1
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Zhang K, Zhang C, Wang K, Teng X, Chen M. Identifying diagnostic markers and constructing a prognostic model for small-cell lung cancer based on blood exosome-related genes and machine-learning methods. Front Oncol 2022; 12:1077118. [PMID: 36620585 PMCID: PMC9814973 DOI: 10.3389/fonc.2022.1077118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Small-cell lung cancer (SCLC) usually presents as an extensive disease with a poor prognosis at the time of diagnosis. Exosomes are rich in biological information and have a powerful impact on tumor progression and metastasis. Therefore, this study aimed to screen for diagnostic markers of blood exosomes in SCLC patients and to build a prognostic model. Methods We identified blood exosome differentially expressed (DE) RNAs in the exoRBase cohort and identified feature RNAs by the LASSO, Random Forest, and SVM-REF three algorithms. Then, we identified DE genes (DEGs) between SCLC tissues and normal lung tissues in the GEO cohort and obtained exosome-associated DEGs (EDEGs) by intersection with exosomal DEmRNAs. Finally, we performed univariate Cox, LASSO, and multivariate Cox regression analyses on EDEGs to construct the model. We then compared the patients' overall survival (OS) between the two risk groups and assessed the independent prognostic value of the model using receiver operating characteristic (ROC) curve analysis. Results We identified 952 DEmRNAs, 210 DElncRNAs, and 190 DEcircRNAs in exosomes and identified 13 feature RNAs with good diagnostic value. Then, we obtained 274 EDEGs and constructed a risk model containing 7 genes (TBX21, ZFHX2, HIST2H2BE, LTBP1, SIAE, HIST1H2AL, and TSPAN9). Low-risk patients had a longer OS time than high-risk patients. The risk model can independently predict the prognosis of SCLC patients with the areas under the ROC curve (AUCs) of 0.820 at 1 year, 0.952 at 3 years, and 0.989 at 5 years. Conclusions We identified 13 valuable diagnostic markers in the exosomes of SCLC patients and constructed a new promising prognostic model for SCLC.
Collapse
|
3
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
4
|
Zhang Y, Hu X, Li H, Yao J, Yang P, Lan Y, Xia H. Circadian Period 2 (Per2) downregulate inhibitor of differentiation 3 (Id3) expression via PTEN/AKT/Smad5 axis to inhibits glioma cell proliferation. Bioengineered 2022; 13:12350-12364. [PMID: 35599595 PMCID: PMC9275974 DOI: 10.1080/21655979.2022.2074107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study, we employed multiple laboratory techniques to acknowledge the biological activities and processes of Per2 and Id3 in glioma. We analyzed TCGA and CGGA databases for seeking association among Per2, Id3, and clinical features in glioma. Immunohistochemistry and Western blot were used to detect protein expression levels. CCK-8 assay, colony formation assay, Transwell assay, the wound healing assay, flow cytometric, and Xenograft nude mice were used to acknowledge the impact of Per2 and Id3 on biological behavior of glioma. The results showed that the Per2 mRNA expression was negatively correlated with the WHO grade, while the Id3 mRNA expression was positively correlated with the WHO grade in patients with glioma in TCGA and CGGA databases. Per2 and Id3 maintained separate prognostic abilities and had a negative connection in human glioma. In the clinical sample study, Per2 and Id3 were validated at the protein level with the same results compared to the mRNA expression level in TCGA and CGGA. By using a wide range of functional examples, overexpression of Per2 restrains malignant biological behaviors in glioma cells by many ways, while Id3 promotes malignant biological behaviors in glioma cells. Furthermore, overexpression of Per2 can inhibit Id3 expression via regulating PTEN/AKT/Smad5 signaling pathway and thereby abolish malignant biological behaviors that are caused by Id3 overexpression. These results suggested that Per2 inhibits glioma cell proliferation through regulating PTEN/AKT/Smad5/Id3 signaling pathway, which may be a viable therapeutic target for glioma.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xvlei Hu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jian Yao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuanxiang Lan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hechun Xia
- Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, Ningxia Human Stem Cell Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
6
|
Mao W, Wang K, Sun S, Wu J, Chen M, Geng J, Luo M. ID2 Inhibits Bladder Cancer Progression and Metastasis via PI3K/AKT Signaling Pathway. Front Cell Dev Biol 2021; 9:738364. [PMID: 34746132 PMCID: PMC8570141 DOI: 10.3389/fcell.2021.738364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Inhibitors of DNA-binding (ID) proteins are important regulators of cell proliferation and differentiation. The aim of this study was to evaluated the role of ID proteins in bladder cancer (BCa) and related molecular mechanisms. Methods: The TCGA database was analyzed for the expression and clinical significance of ID proteins. The expression of ID2 was determined by qRT-PCR, immunohistochemical staining and western blot. The role of ID2 was determined by CCK-8, colony formation, wound healing, transwell and xenograft tumor assays, and the potential mechanism of ID2 in BCa was investigated by RNA sequencing. Results: ID2 expression was significantly downregulated in TCGA database and clinical samples, and high ID2 expression was associated with low-grade tumor staging and correlated with better overall survival, disease specific survival (DSS) and progress free interval (PFI). In vivo and in vitro experiments showed that knockdown of ID2 promoted proliferation, migration, invasion and metastasis of BCa cells, while overexpression of ID2 significantly inhibited cell proliferation, migration, invasion and metastasis. Mechanistically, ID2 acts as a tumor suppressor through PI3K/AKT signaling pathway to inhibit the progression and metastasis of BCa. Conclusion: Our results suggest that ID2 exerts tumor suppressive effects in BCa through PI3K/AKT signaling pathway, and altered ID2 expression can be used as a biomarker of BCa progression and metastasis.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Shidong Hospital of Yangpu District, Shanghai, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Keyi Wang
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jiang Geng
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ming Luo
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Liu J, Knani I, Gross-Cohen M, Hu J, Wang S, Tang L, Ilan N, Yang S, Vlodavsky I. Role of heparanase 2 (Hpa2) in gastric cancer. Neoplasia 2021; 23:966-978. [PMID: 34343822 PMCID: PMC8349917 DOI: 10.1016/j.neo.2021.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
We report that gastric cancer patients exhibiting high levels of heparanase 2 (Hpa2) survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to overexpress Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. These beneficial effects were found to associate with increased phosphorylation of AMP-activated protein kinase (AMPK) that play an instrumental role in cell metabolism and is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, possibly leading to attenuation of gastric tumorigenesis.
Heparanase is highly implicated in tumor metastasis due to its capacity to cleave heparan sulfate and, consequently, remodel the extracellular matrix underlying epithelial and endothelial cells. In striking contrast, only little attention was given to its close homolog, heparanase 2 (Hpa2), possibly because it lacks heparan sulfate-degrading activity typical of heparanase. We subjected sections of gastric carcinoma to immunostaining and correlated Hpa2 immunoreactivity with clinical records, including tumor grade, stage and patients' status. We over-expressed Hpa2 in gastric carcinoma cell lines and examined their tumorigenic properties in vitro and in vivo. We also evaluated the expression of Hpa2 by gastric carcinoma cells following inhibition of the proteasome, leading to proteotoxic stress, and the resulting signaling responsible for Hpa2 gene regulation. Here, we report that gastric cancer patients exhibiting high levels of Hpa2 survive longer. Similarly, mice administrated with gastric carcinoma cells engineered to over-express Hpa2 produced smaller tumors and survived longer than mice administrated with control cells. This was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), a kinase that is situated at the center of a tumor suppressor network. We also found that MG132, an inhibitor of the proteasome that results in proteotoxic stress, prominently enhances Hpa2 expression. Notably, Hpa2 induction by MG132 appeared to be mediated by AMPK, and AMPK was found to induce the expression of Hpa2, thus establishing a loop that feeds itself where Hpa2 enhances AMPK phosphorylation that, in turn, induces Hpa2 expression, leading to attenuation of gastric tumorigenesis. These results indicate that high levels of Hpa2 in some tumors are due to stress conditions that tumors often experience due to their high rates of cell proliferation and high metabolic demands. This increase in Hpa2 levels by the stressed tumors appears critically important for patient outcomes.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ibrahim Knani
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Jiaxi Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Neta Ilan
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion, Haifa, Israel.
