 10.3390/ijms241612555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the emerging role of hydrogen sulfide (H2S) in modulating epigenetic mechanisms involved in neurodegenerative diseases. Accumulating evidence has begun to elucidate the multifaceted ways in which H2S influences the epigenetic landscape and, subsequently, the progression of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. H2S can modulate key components of the epigenetic machinery, such as DNA methylation, histone modifications, and non-coding RNAs, impacting gene expression and cellular functions relevant to neuronal survival, inflammation, and synaptic plasticity. We synthesize recent research that positions H2S as an essential player within this intricate network, with the potential to open new therapeutic avenues for these currently incurable conditions. Despite significant progress, there remains a considerable gap in our understanding of the precise molecular mechanisms and the potential therapeutic implications of modulating H2S levels or its downstream targets. We conclude by identifying future directions for research aimed at exploiting the therapeutic potential of H2S in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bombonica Gabriela Dogaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Rehabilitation Hospital, 400437 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| |
Collapse
|
45
|
Qu G, Liu H, Li J, Huang S, Zhao N, Zeng L, Deng J. GPX4 is a key ferroptosis biomarker and correlated with immune cell populations and immune checkpoints in childhood sepsis. Sci Rep 2023; 13:11358. [PMID: 37443372 PMCID: PMC10345139 DOI: 10.1038/s41598-023-32992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is the uncontrolled reaction of the body to infection-induced inflammation, which results in life-threatening multiple-organ dysfunction (MODS). Although the research on sepsis has advanced significantly in recent years, its pathophysiology remains entirely unknown. Ferroptosis is a new-fashioned type of programmed cell death that may have an impact on sepsis development. However, the precise mechanism still needs to be explored. In this paper, Four pediatric sepsis datasets [training datasets (GSE26378 and GSE26440) and validation datasets (GSE11755 and GSE11281)] were chosen through the GEO (Gene Expression Omnibus) database, and 63 differentially expressions of ferroptosis-relation-genes (DE-FRGs) were eventually discovered using bioinformatics investigation. Functional annotation was performed using GO and KEGG pathway enrichment analysis. Then, four Core-FRGs (FTH1, GPX4, ACSL1, and ACSL6) were extracted after the construction of the protein-protein interaction (PPI) network and the research of the MCODE module. Consequently, Hub-FRG (GPX4) was found using the validation datasets, and correlation exploration of immunity populations (neutrophils, r = - 0.52; CD8 T-cells, r = 0.43) and immunity checkpoints (CD274, r = - 0.42) was implemented. The usefulness of GPX4 as a marker in sepsis was assessed in a mouse model of sepsis. The findings demonstrate that GPX4 is a crucial biomarker and a new latent immunotherapy target for the prediction and therapy of pediatric sepsis.
Collapse
Affiliation(s)
- Guoxin Qu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China
- The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, People's Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hui Liu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China
| | - Jin Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Siyuan Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Nannan Zhao
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Jin Deng
- The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, People's Republic of China.
| |
Collapse
|
46
|
Wang Y, Fan Y, Jiang Y, Wang E, Song Y, Chen H, Xu F, Xie K, Yu Y. APOA2: New Target for Molecular Hydrogen Therapy in Sepsis-Related Lung Injury Based on Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:11325. [PMID: 37511084 PMCID: PMC10379236 DOI: 10.3390/ijms241411325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feier Xu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
47
|
Shi Y, Chen W, Du Y, Zhao L, Li Q. Damage Effects of Bisphenol A against Sepsis Induced Acute Lung Injury. Gene 2023:147575. [PMID: 37343733 DOI: 10.1016/j.gene.2023.147575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
In addition to oxidative damage, sepsis can cause multiple organ dysfunction and poses a life-threatening threat. In addition to severe tissue damage, hypotension, and multiple organ failure, sepsis can cause high morbidity and mortality. It is the lungs that are most vulnerable in abdominal sepsis, with impaired oxygen and nutrient exchange occurring in the pulmonary microcirculation. However, the etiology of sepsis and the link between sepsis and lung injury has not been elucidated. In this work, by exploring the data from the GEO and CTD database, a gene association study was conducted to determine whether sepsis-induced lung injury is caused by BPA. Further analysis demonstrated that MMP9, CEBPA, CYP1B1, CTSD, FKBP5, DGAT2, HP, TIMP2, ARG1 and MGST1 may play an important role in sepsis-induced lung injury. Finally, the single-cell RNA sequence demonstrated that CEBPA is mainly enriched in lung epithelial cells and epithelial cells, whereas CYP1B1 is closely related to basal cells, macrophages, and interstitial cells. In order to maintain lung function, epithelial and alveolar macrophages as well as other lung cells are important. When the lung epithelium is activated for a prolonged period of time, barrier function may be compromised and tissue damage may result, aggravating the lung injury. By using the animal model, we successfully simulated the model of sepsis lung injury. The HE staining demonstrated the rats with BPA-treated septic lung injury showed more alveolar structure to be disordered, pulmonary interstitial edema to be evident, and red blood cells as well as inflammatory cells. For PCR assay, the results demonstrated that the expression level of CEBPA is higher in the lung samples with sepsis compared with the normal samples of the lung. In order to evaluate the expression level of CEBPA and CYP1B1 in lung tissue, we then performed the PCR assay. For CYP1B1, the results demonstrated that the expression level of CYP1B1 in lung samples with sepsis is lower than in normal lung samples. In total, BPA may be a potential contributing factor to sepsis-induced lung injury.
