1
|
Salah RS, Mahmoud AA, El-Shiekh RA, El-Dessouki AM, Hassan AGAE, Khalaf SS. A comprehensive review of the impact of natural products in preventing drug-induced ototoxicity. Inflammopharmacology 2025:10.1007/s10787-025-01766-2. [PMID: 40338449 DOI: 10.1007/s10787-025-01766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
Ototoxicity, the property of certain drugs to cause hearing loss, is a significant concern in medical treatments, particularly with the use of chemotherapeutic agents like cisplatin and aminoglycosides. These drugs can lead to permanent sensorineural hearing loss (SNHL), affecting a substantial proportion of patients. Existing strategies to alleviate these side effects are limited, prompting interest in natural products as potential protective agents. Natural products are being investigated for their ability to counteract these mechanisms through anti-inflammatory and antioxidant properties. The review seeks to highlight the potential of these natural products as complementary therapies to conventional ototoxic medications, emphasizing their protective roles, which are involved in cochlear cellular damage and programmed cell death. Further research is essential to establish standardized protocols for their use and to ensure their integration into clinical practice as effective therapeutic options.
Collapse
Affiliation(s)
- Rania S Salah
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Asmaa A Mahmoud
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, 11884, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
Zhang S, Xiao H, Lin Y, Tang X, Tong W, Shao B, Li H, Xu L, Ding X, Chai R. Targeting Programmed Cell Death in Acquired Sensorineural Hearing Loss: Ferroptosis, Necroptosis, and Pyroptosis. Neurosci Bull 2025:10.1007/s12264-025-01370-y. [PMID: 40261527 DOI: 10.1007/s12264-025-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025] Open
Abstract
Sensorineural hearing loss (SNHL), the most commonly-occurring form of hearing loss, is caused mainly by injury to or the loss of hair cells and spiral ganglion neurons in the cochlea. Numerous environmental and physiological factors have been shown to cause acquired SNHL, such as ototoxic drugs, noise exposure, aging, infections, and diseases. Several programmed cell death (PCD) pathways have been reported to be involved in SNHL, especially some novel PCD pathways that have only recently been reported, such as ferroptosis, necroptosis, and pyroptosis. Here we summarize these PCD pathways and their roles and mechanisms in SNHL, aiming to provide new insights and potential therapeutic strategies for SNHL by targeting these PCD pathways.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
| | - Xiaoqiong Ding
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China.
| |
Collapse
|
3
|
Xiao Y, Zhang X, Guo S, Liu Z, Zhao X, Dong F, Bi X, Hong G, Chang M, Qiao R, Cao S, Liu Y, Xia M, Yuan W, Zhang J, Li W, Zhu L, Chai R, Gao J, Fu X. GSDMD-mediated mitochondrial dysfunction in marginal cells: A potential driver of inflammation and stria vascularis damage in CIHL. Proc Natl Acad Sci U S A 2025; 122:e2415805122. [PMID: 40067887 PMCID: PMC11929501 DOI: 10.1073/pnas.2415805122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammation is among the known causes of cisplatin-induced hearing loss (CIHL), but its exact pathophysiological mechanisms remain unclear. Herein, we demonstrated that pyroptosis-a recently identified inflammatory type of regulated cell death dependent on gasdermin D (GSDMD)-was activated in the cochleae of cisplatin-treated mice, causing CIHL. Meanwhile, treatment with the GSDMD inhibitor necrosulfonamide alleviated CIHL in these mice. To further examine the role of GSDMD-mediated pyroptosis in CIHL, we conducted experiments in Gsdmd-deficient mice. Gsdmd-/- mice demonstrated significantly lower cisplatin-induced cochlear damage than control mice and appeared to be invulnerable to CIHL. Furthermore, GSDMD-mediated pyroptosis in the stria vascularis (SV), but not in the hair cells (HCs), played a dominant role in CIHL. In marginal cells (MCs) of SV, cisplatin induced caspase-dependent GSDMD cleavage, and the pore-forming N-terminal of GSDMD rapidly localized to the mitochondria, leading to abnormal mitochondrial aggregation and oxidative stress. The consequent mitochondrial dysfunction in MCs might result in the severe progression of inflammation, SV damage, and HC loss. Notably, the pharmacological inhibition of pyroptosis using the FDA-approved drug disulfiram effectively alleviated the symptoms of CIHL. Collectively, these findings offer a broad avenue for inhibiting pyroptosis-induced cisplatin ototoxicity and provide valuable theoretical insights for the clinical management of CIHL.