| |
Collapse
|
8
|
Gross-Cohen M, Yanku Y, Kessler O, Barash U, Boyango I, Cid-Arregui A, Neufeld G, Ilan N, Vlodavsky I. Heparanase 2 (Hpa2) attenuates tumor growth by inducing Sox2 expression. Matrix Biol 2021; 99:58-71. [PMID: 34004353 DOI: 10.1016/j.matbio.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
The pro-tumorigenic properties of heparanase are well documented, and heparanase inhibitors are being evaluated clinically as anti-cancer therapeutics. In contrast, the role of heparanase 2 (Hpa2), a close homolog of heparanase, in cancer is largely unknown. Previously, we have reported that in head and neck cancer, high levels of Hpa2 are associated with prolonged patient survival and decreased tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions to restrain tumorigenesis. Also, patients with high levels of Hpa2 were diagnosed as low grade and exhibited increased expression of cytokeratins, an indication that Hpa2 promotes or maintains epithelial cell differentiation and identity. To reveal the molecular mechanism underlying the tumor suppressor properties of Hpa2, and its ability to induce the expression of cytokeratin, we employed overexpression as well as gene editing (Crispr) approaches, combined with gene array and RNAseq methodologies. At the top of the list of many genes found to be affected by Hpa2 was Sox2. Here we provide evidence that silencing of Sox2 resulted in bigger tumors endowed with reduced cytokeratin levels, whereas smaller tumors were developed by cells overexpressing Sox2, suggesting that in head and neck carcinoma, Sox2 functions to inhibit tumor growth. Notably, Hpa2-null cells engineered by Crispr/Cas 9, produced bigger tumors vs control cells, and rescue of Hpa2 attenuated tumor growth. These results strongly imply that Hpa2 functions as a tumor suppressor in head and neck cancer, involving Sox2 upregulation mediated, in part, by the high-affinity interaction of Hpa2 with heparan sulfate.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yifat Yanku
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ofra Kessler
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Gera Neufeld
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
9
|
Niu B, Liu J, Lv B, Lin J, Li X, Wu C, Jiang X, Zeng Z, Zhang XK, Zhou H. Interplay between transforming growth factor-β and Nur77 in dual regulations of inhibitor of differentiation 1 for colonic tumorigenesis. Nat Commun 2021; 12:2809. [PMID: 33990575 PMCID: PMC8121807 DOI: 10.1038/s41467-021-23048-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
The paradoxical roles of transforming growth factor-β (TGFβ) signaling and nuclear receptor Nur77 in colon cancer development are known but the underlying mechanisms remain obscure. Inhibitor of differentiation 1 (ID1) is a target gene of TGFβ and a key promoter for colon cancer progression. Here, we show that Nur77 enhances TGFβ/Smad3-induced ID1 mRNA expression through hindering Smurf2-mediated Smad3 mono-ubiquitylation, resulting in ID1 upregulation. In the absence of TGFβ, however, Nur77 destabilizes ID1 protein by promoting Smurf2-mediated ID1 poly-ubiquitylation, resulting in ID1 downregulation. Interestingly, TGFβ stabilizes ID1 protein by switching Nur77 interaction partners to inhibit ID1 ubiquitylation. This also endows TGFβ with an active pro-tumorigenic action in Smad4-deficient colon cancers. Thus, TGFβ converts Nur77's role from destabilizing ID1 protein and cancer inhibition to inducing ID1 mRNA expression and cancer promotion, which is highly relevant to colon cancer stemness, metastasis and oxaliplatin resistance. Our data therefore define the integrated duality of Nur77 and TGFβ signaling in regulating ID1 expression and provide mechanistic insights into the paradoxical roles of TGFβ and Nur77 in colon cancer progression.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Cell Line, Tumor
- Colonic Neoplasms/etiology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- HT29 Cells
- Humans
- Inhibitor of Differentiation Protein 1/genetics
- Inhibitor of Differentiation Protein 1/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Models, Biological
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Smad3 Protein/metabolism
- Smad4 Protein/deficiency
- Smad4 Protein/metabolism
- Transforming Growth Factor beta/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Boning Niu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Ben Lv
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Jiacheng Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Chunxiao Wu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Xiaohua Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Margulis I, Naroditsky I, Gross-Cohen M, Ilan N, Vlodavsky I, Doweck I. A Pro-Tumorigenic Effect of Heparanase 2 (Hpa2) in Thyroid Carcinoma Involves Its Localization to the Nuclear Membrane. Front Oncol 2021; 11:645524. [PMID: 33959505 PMCID: PMC8093622 DOI: 10.3389/fonc.2021.645524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Activity of the endo-beta-glucuronidase heparanase, capable of cleaving heparan sulfate (HS), is most often elevated in many types of tumors, associating with increased tumor metastasis and decreased patients' survival. Heparanase is therefore considered to be a valid drug target, and heparanase inhibitors are being evaluated clinically in cancer patients. Heparanase 2 (Hpa2) is a close homolog of heparanase that gained very little attention, likely because it lacks HS-degrading activity typical of heparanase. The role of Hpa2 in cancer was not examined in detail. In head and neck cancer, high levels of Hpa2 are associated with decreased tumor cell dissemination to regional lymph nodes and prolonged patients' survival, suggesting that Hpa2 functions to attenuate tumor growth. Here, we examined the role of Hpa2 in normal thyroid tissue and in benign thyroid tumor, non-metastatic, and metastatic papillary thyroid carcinoma (PTC) utilizing immunostaining in correlation with clinicopathological parameters. Interestingly, we found that Hpa2 staining intensity does not significantly change in the transition from normal thyroid gland to benign, non-metastatic, or metastatic thyroid carcinoma. Remarkably, we observed that in some biopsies, Hpa2 is accumulating on the membrane (envelop) of the nucleus and termed this cellular localization NM (nuclear membrane). Notably, NM localization of Hpa2 occurred primarily in metastatic PTC and was associated with an increased number of positive (metastatic) lymph nodes collected at surgery. These results describe for the first time unrecognized localization of Hpa2 to the nuclear membrane, implying that in PTC, Hpa2 functions to promote tumor metastasis.
Collapse
Affiliation(s)
- Itai Margulis
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
Id4 Suppresses the Growth and Invasion of Colorectal Cancer HCT116 Cells through CK18-Related Inhibition of AKT and EMT Signaling. JOURNAL OF ONCOLOGY 2021; 2021:6660486. [PMID: 33936204 PMCID: PMC8060092 DOI: 10.1155/2021/6660486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 01/05/2023]
Abstract
Id4 is one of the inhibitors of DNA-binding proteins (Id) and involved in the pathogenesis of numerous cancers. The specific mechanism underlying the Id4-mediated regulation of proliferation, invasion, and metastasis of colorectal cancer (CRC) cells is still largely unclear. In the present study, results showed CRC cells had a lower baseline Id4 expression than normal intestinal epithelial NCM460 cells. In order to explore the role of Id4 in the tumorigenicity, CRC HCT116 cells with stable Id4 expression were used, and results showed Id4 overexpression arrested the cell cycle at the G0/G1 phase, inhibited the cell proliferation and the colony formation, as well as suppressed the migration and invasion. In the in vivo model, Id4 overexpression inhibited the tumor growth and metastasis in the nude mice. Furthermore, Id4 overexpression upregulated the expression of proteins associated with cell proliferation, inhibited the PI3K/AKT pathway, and suppressed epithelial-mesenchymal transition (EMT) of HCT116 cells. Moreover, Id4 significantly decreased cytokeratin 18 (CK18) expression, but CK18 overexpression in Id4 expressing HCT116-Id4 cells rescued the activation of AKT, p-AKT, MMP2, MMP7, and E-cadherin. Collectively, our study indicated Id4 may inhibit CRC growth and metastasis through inhibiting the PI3K/AKT pathway in a CK18-dependent manner and suppressing EMT. Id4 may become a target for the treatment of CRC.