Collapse
Affiliation(s)
- Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,China
| | - Wenming Chen
- Department of Emergency, Siyang Hospital of Traditiona Chinese Medicine ,No. 15, North Jiefang Road,Siyang ,223700,Jiangsu Province ,China
| | - Yeping Du
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,China
| | - Long Zhao
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,Jiangsu,China.
| | - Qi Li
- Department of Emergency, Huai'an Hospital, Huai'an, Jiangsu, China.
| |
Collapse
|
48
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Huo L, Liu C, Yuan Y, Liu X, Cao Q. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem 2023; 257:115438. [PMID: 37269668 DOI: 10.1016/j.ejmech.2023.115438] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Sepsis is a complex clinical syndrome caused by dysfunctional host response to infection, which contributes to excess mortality and morbidity worldwide. The development of life-threatening sepsis-associated organ injury to the brain, heart, kidneys, lungs, and liver is a major concern for sepsis patients. However, the molecular mechanisms underlying sepsis-associated organ injury remain incompletely understood. Ferroptosis, an iron-dependent non-apoptotic form of cell death characterized by lipid peroxidation, is involved in sepsis and sepsis-related organ damage, including sepsis-associated encephalopathy, septic cardiomyopathy, sepsis-associated acute kidney injury, sepsis-associated acute lung injury, and sepsis-induced acute liver injury. Moreover, compounds that inhibit ferroptosis exert potential therapeutic effects in the context of sepsis-related organ damage. This review summarizes the mechanism by which ferroptosis contributes to sepsis and sepsis-related organ damage. We focus on the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial pharmacological effects for the treatment of sepsis-related organ damage. The present review highlights pharmacologically inhibiting ferroptosis as an attractive therapeutic strategy for sepsis-related organ damage.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
50
|
Cornwell A, Badiei A. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants (Basel) 2023; 12:935. [PMID: 37107310 PMCID: PMC10135606 DOI: 10.3390/antiox12040935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) has been increasingly recognized as a crucial inflammatory mediator in immune cells, particularly macrophages, due to its direct and indirect effects on cellular signaling, redox homeostasis, and energy metabolism. The intricate regulation of endogenous H2S production and metabolism involves the coordination of transsulfuration pathway (TSP) enzymes and sulfide oxidizing enzymes, with TSP's role at the intersection of the methionine pathway and glutathione synthesis reactions. Additionally, H2S oxidation mediated by sulfide quinone oxidoreductase (SQR) in mammalian cells may partially control cellular concentrations of this gasotransmitter to induce signaling. H2S is hypothesized to signal through the posttranslational modification known as persulfidation, with recent research highlighting the significance of reactive polysulfides, a derivative of sulfide metabolism. Overall, sulfides have been identified as having promising therapeutic potential to alleviate proinflammatory macrophage phenotypes, which are linked to the exacerbation of disease outcomes in various inflammatory conditions. H2S is now acknowledged to have a significant influence on cellular energy metabolism by affecting the redox environment, gene expression, and transcription factor activity, resulting in changes to both mitochondrial and cytosolic energy metabolism processes. This review covers recent discoveries pertaining to the involvement of H2S in macrophage cellular energy metabolism and redox regulation, and the potential implications for the inflammatory response of these cells in the broader framework of inflammatory diseases.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA;
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|