Collapse
Affiliation(s)
- Yu Xiao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao266237, Shandong, China
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Xiaohan Zhang
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Siwei Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao266237, Shandong, China
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Ziyi Liu
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Xiaoxu Zhao
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Fengyue Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao266237, Shandong, China
| | - Xiuli Bi
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Guodong Hong
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Miao Chang
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Ruifeng Qiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Ear, Nose and Throat Hospital, Cheeloo College of Medicine, Shandong University, Jinan250023, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan250012, Shandong, China
| | - Ying Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan250012, Shandong, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing General Hospital, Chongqing401147, China
| | - Jing Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao266237, Shandong, China
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Wen Li
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Liya Zhu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing210096, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing210096, China
- Department of Neurobiology, School of Life Science, Beijing Institute of Technology, Beijing100081, China
- Department of Neurology, Aerospace Center Hospital, Beijing Institute of Technology, Beijing100081, China
- Department of Neurobiology, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610110, China
- Biomedical Engineering Research Center, Southeast University Shenzhen Research Institute, Shenzhen518063, China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao266237, Shandong, China
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
| | - Xiaolong Fu
- Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250117, Shandong, China
- Department of Neurobiology, School of Life Science, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
4
|
Jiang W, Li F, Xu H, Cao M, Xiao B, Gong K, Ma J, Zhang W, Tang X, Liu F, Yu S. Protective Effects of Gastrodin Against Gentamicin-Induced Vestibular Damage by the Notch Signaling Pathway. Otol Neurotol 2024; 45:1059-1067. [PMID: 39264922 DOI: 10.1097/mao.0000000000004250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
PURPOSE Gentamicin is a broad-spectrum antibiotic commonly used in clinical practice. However, the drug causes side effects of ototoxicity, leading to disruption in balance functionality. This study investigated the effect of gastrodin, a prominent compound present in Gastrodia, and the underlying mechanism on the development of gentamicin-induced vestibular dysfunction. METHODS Wild-type C57BL/6 mice were randomly assigned to three groups: control, gentamicin, and gentamicin + gastrodin groups. The extent of gentamicin-induced vestibular impairment was assessed through a series of tests including the swimming test, contact righting reflex test, and air-righting reflex. Alterations in vestibular hair cells were monitored through immunofluorescence assay, and cellular apoptosis was observed using TUNEL staining. The mRNA and protein expression of Notch1, Jagged1, and Hes1 was quantified through qRT-PCR, immunofluorescence, and western blot analyses. RESULTS Gentamicin treatment led to pronounced deficits in vestibular function and otolith organ hair cells in mice. Nevertheless, pretreatment with gastrodin significantly alleviated these impairments. Additionally, the Notch signaling pathway was activated by gentamicin in the utricle, contributing to a notable increase in the expression levels of apoptosis-associated proteins. By contrast, gastrodin treatment effectively suppressed the Notch signaling pathway, thereby mitigating the occurrence of apoptosis. CONCLUSION Collectively, these findings underscore the crucial role of gastrodin in safeguarding against gentamicin-induced vestibular dysfunction through the modulation of the Notch signaling pathway. This study suggests the potential of gastrodin as a promising therapeutic agent for preventing vestibular injuries.
Collapse
Affiliation(s)
| | - Feifan Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan
| | - Handong Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou
| | - Maorong Cao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan
| | - Bin Xiao
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Ke Gong
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Jingyu Ma
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine
| | - Weiguo Zhang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan
| | - Xuxia Tang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)
| | - Fenye Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Shudong Yu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan
| |
Collapse
|
5
|
Li X, Chen C, Chen Y, Jiang K, Zhao X, Zhang F, Li Y. Oridonin ameliorates ocular surface inflammatory responses by inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway in dry eye. Exp Eye Res 2024; 245:109955. [PMID: 38843984 DOI: 10.1016/j.exer.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.