Collapse
|
12
|
Ren T, Chen H, Liu X, Wang Y, Fan A, Qi L, Pan L, Bai W, Zhang Y, Sun Y. ID1 inhibits foot-and-mouth disease virus replication via targeting of interferon pathways. FEBS J 2021; 288:4364-4381. [PMID: 33492759 DOI: 10.1111/febs.15725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023]
Abstract
Inhibitor of DNA-binding 1 (ID1) protein has been studied intensively for its functions in tumorigenesis and maintenance of stem cell-like properties, but its roles in virus infection are less understood. In the present study, we have clearly shown that the foot-and-mouth disease virus (FMDV) promotes ID1 degradation via Cdh1-mediated ubiquitination to facilitate its replication. Mechanistic investigations reveal Forkhead Box O1 (FOXO1) as an ID1 partner, which suppresses interferon regulatory factors 3 expression and interferon (IFN) production. Further investigation identified that ID1 suppresses FOXO1 transcription activity through HDAC4-mediated deacetylation, promoting IFN production and antiviral immune response. These studies establish a prominent role for ID1 in suppressing FDMV replication, which may be extended to other viruses.
Collapse
Affiliation(s)
- Tingting Ren
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Haotai Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yanxue Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Aixia Fan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Linlin Qi
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Wenlong Bai
- The Departments of Pathology and Cell Biology, Oncological Sciences, University of South Florida College of Medicine, Tampa, FL, USA.,Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| |
Collapse
|
13
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Heparanase 2 and Urofacial Syndrome, a Genetic Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:807-819. [DOI: 10.1007/978-3-030-34521-1_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Sa JK, Hwang JR, Cho YJ, Ryu JY, Choi JJ, Jeong SY, Kim J, Kim MS, Paik ES, Lee YY, Choi CH, Kim TJ, Kim BG, Bae DS, Lee Y, Her NG, Shin YJ, Cho HJ, Kim JY, Seo YJ, Koo H, Oh JW, Lee T, Kim HS, Song SY, Bae JS, Park WY, Han HD, Ahn HJ, Sood AK, Rabadan R, Lee JK, Nam DH, Lee JW. Pharmacogenomic analysis of patient-derived tumor cells in gynecologic cancers. Genome Biol 2019; 20:253. [PMID: 31771620 PMCID: PMC6880425 DOI: 10.1186/s13059-019-1848-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gynecologic malignancy is one of the leading causes of mortality in female adults worldwide. Comprehensive genomic analysis has revealed a list of molecular aberrations that are essential to tumorigenesis, progression, and metastasis of gynecologic tumors. However, targeting such alterations has frequently led to treatment failures due to underlying genomic complexity and simultaneous activation of various tumor cell survival pathway molecules. A compilation of molecular characterization of tumors with pharmacological drug response is the next step toward clinical application of patient-tailored treatment regimens. Results Toward this goal, we establish a library of 139 gynecologic tumors including epithelial ovarian cancers (EOCs), cervical, endometrial tumors, and uterine sarcomas that are genomically and/or pharmacologically annotated and explore dynamic pharmacogenomic associations against 37 molecularly targeted drugs. We discover lineage-specific drug sensitivities based on subcategorization of gynecologic tumors and identify TP53 mutation as a molecular determinant that elicits therapeutic response to poly (ADP-Ribose) polymerase (PARP) inhibitor. We further identify transcriptome expression of inhibitor of DNA biding 2 (ID2) as a potential predictive biomarker for treatment response to olaparib. Conclusions Together, our results demonstrate the potential utility of rapid drug screening combined with genomic profiling for precision treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ryoung Hwang
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Ryu
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo Young Jeong
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- Department of Obstetrics and Gynecology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Myeong Seon Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - E Sun Paik
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae-Joong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nam-Gu Her
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja Yeon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yun Jee Seo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Harim Koo
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jeong-Woo Oh
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Taebum Lee
- Department of Pathology, Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Hyung Jun Ahn
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Jin-Ku Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Jeong-Won Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Sachdeva R, Wu M, Johnson K, Kim H, Celebre A, Shahzad U, Graham MS, Kessler JA, Chuang JH, Karamchandani J, Bredel M, Verhaak R, Das S. BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblastoma. Sci Rep 2019; 9:14569. [PMID: 31602000 PMCID: PMC6787003 DOI: 10.1038/s41598-019-51270-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/28/2019] [Indexed: 01/17/2023] Open
Abstract
Despite advances in therapy, glioblastoma remains an incurable disease with a dismal prognosis. Recent studies have implicated cancer stem cells within glioblastoma (glioma stem cells, GSCs) as mediators of therapeutic resistance and tumor progression. In this study, we investigated the role of the transforming growth factor-β (TGF-β) superfamily, which has been found to play an integral role in the maintenance of stem cell homeostasis within multiple stem cell systems, as a mediator of stem-like cells in glioblastoma. We find that BMP and TGF-β signaling define divergent molecular and functional identities in glioblastoma, and mark relatively quiescent and proliferative GSCs, respectively. Treatment of GSCs with BMP inhibits cell proliferation, but does not abrogate their stem-ness, as measured by self-renewal and tumorigencity. Further, BMP pathway activation confers relative resistance to radiation and temozolomide chemotherapy. Our findings define a quiescent cancer stem cell population in glioblastoma that may be a cellular reservoir for tumor recurrence following cytotoxic therapy.
Collapse
Affiliation(s)
- Rohit Sachdeva
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada
| | - Megan Wu
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada
| | - Kevin Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Hyunsoo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Angela Celebre
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Uswa Shahzad
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Maya Srikanth Graham
- Department of Neurology, Memorial Sloan Kettering, New York City, New York, USA.,Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, Illinois, USA
| | - John A Kessler
- Department of Neurology and Institute for Stem Cell Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jason Karamchandani
- Department of Laboratory Medicine, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Markus Bredel
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Sunit Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Kids, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Sachdeva R, Wu M, Smiljanic S, Kaskun O, Ghannad-Zadeh K, Celebre A, Isaev K, Morrissy AS, Guan J, Tong J, Chan J, Wilson TM, Al-Omaishi S, Munoz DG, Dirks PB, Moran MF, Taylor MD, Reimand J, Das S. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Res 2019; 79:4057-4071. [PMID: 31292163 DOI: 10.1158/0008-5472.can-18-1357] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/06/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1-positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. SIGNIFICANCE: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.
Collapse
Affiliation(s)
- Rohit Sachdeva
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Megan Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Sandra Smiljanic
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Oleksandra Kaskun
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kimia Ghannad-Zadeh
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Angela Celebre
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Keren Isaev
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - A Sorana Morrissy
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Jennifer Guan
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Jeffrey Chan
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Taylor M Wilson
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Sayf Al-Omaishi
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - David G Munoz
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sunit Das
- The Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada. .,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Zhao Z, Liu B, Sun J, Lu L, Liu L, Qiu J, Li Q, Yan C, Jiang S, Mohammadtursun N, Ma W, Li M, Dong J, Gong W. Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner. Int J Biol Sci 2019; 15:1500-1513. [PMID: 31337979 PMCID: PMC6643150 DOI: 10.7150/ijbs.33146] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the world. Inhibitor of differentiation 1 (Id1) is overexpressed in NSCLC and involved in promoting its progression and metastasis. Identifying natural compounds targeting Id1 may have utility in NSCLC treatment. Here, we sought to determine whether the anti-tumor activities of Scutellaria flavonoids (SFs) were related to Id1. We reported that three SFs (baicalin, baicalein and wogonin) exhibited strong antitumor activity in NSCLC cells in vitro and in vivo. Id1 played a pivotal role on blockage of migration and invasion by SFs. Abrogation of invasion and migration mediated by baicalin, baicalein and wogonin were totally abolished by ectopic overexpression of Id1. Mechanistically, baicalin, baicalein and wogonin activated Rap1-GTP binding and dephosphorylated Akt and Src by suppressing a7nAChR, consequently triggering inhibition of Id1. Then attenuation of its downstream mediators, VEGF-A, N-cadherin, vimentin, combined with augment of E-cadherin led to the blockage of proliferation, EMT and angiogenesis of NSCLC. Overall, our data shed light on heretofore-undescribed role of SFs as modulators of Id1, which may be a useful strategy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Wenjuan Ma
- Department of dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
19
|
Manzo G. Similarities Between Embryo Development and Cancer Process Suggest New Strategies for Research and Therapy of Tumors: A New Point of View. Front Cell Dev Biol 2019; 7:20. [PMID: 30899759 PMCID: PMC6416183 DOI: 10.3389/fcell.2019.00020] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Here, I propose that cancer stem cells (CSCs) would be equivalent to para-embryonic stem cells (p-ESCs), derived from adult cells de-re-programmed to a ground state. p-ESCs would differ from ESCs by the absence of genomic homeostasis. A p-ESC would constitute the cancer cell of origin (i-CSC or CSC0), capable of generating an initial tumor, corresponding to a pre-implantation blastocyst. In a niche with proper signals, it would engraft as a primary tumor, corresponding to a post-implantation blastocyst. i-CSC progeny would form primary pluripotent and slow self-renewing CSCs (CSC1s), blocked in an undifferentiated state, corresponding to epiblast cells; CSC1s would be tumor-initiating cells (TICs). CSC1s would generate secondary CSCs (CSC2s), corresponding to hypoblast cells; CSC2s would be tumor growth cells (TGCs). CSC1s/CSC2s would generate tertiary CSCs (CSC3s), with a mesenchymal phenotype; CSC3s would be tumor migrating cells (TMCs), corresponding to mesodermal precursors at primitive streak. CSC3s with more favorable conditions (normoxia), by asymmetrical division, would differentiate into cancer progenitor cells (CPCs), and these into cancer differentiated cells (CDCs), thus generating a defined cell hierarchy and tumor progression, mimicking somito-histo-organogenesis. CSC3s with less favorable conditions (hypoxia) would delaminate and migrate as quiescent circulating micro-metastases, mimicking mesenchymal cells in gastrula morphogenetic movements. In metastatic niches, these CSC3s would install and remain dormant in the presence of epithelial/mesenchymal transition (EMT) signals and hypoxia. But, in the presence of mesenchymal/epithelial transition (MET) signals and normoxia, they would revert to self-renewing CSC1s, reproducing the same cell hierarchy of the primary tumor as macro-metastases. Further similarities between ontogenesis and oncogenesis involving crucial factors, such as ID, HSP70, HLA-G, CD44, LIF, and STAT3, are strongly evident at molecular, physiological and immunological levels. Much experimental data about these factors led to considering the cancer process as ectopic rudimentary ontogenesis, where CSCs have privileged immunological conditions. These would consent to CSC development in an adverse environment, just like an embryo, which is tolerated, accepted and favored by the maternal organism in spite of its paternal semi-allogeneicity. From all these considerations, novel research directions, potential innovative tumor therapy and prophylaxis strategies might, theoretically, result.
Collapse
Affiliation(s)
- Giovanni Manzo
- General Pathology, “La Sapienza” University of Rome, Retired, Botrugno, Italy
| |
Collapse
|
20
|
Amaral LHP, Bufalo NE, Peres KC, Barreto IS, Campos AHJFM, Ward LS. ID Proteins May Reduce Aggressiveness of Thyroid Tumors. Endocr Pathol 2019; 30:24-30. [PMID: 30413933 DOI: 10.1007/s12022-018-9556-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ID genes have an important function in the cell cycle, and ID proteins may help identify aggressive tumors, besides being considered promising therapeutic targets. However, their role in thyroid tumors is still poorly understood. We examined ID expression and their correlation with diagnostic and prognostic features aiming to find a clinical application in differentiated thyroid carcinoma (DTC) cases. mRNA levels of ID1, ID2, ID3, and ID4 genes were quantified and their expression was observed by immunohistochemistry in 194 thyroid samples including 68 goiters, 16 follicular adenomas, 75 classic papillary thyroid carcinomas, 18 follicular variants of papillary thyroid carcinoma, 5 follicular thyroid carcinomas, and 1 anaplastic thyroid cancer, besides 11 normal thyroid tissues. DTC patients were managed according to standard protocols and followed up for M = 28 ± 16 months. ID2, ID3, and ID4 mRNA levels were higher in benign (2.0 ± 1.9; 0.6 ± 0.6; and 0.7 ± 1.0 AU, respectively) than those in malignant nodules (0.30 ± 0.62; 0.3 ± 0.3; and 0.2 ± 0.3 AU, respectively, p < 0.0001 for all three genes) and were associated with no extra thyroid invasion or metastasis at diagnosis. ID3 nuclear protein expression was higher in benign than that in malignant cells (5.2 ± 0.9 vs 3.0 ± 1.8 AU; p < 0.0001). On the contrary, the cytoplasmic expression of ID3 was higher in malignant than that in benign lesions (5.7 ± 1.5 vs 4.0 ± 1.4 AU; p < 0.0001). Our data indicate that ID genes are involved in thyroid tumorigenesis and suggest these genes act impeding the evolution of more aggressive phenotypes. The different patterns of their tissue expression may help identify malignancy and characterize thyroid lesion aggressiveness.
Collapse
Affiliation(s)
- Laís Helena Pereira Amaral
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil.
- , Pouso Alegre, Brazil.
| | - Natássia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Icléia Siqueira Barreto
- Department of Pathology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
21
|
Tao X, Zuo Q, Ruan H, Wang H, Jin H, Cheng Z, Lv Y, Qin W, Wang C. Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:263-276. [PMID: 30883650 DOI: 10.1093/abbs/gmz005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/06/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the main reason for high recurrence and poor survival of hepatocellular carcinoma (HCC). The molecular mechanism underlying HCC metastasis remains unclear. In this study, we found that argininosuccinate synthase 1 (ASS1) expression was significantly decreased and down-regulation of ASS1 was closely correlated with poor prognosis in HCC patients. DNA methylation led to the down-regulation of ASS1 in HCC. Stable silencing of ASS1 promoted migration and invasion of HCC cells, whereas overexpression of ASS1-inhibited metastasis of HCC cells in vivo and in vitro. We also revealed that ASS1-knockdown increased the phosphorylation level of S727STAT3, which contributed to HCC metastasis by up-regulation of inhibitor of differentiation 1 (ID1). These findings indicate that ASS1 inhibits HCC metastasis and may serve as a target for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Xuemei Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaozhu Zuo
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoan Cheng
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Tumor Microenvironment, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Phan N, Hong JJ, Tofig B, Mapua M, Elashoff D, Moatamed NA, Huang J, Memarzadeh S, Damoiseaux R, Soragni A. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun Biol 2019; 2:78. [PMID: 30820473 PMCID: PMC6389967 DOI: 10.1038/s42003-019-0305-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor organoids maintain cell-cell interactions, heterogeneity, microenvironment, and drug response of the sample they originate from. Thus, there is increasing interest in developing tumor organoid models for drug development and personalized medicine applications. Although organoids are in principle amenable to high-throughput screenings, progress has been hampered by technical constraints and extensive manipulations required by current methods. Here we introduce a miniaturized method that uses a simplified geometry by seeding cells around the rim of the wells (mini-rings). This allows high-throughput screenings in a format compatible with automation as shown using four patient-derived tumor organoids established from two ovarian and one peritoneal high-grade serous carcinomas and one carcinosarcoma of the ovary. Using our automated screening platform, we identified personalized responses by measuring viability, number, and size of organoids after exposure to 240 kinase inhibitors. Results are available within a week from surgery, a timeline compatible with therapeutic decision-making.