Collapse
Affiliation(s)
- Xiaojing Li
- Medical College, Graduate School of Medicine, Qingdao University, Qingdao, 266071, China; Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Ying Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Kaiwen Jiang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Fenglan Zhang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| |
Collapse
|
6
|
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024; 25:6078. [PMID: 38892264 PMCID: PMC11172514 DOI: 10.3390/ijms25116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Inamul Haque
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, KS 66112, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pritam Thapa
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Douglas M. Burns
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Vikas Singh
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
7
|
Zhang X, Shi T, Li J, Wu X, Wu K, Li D, Wang D, Guan J, Wang H. Natural History of KCNQ4 p.G285S Related Hearing Loss, Construction of iPSC and Mouse Model. Laryngoscope 2024; 134:2356-2363. [PMID: 37962101 DOI: 10.1002/lary.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE KCNQ4 is one of the most common disease-causing genes involved in autosomal dominant non-syndromic hearing loss. We previously found that patients with KCNQ4 p.G285S exhibited a much more rapid deterioration in hearing loss than those with other KCNQ4 variants. To determine the rate of hearing loss and assess the disease for further analysis, we performed a long-term follow-up of these patients and generated patient-derived induced pluripotent stem cells (iPSCs), and a mouse model. METHODS Patients with KCNQ4 p.G285S from a five-generation family with hearing loss were followed up from 2005 to 2022. iPSCs were generated by stimulating peripheral blood mononuclear cells from the proband, and their pluripotency was determined. The Kcnq4 p.G286S mouse model was generated using CRISPR/Cas9, and its genotype and phenotype were identified. RESULTS (1) The annual rates of hearing loss at the frequencies of speech were 0.96 dB for the proband and 0.87 dB for his father during the follow-up period, which were faster than patients with other KCNQ4 variants. (2) The patient-derived iPSC line carrying KCNQ4 p.G285S, possessed the capacity of differentiation and pluripotency capacities. (3) Mutant mice with Kcnq4 p.G286S exhibited hearing loss and outer hair cell loss at 1 month of age. CONCLUSION Patients with KCNQ4 p.G285S variant exhibited significantly accelerated progression of hearing loss compared to those with other reported variants. Awareness of the natural history of hearing loss associated with KCNQ4 p.G285S is beneficial for genetic counseling and prognosis. The generation of the iPSCs and mouse model can provide a valuable foundation for further in-depth analyses. LEVEL OF EVIDENCE 4 Laryngoscope, 134:2356-2363, 2024.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tao Shi
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jin Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kaili Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Danyang Li
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Guan
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Zhang A, Pan Y, Wang H, Ding R, Zou T, Guo D, Shen Y, Ji P, Huang W, Wen Q, Wang Q, Hu H, Wu J, Xiang M, Ye B. Excessive processing and acetylation of OPA1 aggravate age-related hearing loss via the dysregulation of mitochondrial dynamics. Aging Cell 2024; 23:e14091. [PMID: 38267829 PMCID: PMC11019136 DOI: 10.1111/acel.14091] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of age-related hearing loss (ARHL) remains unclear. OPA1 is the sole fusion protein currently known to be situated in the inner mitochondrial membrane, which is pivotal for maintaining normal mitochondrial function. While it has already been demonstrated that mutations in OPA1 may lead to hereditary deafness, its involvement in the occurrence and development of ARHL has not been previously explored. In our study, we constructed D-gal-induced senescent HEI-OC1 cells and the cochlea of C57BL/6J mice with a mutated SUMOylation site of SIRT3 using CRISPR/Cas9 technology. We found enhanced L-OPA1 processing mediated by activated OMA1, and increased OPA1 acetylation resulting from reductions in SIRT3 levels in senescent HEI-OC1 cells. Consequently, the fusion function of OPA1 was inhibited, leading to mitochondrial fission and pyroptosis in hair cells, ultimately exacerbating the aging process of hair cells. Our results suggest that the dysregulation of mitochondrial dynamics in cochlear hair cells in aged mice can be ameliorated by activating the SIRT3/OPA1 signaling. This has the potential to alleviate the senescence of cochlear hair cells and reduce hearing loss in mice. Our study highlights the significant roles played by the quantities of long and short chains and the acetylation activity of OPA1 in the occurrence and development of ARHL. This finding offers new perspectives and potential targets for the prevention and treatment of ARHL.