Collapse
Affiliation(s)
- Nhan Phan
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, Vietnam
| | - Jenny J Hong
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bobby Tofig
- Molecular Screening Shared Resource, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Matthew Mapua
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David Elashoff
- Department of Biostatistics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Neda A Moatamed
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jin Huang
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
- The VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medicinal Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Soragni
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Irradiation of pediatric glioblastoma cells promotes radioresistance and enhances glioma malignancy via genome-wide transcriptome changes. Oncotarget 2018; 9:34122-34131. [PMID: 30344926 PMCID: PMC6183347 DOI: 10.18632/oncotarget.26137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023] Open
Abstract
Pediatric glioblastoma (GBM) is a relatively rare brain tumor in children that has a dismal prognosis. Surgery followed by radiotherapy is the main treatment protocol used for older patients. The benefit of adjuvant chemotherapy is still limited due to a poor understanding of the underlying molecular and genetic changes that occur with irradiation of the tumor. In this study, we performed total RNA sequencing on an established stable radioresistant pediatric GBM cell line to identify mRNA expression changes following radiation. The expression of many genes was altered in the radioresistant pediatric GBM model. These genes have never before been reported to be associated with the development of radioresistant GBM. In addition to exhibiting an accelerated growth rate, radioresistant GBM cells also have overexpression of the DNA synthesis-rate-limiting enzyme ribonucleotide reductase, and pro-cathepsin B. These newly identified genes should be concertedly studied to better understand their role in pediatric GBM recurrence and progression after radiation. It was observed that the changes in multiple biological pathways protected GBM cells against radiation and transformed them to a more malignant form. These changes emphasize the importance of developing a treatment regimen that consists of a multiple-agent cocktail that acts on multiple implicated pathways to effectively target irradiated pediatric GBM. An alternative to radiation or a novel therapy that targets differentially expressed genes, such as metalloproteases, growth factors, and oncogenes and aim to minimize oncogenic changes following radiation is necessary to improve recurrent GBM survival.
Collapse
|
24
|
Králíčková M, Fiala L, Losan P, Tomes P, Vetvicka V. Altered Immunity in Endometriosis: What Came First? Immunol Invest 2018; 47:569-582. [DOI: 10.1080/08820139.2018.1467926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Plzen, Czech Republic
- Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Plzen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Ludek Fiala
- Institute of Sexology First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Psychiatry, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Petr Losan
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Plzen, Czech Republic
| | - Pavel Tomes
- Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Plzen, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
25
|
Villegas MR, Baeza A, Vallet-Regí M. Nanotechnological Strategies for Protein Delivery. Molecules 2018; 23:E1008. [PMID: 29693640 PMCID: PMC6100203 DOI: 10.3390/molecules23051008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
The use of therapeutic proteins plays a fundamental role in the treatment of numerous diseases. The low physico-chemical stability of proteins in physiological conditions put their function at risk in the human body until they reach their target. Moreover, several proteins are unable to cross the cell membrane. All these facts strongly hinder their therapeutic effect. Nanomedicine has emerged as a powerful tool which can provide solutions to solve these limitations and improve the efficacy of treatments based on protein administration. This review discusses the advantages and limitations of different types of strategies employed for protein delivery, such as PEGylation, transport within liposomes or inorganic nanoparticles or their in situ encapsulation.
Collapse
Affiliation(s)
- María Rocío Villegas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - Alejandro Baeza
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, UCM, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
26
|
Hong CF, Chen YC, Chen WC, Tu KC, Tsai MH, Chan YK, Yu SS. Construction of diagnosis system and gene regulatory networks based on microarray analysis. J Biomed Inform 2018; 81:61-73. [PMID: 29550394 DOI: 10.1016/j.jbi.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 01/02/2023]
Abstract
A microarray analysis generally contains expression data of thousands of genes, but most of them are irrelevant to the disease of interest, making analyzing the genes concerning specific diseases complicated. Therefore, filtering out a few essential genes as well as their regulatory networks is critical, and a disease can be easily diagnosed just depending on the expression profiles of a few critical genes. In this study, a target gene screening (TGS) system, which is a microarray-based information system that integrates F-statistics, pattern recognition matching, a two-layer K-means classifier, a Parameter Detection Genetic Algorithm (PDGA), a genetic-based gene selector (GBG selector) and the association rule, was developed to screen out a small subset of genes that can discriminate malignant stages of cancers. During the first stage, F-statistic, pattern recognition matching, and a two-layer K-means classifier were applied in the system to filter out the 20 critical genes most relevant to ovarian cancer from 9600 genes, and the PDGA was used to decide the fittest values of the parameters for these critical genes. Among the 20 critical genes, 15 are associated with cancer progression. In the second stage, we further employed a GBG selector and the association rule to screen out seven target gene sets, each with only four to six genes, and each of which can precisely identify the malignancy stage of ovarian cancer based on their expression profiles. We further deduced the gene regulatory networks of the 20 critical genes by applying the Pearson correlation coefficient to evaluate the correlationship between the expression of each gene at the same stages and at different stages. Correlationships between gene pairs were calculated, and then, three regulatory networks were deduced. Their correlationships were further confirmed by the Ingenuity pathway analysis. The prognostic significances of the genes identified via regulatory networks were examined using online tools, and most represented biomarker candidates. In summary, our proposed system provides a new strategy to identify critical genes or biomarkers, as well as their regulatory networks, from microarray data.
Collapse
Affiliation(s)
- Chun-Fu Hong
- Department of Long-Term Care, National Quemoy University, Kinmen County 892, Taiwan, ROC
| | - Ying-Chen Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Wei-Chun Chen
- Department of Management Information System, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Keng-Chang Tu
- Deparment of Computer Science and Engineering, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Meng-Hsiun Tsai
- Department of Management Information System, National Chung Hsing University, Taichung City 402, Taiwan, ROC.
| | - Yung-Kuan Chan
- Department of Management Information System, National Chung Hsing University, Taichung City 402, Taiwan, ROC.
| | - Shyr Shen Yu
- Deparment of Computer Science and Engineering, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| |
Collapse
|
27
|
Chen WC, Chung CH, Lu YC, Wu MH, Chou PH, Yen JY, Lai YW, Wang GS, Liu SC, Cheng JK, Wu YJ, Yeh HI, Wang LY, Wang SW. BMP-2 induces angiogenesis by provoking integrin α6 expression in human endothelial progenitor cells. Biochem Pharmacol 2018; 150:256-266. [PMID: 29458046 DOI: 10.1016/j.bcp.2018.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a multifunctional cytokine, capable of governing several cellular functions, including proliferation, motility, differentiation, and angiogenesis. Circulating endothelial progenitor cells (EPCs) have been shown to facilitate tissue repair, postnatal neovascularization, and tumor associated angiogenesis. Nevertheless, the impact of BMP-2 on angiogenesis of human EPCs has largely remained a mystery. In this study, we found that BMP-2 promoted cell migration and tube formation of EPCs in a concentration-dependent manner, indicating BMP-2 induced in vitro angiogenesis in human EPCs. Furthermore, BMP-2 significantly increased microvessel formation in Matrigel plug assay, and BMP-2 antagonist noggin prevented BMP-2-induced in vivo angiogenesis. Mechanistic investigations showed BMP-2 profoundly induced the expression of Id-1 and integrin α6 as well as EPCs angiogenesis by activating PI3K/Akt and MEK/ERK signaling pathways. Moreover, knockdown of Id-1 and integrin α6 by siRNA transfection obviously attenuated BMP-2-indueced tube formation of EPCs. These results suggest that BMP-2 promotes angiogenesis in human EPCs through the activation of PI3K/Akt, MEK/ERK, and Id-1/integrin α6 signaling cascades. This is the first demonstration that BMP-2 exhibits the angiogenesis property on human EPCs. BMP-2 might serve as the potential therapeutic target for treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yung-Chang Lu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Min-Huan Wu
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan; Physical Education Office, Tunghai University, Taichung, Taiwan
| | - Po-Hsun Chou
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Juei-Yu Yen
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taiwan; Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Guo-Shou Wang
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hung-I Yeh
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Roschger C, Neukirchen S, Elsässer B, Schubert M, Maeding N, Verwanger T, Krammer B, Cabrele C. Targeting of a Helix-Loop-Helix Transcriptional Regulator by a Short Helical Peptide. ChemMedChem 2017; 12:1497-1503. [DOI: 10.1002/cmdc.201700305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology; University of Salzburg; Billrothstrasse 11 5020 Salzburg Austria
| | - Saskia Neukirchen
- Department of Molecular Biology; University of Salzburg; Billrothstrasse 11 5020 Salzburg Austria
- Department of Chemistry and Biochemistry; Ruhr-University Bochum; Universitaetsstrasse 150 44801 Bochum Germany
| | - Brigitta Elsässer
- Department of Molecular Biology; University of Salzburg; Billrothstrasse 11 5020 Salzburg Austria
| | - Mario Schubert
- Department of Molecular Biology; University of Salzburg; Billrothstrasse 11 5020 Salzburg Austria
| | - Nicole Maeding
- Department of Molecular Biology; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| | - Thomas Verwanger
- Department of Molecular Biology; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| | - Barbara Krammer
- Department of Molecular Biology; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| | - Chiara Cabrele
- Department of Molecular Biology; University of Salzburg; Billrothstrasse 11 5020 Salzburg Austria
| |
Collapse
|
29
|
Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW, Chan CWH. Profiling of the silica-induced molecular events in lung epithelial cells using the RNA-Seq approach. J Appl Toxicol 2017; 37:1162-1173. [PMID: 28425640 DOI: 10.1002/jat.3471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/15/2023]
Abstract
Silicosis is a prolonged, irreversible and incurable occupational disease, and there is a significant number of newly diagnosed cases every year in Hong Kong. Due to the long latency of the disease, the diagnosis can be missed until detailed clinical examination at a later stage. For a better control of this deadly disease, detailing the pro-inflammatory and fibrotic events in the macrophage would be instrumental in understanding the pathogenesis of the disease and essential for the significant biomarkers discovery. In this in vitro study, human cell line model A549 lung epithelial cells were used. The immediate molecular events underneath the activation of quartz silica polymorphs were followed in a time course of 0, 0.5, 2, 8, 16 and 24 h. The transcriptome library was prepared and subjected to RNA-Seq analysis. Data analysis was performed by pathway analysis tools and verified by real-time PCR. The results showed that triggered genes were mainly found in the immune response and inflammatory pathways. An interesting finding was the association of the DNA-binding protein inhibitor (ID) family in the silica exposure to lung cells. The linkage of ID1, ID2 and ID3 to cancer may rationalize themselves to be the markers indicating an early response of silicosis. However, further studies are required to consolidate the roles of these genes in silicosis. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Judy Y W Chan
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joseph C C Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick T W Law
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie K W So
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Doris Y P Leung
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carmen W H Chan
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
30
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
31
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
32
|
Su C, Zhang B, Liu W, Zheng H, Sun L, Tong J, Wang T, Jiang X, Liang H, Xue L, Zhang Q. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation. Oncol Rep 2016; 36:1048-54. [DOI: 10.3892/or.2016.4841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
|
33
|
Murase R, Sumida T, Kawamura R, Onishi-Ishikawa A, Hamakawa H, McAllister SD, Desprez PY. Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression. Cancer Lett 2016; 377:11-6. [PMID: 27087608 DOI: 10.1016/j.canlet.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 10/22/2022]
Abstract
Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers. Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice. Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression. All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci. Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.
Collapse
Affiliation(s)
- Ryuichi Murase
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Tomoki Sumida
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Rumi Kawamura
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Akiko Onishi-Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hiroyuki Hamakawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sean D McAllister
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA.
| |
Collapse
|
34
|
Gross-Cohen M, Feld S, Doweck I, Neufeld G, Hasson P, Arvatz G, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 Attenuates Head and Neck Tumor Vascularity and Growth. Cancer Res 2016; 76:2791-801. [PMID: 27013193 DOI: 10.1158/0008-5472.can-15-1975] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
The endoglycosidase heparanase specifically cleaves the heparan sulfate (HS) side chains on proteoglycans, an activity that has been implicated strongly in tumor metastasis and angiogenesis. Heparanase-2 (Hpa2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. In head and neck cancer patients, Hpa2 expression was markedly elevated, correlating with prolonged time to disease recurrence and inversely correlating with tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions as a tumor suppressor. The molecular mechanism associated with favorable prognosis following Hpa2 induction is unclear. Here we provide evidence that Hpa2 overexpression in head and neck cancer cells markedly reduces tumor growth. Restrained tumor growth was associated with a prominent decrease in tumor vascularity (blood and lymph vessels), likely due to reduced Id1 expression, a transcription factor highly implicated in VEGF-A and VEGF-C gene regulation. We also noted that tumors produced by Hpa2-overexpressing cells are abundantly decorated with stromal cells and collagen deposition, correlating with a marked increase in lysyl oxidase expression. Notably, heparanase enzymatic activity was unimpaired in cells overexpressing Hpa2, suggesting that reduced tumor growth is not caused by heparanase regulation. Moreover, growth of tumor xenografts by Hpa2-overexpressing cells was unaffected by administration of a mAb that targets the heparin-binding domain of Hpa2, implying that Hpa2 function does not rely on heparanase or heparan sulfate. Cancer Res; 76(9); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Peleg Hasson
- Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Arvatz
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
35
|
Jia Y, Wang Z, Zang A, Jiao S, Chen S, Fu Y. Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling. Int J Oncol 2016; 48:2079-86. [PMID: 26984046 DOI: 10.3892/ijo.2016.3443] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
The underlying mechanisms of inhibitory effects induced by tetramethylpyrazine (TMP) on angiogenesis and tumor growth of lung cancer were investigated. In vitro cell proliferation, migration, and tube formation of human microvascular endothelial cells (HMEC-1) were evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT), wound healing, Transwell, and Matrigel assays. The expression of BMP/Smad/Id-1 signals was detected by RT-PCR and western blotting. In an A549 xenograft tumor model, TMP (40 and 80 mg/kg/day) was intraperitoneally injected into mice. The expressions of CD31, phosphorylated Smad1/5/8, and Id-1 were measured by immunohistochemistry. We demonstrated that TMP inhibited proliferation, migration, and capillary tube formation of HMEC-1 in a dose- and time-dependent manner. Furthermore, treatment of HMEC-1 cells with TMP (0.4 mg/ml) significantly upregulated BMP2 expression and downregulated BMPRIA, BMPRII, phosphorylated Smad1/5/8, and Id-1 expression. In addition, administrations of TMP remarkably inhibited tumor growth of A549 xenograft in nude mice. The CD31, phosphorylated Smad1/5/8, and Id-1 expression were significantly inhibited in TMP-treated xenograft tumors compared with the vehicle. In conclusion, our results indicated that TMP suppressed angiogenesis and tumor growth of lung cancer via blocking the BMP/Smad/Id-1 signaling.
Collapse
Affiliation(s)
- Youchao Jia
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Zhigang Wang
- Department of Medical Oncology, Baoding Hengxing Hospital of Traditional Chinese and Western Medicine, Baoding 071000, P.R. China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, P.R. China
| | - Shunchang Jiao
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Sumei Chen
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Yan Fu
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
36
|
Topno NS, Kannan M, Krishna R. Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor - An Insight through molecular dynamics and docking approach. Biochem Biophys Rep 2015; 5:180-190. [PMID: 28955822 PMCID: PMC5600450 DOI: 10.1016/j.bbrep.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 10/29/2022] Open
Abstract
Inhibitor of DNA binding protein 3 (ID3) has long been characterized as an oncogene that implicates its functional role through its Helix-Loop-Helix (HLH) domain upon protein-protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD) simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12) and their ensemble complex (ID3-E2A/E12) to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA) and Free Energy Landscape (FEL) helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.