Collapse
Affiliation(s)
- Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Audiology & Speech‐Language Pathology, College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Wang G, Ding AX, Qin GQ, Chen T, Hu XG, Zheng L, Du GX, Wang W, Xuan L. Dimeric ent-kauranoids isolated from Isodon japonica var. Glaucocalyx and their anti-inflammatory activities. Fitoterapia 2024; 174:105840. [PMID: 38296167 DOI: 10.1016/j.fitote.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The phytochemical investigation of the aerial parts of Isodon japonica var. glaucocalyx afforded four undescribed (glaucocalyxin O-R, 1-4) and six known ent-kauranoids (5-10). Their structures were established using NMR and MS measurements. Compounds 1 and 2 are dimeric ent-kaurane-type diterpenoids. Moreover, the plausible biogenetic pathways for compounds 1 and 2 were proposed as Michael addition between two monomers. Eight compounds were assayed for their anti-inflammatory activity by evaluating NO production in LPS-induced RAW 267.4 cells, and compounds 7, 8 and 9 exhibited relatively remarkable anti-inflammatory activities at 10 μM.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Ao-Xue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Guo-Qing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Tong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xiang-Gang Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Liu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Gao-Xiang Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Wenqiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
10
|
Wu Y, Zhang J, Liu Q, Miao Z, Chai R, Chen W. Development of Chinese herbal medicine for sensorineural hearing loss. Acta Pharm Sin B 2024; 14:455-467. [PMID: 38322328 PMCID: PMC10840432 DOI: 10.1016/j.apsb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jingwen Zhang
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuping Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Zhuang Miao
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100085, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Wenyong Chen
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
11
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
12
|
Xiao W, He K, Yu C, Zhou Z, Xia L, Xie S, Li H, Zhang M, Zhang Z, Luo P, Wen L, Chen G. Space Station-like Composite Nanoparticles for Co-Delivery of Multiple Natural Compounds from Chinese Medicine and Hydrogen in Combating Sensorineural Hearing Loss. Mol Pharm 2023; 20:3987-4006. [PMID: 37503854 DOI: 10.1021/acs.molpharmaceut.3c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.
Collapse
Affiliation(s)
- Wenbin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liye Xia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shibao Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hanqi Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd., Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Allali-Boumara I, Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Pyroptosis Modulators: New Insights of Gasdermins in Health and Disease. Antioxidants (Basel) 2023; 12:1551. [PMID: 37627547 PMCID: PMC10451529 DOI: 10.3390/antiox12081551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Pyroptosis is an inflammation-dependent type of cell death that has been in the spotlight for the scientific community in the last few years. Crucial players in the process of pyroptosis are the members of the gasdermin family of proteins, which have been parallelly studied. Upon induction of pyroptosis, gasdermins suffer from structural changes leading to the formation of pores in the membrane that subsequently cause the release of pro-inflammatory contents. Recently, it has been discovered that oxidation plays a key role in the activation of certain gasdermins. Here, we review the current knowledge on pyroptosis and human gasdermins, focusing on the description of the different members of the family, their molecular structures, and their influence on health and disease directly or non-directly related to inflammation. Noteworthy, we have focused on the existing understanding of the role of this family of proteins in cancer, which could translate into novel promising strategies aimed at benefiting human health. In conclusion, the modulation of pyroptosis and gasdermins by natural and synthetic compounds through different mechanisms, including modification of the redox state of cells, has been proven effective and sets precedents for future therapeutic strategies.
Collapse
Affiliation(s)
- Imane Allali-Boumara
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
| | - Ana Dácil Marrero
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain; (I.A.-B.); (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
14
|
Gregory GE, Munro KJ, Couper KN, Pathmanaban ON, Brough D. The NLRP3 inflammasome as a target for sensorineural hearing loss. Clin Immunol 2023; 249:109287. [PMID: 36907540 DOI: 10.1016/j.clim.2023.109287] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Sensorineural hearing loss is the most common type of hearing loss in adults and occurs due to damage of the inner ear caused by a range of factors including ageing, excessive noise, toxins, and cancer. Auto-inflammatory disease is also a cause of hearing loss and there is evidence that inflammation could contribute to hearing loss in other conditions. Within the inner ear there are resident macrophage cells that respond to insults and whose activation correlates with damage. The NLRP3 inflammasome is a multi-molecular pro-inflammatory protein complex that forms in activated macrophages and may contribute to hearing loss. The aim of this article is to discuss the evidence for the NLRP3 inflammasome and associated cytokines as potential therapeutic targets for sensorineural hearing loss in conditions ranging from auto-inflammatory disease to tumour-induced hearing loss in vestibular schwannoma.
Collapse
Affiliation(s)
- Grace E Gregory
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK; Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kevin N Couper
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|