Collapse
Affiliation(s)
- Nishith Saurav Topno
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Muthu Kannan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ramadas Krishna
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
37
|
Young VJ, Ahmad SF, Brown JK, Duncan WC, Horne AW. Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis. Sci Rep 2015; 5:16859. [PMID: 26577912 PMCID: PMC4649623 DOI: 10.1038/srep16859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/21/2015] [Indexed: 01/17/2023] Open
Abstract
VEGF-A, an angiogenic factor, is increased in the peritoneal fluid of women with endometriosis. The cytokine TGF-β1 is thought to play a role in the establishment of endometriosis lesions. Inhibitor of DNA binding (ID) proteins are transcriptional targets of TGF-β1 and ID1 has been implicated in VEGF-A regulation during tumor angiogenesis. Herein, we determined whether peritoneal expression of VEGF-A is regulated by TGF-β1 through the ID1 pathway in women with endometriosis. VEGF-A was measured in peritoneal fluid by ELISA (n = 16). VEGF-A and ID1 expression was examined in peritoneal biopsies (n = 13), and primary peritoneal and immortalized mesothelial cells (MeT5A) by immunohistochemistry, qRT-PCR and ELISA. VEGF-A was increased in peritoneal fluid from women with endometriosis and levels correlated with TGF-β1 concentrations (P < 0.05). VEGF-A was immunolocalized to peritoneal mesothelium and TGF-β1 increased VEGFA mRNA (P < 0.05) and protein (P < 0.05) in mesothelial cells. ID1 was increased in peritoneum from women with endometriosis and TGF-β1 increased concentrations of ID1 mRNA (P < 0.05) in mesothelial cells. VEGF-A regulation through ID1 was confirmed by siRNA in MeT5A cells (P < 0.05). Our data supports role for ID1 in the pathophysiology of endometriosis, as an effector of TGFβ1 dependent upregulation of VEGF-A, and highlights a novel potential therapeutic target.
Collapse
Affiliation(s)
- Vicky J Young
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Syed F Ahmad
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Jeremy K Brown
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
38
|
Garcia-Cao M, Al-Ahmadie HA, Chin Y, Bochner BH, Benezra R. Id Proteins Contribute to Tumor Development and Metastatic Colonization in a Model of Bladder Carcinogenesis. Bladder Cancer 2015; 1:159-170. [PMID: 27376116 PMCID: PMC4927902 DOI: 10.3233/blc-150023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Bladder cancer is one of the most common malignant genitourinary diseases worldwide. Despite advances in surgical technique, medical oncology and radiation therapy, cure of invasive tumors remains elusive for patients with late stage disease. Therefore, new therapeutic strategies are needed to improve the response rates with regard to recurrence, invasion and metastasis. Objective: Inhibitor of DNA binding (Id) proteins have been proposed as therapeutic targets due to the key regulatory role they exert in multiple steps of cancer. We aimed to explore the role of Id proteins in bladder cancer development and the pattern of expression of Id proteins in bladder carcinomas. Methods: We used a well-established chemically induced model of bladder carcinogenesis. Wild type and Id-deficient mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in the drinking water and urinary bladder lesions were analyzed histopathologically and stained for Id1. We assessed the effects of Id1 inactivation in cultured bladder cancer cells and in a model of metastatic lung colonization. We also performed Id1 staining of human urothelial carcinoma samples and matched lymph node metastases. Results: Id1 protein was overexpressed in the BBN-induced model of bladder cancer. Id1 deficiency resulted in the development of urinary bladder tumors with areas of extensive hemorrhage and decreased invasiveness when compared to wild type mice. Id1 inactivation led to decreased cell growth in vitro and lung colonization in vivo of human bladder cancer cells. Immunohistochemistry performed on human urothelial carcinoma samples showed Id1 positive staining in both primary tumors and lymph node metastases. Conclusions: In summary, our studies reveal the physiological relevance of Id1 in bladder cancer progression and suggest that targeting Id1 may be important in the development of novel therapies for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Marta Garcia-Cao
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yvette Chin
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Department of Surgery, Urology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
39
|
Tsai CH, Yang MH, Hung AC, Wu SC, Chiu WC, Hou MF, Tyan YC, Wang YM, Yuan SSF. Identification of Id1 as a downstream effector for arsenic-promoted angiogenesis via PI3K/Akt, NF-κB and NOS signaling. Toxicol Res (Camb) 2015; 5:151-159. [PMID: 30090333 DOI: 10.1039/c5tx00280j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Exposure to arsenic is known to be a risk factor for various types of cancer. Apart from its carcinogenic activity, arsenic also shows promoting effects on angiogenesis, a crucial process for tumor growth. Yet, the mechanism underlying arsenic-induced angiogenesis is not fully understood. In this study, we aimed at investigating the involvement of inhibitor of DNA binding 1 (Id1) and the associated signal molecules in the arsenic-mediated angiogenesis. Our initial screening revealed that treatment with low concentrations of arsenic (0.5-1 μM) led to multiple cellular responses, including enhanced endothelial cell viability and angiogenic activity as well as increased protein expression of Id1. The arsenic-induced angiogenesis was suppressed in the Id1-knocked down cells compared to that in control cells. Furthermore, arsenic-induced Id1 expression and angiogenic activity were regulated by PI3K/Akt, NF-κB, and nitric oxide synthase (NOS) signaling. In summary, our current data demonstrate for the first time that Id1 mediates the arsenic-promoted angiogenesis, and Id1 may be regarded as an antiangiogenesis target for treatment of arsenic-associated cancer.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Translational Research Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Graduate Institute of Medicine , College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan . ; Tel: +886-7-3121101 Ext2557
| | - Ming-Hui Yang
- Translational Research Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Amos C Hung
- Translational Research Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Shou-Cheng Wu
- Department of Biological Science and Technology and Institute of Molecular Medicine and Bioengineering , National Chiao Tung University , Hsinchu , Taiwan . ; Tel: +886-3-5712121 Ext56972
| | - Wen-Chin Chiu
- Division of Thoracic Surgery , Department of Surgery , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ming-Feng Hou
- Cancer Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Surgery , Kaohsiung Municipal Ta-Tung Hospital , Kaohsiung , Taiwan
| | - Yu-Chang Tyan
- Translational Research Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Medical Imaging and Radiological Sciences , Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Infectious Disease and Cancer Research , Kaohsiung Medical University , Kaohsiung , Taiwan.,Institute of Medical Science and Technology , National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology and Institute of Molecular Medicine and Bioengineering , National Chiao Tung University , Hsinchu , Taiwan . ; Tel: +886-3-5712121 Ext56972
| | - Shyng-Shiou F Yuan
- Translational Research Center , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Graduate Institute of Medicine , College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan . ; Tel: +886-7-3121101 Ext2557.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Department of Obstetrics and Gynecology , Kaohsiung Medical University Hospital , Kaohsiung Medical University , Kaohsiung , Taiwan.,Faculty and College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan.,Center for Lipid and Glycomedicine Research , Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
40
|
Kool MMJ, Galac S, van der Helm N, Corradini S, Kooistra HS, Mol JA. Insulin-like growth factor--phosphatidylinositol 3 kinase signaling in canine cortisol-secreting adrenocortical tumors. J Vet Intern Med 2015; 29:214-24. [PMID: 25619516 PMCID: PMC4858057 DOI: 10.1111/jvim.12528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
Background Hypercortisolism is a common endocrine disorder in dogs, caused by a cortisol‐secreting adrenocortical tumor (AT) in approximately 15% of cases. In adrenocortical carcinomas of humans, activation of the phosphatidylinositol 3 kinase (PI3K) signaling pathway by insulin‐like growth factor (IGF) signaling represents a promising therapeutic target. Objectives To investigate the involvement of PI3K signaling in the pathogenesis of ATs in dogs and to identify pathway components that may hold promise as future therapeutic targets or as prognostic markers. Animals Analyses were performed on 36 canine cortisol‐secreting ATs (11 adenomas and 25 carcinomas) and 15 normal adrenal glands of dogs. Methods mRNA expression analysis was performed for PI3K target genes, PI3K inhibitor phosphatase and tensin homolog (PTEN), IGFs, IGF receptors, IGF binding proteins and epidermal growth factor receptors. Mutation analysis was performed on genes encoding PTEN and PI3K catalytic subunit (PIK3CA). Results Target gene expression indicated PI3K activation in carcinomas, but not in adenomas. No amino acid‐changing mutations were detected in PTEN or PIK3CA and no significant alterations in IGF‐II or IGFR1 expression were detected. In carcinomas, ERBB2 expression tended to be higher than in normal adrenal glands, and higher expression of inhibitor of differentiation 1 and 2 (ID1 and ID2) was detected in carcinomas with recurrence within 2.5 years after adrenalectomy. Conclusions and Clinical Importance Based on these results, ERBB2 might be a promising therapeutic target in ATs in dogs, whereas ID1 and 2 might be valuable as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- M M J Kool
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Cancer Gene Ther 2015; 22:431-7. [PMID: 26384138 DOI: 10.1038/cgt.2015.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023]
Abstract
The inhibitor of DNA-binding/differentiation 3 (Id3) protein is a helix-loop-helix transcription factor and may have an important role in cell proliferation and differentiation. This study was to evaluate the effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Short interference RNA suppression of Id3 (miRId3) in A549 cells was used to investigate the functional role(s) of Id3. Next, we used in vitro wound-healing assay and trans-well assay to study the effects of overexpressed Id3 on migration and invasion of A549 cells. Furthermore, to explore the influence of overexpressed Id3 on in vivo tumorigenesis, adenoviruses containing Id3 gene (Ad-Id3) and empty vector (Ad-LacZ) were generated. Co-transfection of pcDNA/miRId3 and pEGFP/Id3 into A549 cells reversed the Id3-induced cell proliferation inhibition and apoptosis. Upon Id3 transfection, A549 cells displayed decreased migratory and invasive capabilities, however, co-transfection of miRId3 and Id3 into A549 cells reversed the Id3-induced inhibitions of migratory and invasive capabilities. Three groups of nude mice were inoculated with Ad-LacZ, Ad-Id3 transfectants and untransfected A549 cells, respectively. Twenty-eight days after inoculation, tumors induced by Ad-Id3 transfectants grew much more slowly compared with Ad-LacZ transfectants and control group. This study provides for the first time both in vitro and in vivo proofs that forced expression of Id3 in lung adenocarcinoma cells reduces tumor growth rate and may be a potential target for tumor suppression.
Collapse
|
42
|
Zhang X, Ai F, Li X, She X, Li N, Tang A, Qin Z, Ye Q, Tian L, Li G, Shen S, Ma J. Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis. Int J Cancer 2015; 137:2803-14. [PMID: 26135667 DOI: 10.1002/ijc.29671] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/22/2015] [Indexed: 12/26/2022]
Abstract
The aberrant expression of S100A8 and S100A9 is linked to nonresolving inflammation and ultimately to carcinogenesis, whereas the underlying mechanism that allows inflammation to progress to specific cancer types remains unknown. Here, we report that S100A8 was induced by inflammation and then promoted colorectal tumorigenesis downstream by activating Id3 (inhibitor of differentiation 3). Using gene expression profiling and immunohistochemistry, we found that both S100A8 and S100A9 were upregulated in the chemically-induced colitis-associated cancer mouse model and in human colorectal cancer specimens. Furthermore, we showed that S100A8 and S100A9 acted as chemoattractant proteins by recruiting macrophages, promoting the proliferation and invasion of colon cancer cell, as well as spurring the cycle that culminates in the acceleration of cancer metastasis in a nude mouse model. S100A8 regulated colon cancer cell cycle and proliferation by inducing Id3 expression while inhibiting p21. Id3 expression was regulated by Smad5, which was directly phosphorylated by Akt1. Our study revealed a novel mechanism in which inflammation-induced S100A8 promoted colorectal tumorigenesis by acting upstream to activate the Akt1-Smad5-Id3 axis.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, Central South University, Changsha, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Ministry of Health; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Xiayu Li
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Xiaoling She
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Nan Li
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Anliu Tang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zailong Qin
- Cancer Research Institute, Central South University, Changsha, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Ministry of Health; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Qiurong Ye
- Cancer Research Institute, Central South University, Changsha, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Ministry of Health; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Li Tian
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Guiyuan Li
- Cancer Research Institute, Central South University, Changsha, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Ministry of Health; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Shourong Shen
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- Cancer Research Institute, Central South University, Changsha, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis, Ministry of Health; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| |
Collapse
|
43
|
Wahi D, Jamal S, Goyal S, Singh A, Jain R, Rana P, Grover A. Cheminformatics models based on machine learning approaches for design of USP1/UAF1 abrogators as anticancer agents. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:33-43. [PMID: 25972987 PMCID: PMC4427583 DOI: 10.1007/s11693-015-9162-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
Cancer cells have upregulated DNA repair mechanisms, enabling them survive DNA damage induced during repeated rapid cell divisions and targeted chemotherapeutic treatments. Cancer cell proliferation and survival targeting via inhibition of DNA repair pathways is currently a very promiscuous anti-tumor approach. The deubiquitinating enzyme, USP1 is known to promote DNA repair via complexing with UAF1. The USP1/UAF1 complex is responsible for regulating DNA break repair pathways such as trans-lesion synthesis pathway, Fanconi anemia pathway and homologous recombination. Thus, USP1/UAF1 inhibition poses as an efficient anti-cancer strategy. The recently made available high throughput screen data for anti USP1/UAF1 activity prompted us to compute bioactivity predictive models that could help in screening for potential USP1/UAF1 inhibitors having anti-cancer properties. The current study utilizes publicly available high throughput screen data set of chemical compounds evaluated for their potential USP1/UAF1 inhibitory effect. A machine learning approach was devised for generation of computational models that could predict for potential anti USP1/UAF1 biological activity of novel anticancer compounds. Additional efficacy of active compounds was screened by applying SMARTS filter to eliminate molecules with non-drug like features. The structural fragment analysis was further performed to explore structural properties of the molecules. We demonstrated that modern machine learning approaches could be efficiently employed in building predictive computational models and their predictive performance is statistically accurate. The structure fragment analysis revealed the structures that could play an important role in identification of USP1/UAF1 inhibitors.
Collapse
Affiliation(s)
- Divya Wahi
- />School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Salma Jamal
- />Department of Bioscience and Biotechnology, Banasthali University, Tonk, 304022 Rajasthan India
| | - Sukriti Goyal
- />Department of Bioscience and Biotechnology, Banasthali University, Tonk, 304022 Rajasthan India
| | - Aditi Singh
- />Department of Biotechnology, TERI University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, 110 070 India
| | - Ritu Jain
- />School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Preeti Rana
- />School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Abhinav Grover
- />School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
44
|
Beyeler S, Joly S, Fries M, Obermair FJ, Burn F, Mehmood R, Tabatabai G, Raineteau O. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma. Stem Cells 2015; 32:2583-95. [PMID: 24965159 DOI: 10.1002/stem.1776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/06/2014] [Accepted: 05/19/2013] [Indexed: 01/15/2023]
Abstract
Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.
Collapse
Affiliation(s)
- Sarah Beyeler
- Brain Research Institute, University of Zurich/Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Papaspyridonos M, Matei I, Huang Y, do Rosario Andre M, Brazier-Mitouart H, Waite JC, Chan AS, Kalter J, Ramos I, Wu Q, Williams C, Wolchok JD, Chapman PB, Peinado H, Anandasabapathy N, Ocean AJ, Kaplan RN, Greenfield JP, Bromberg J, Skokos D, Lyden D. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat Commun 2015; 6:6840. [PMID: 25924227 PMCID: PMC4423225 DOI: 10.1038/ncomms7840] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022] Open
Abstract
A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive ‘macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis. Tumour progression is promoted by the generation of an immunosuppressive macroenvironment. Here, the authors demonstrate that the Inhibitor of Differentiation 1 promotes the switch from dendritic cell differentiation towards myeloid-derived suppressor cell expansion during tumour progression.
Collapse
Affiliation(s)
- Marianna Papaspyridonos
- Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA
| | - Yujie Huang
- 1] Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA [2] Department of Neurosurgery, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Maria do Rosario Andre
- 1] Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA [2] Department of Genetics, Oncology and Human Toxicology, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Helene Brazier-Mitouart
- Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA
| | | | - April S Chan
- Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA
| | - Julie Kalter
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| | - Ilyssa Ramos
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| | - Qi Wu
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA
| | - Caitlin Williams
- Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA
| | - Jedd D Wolchok
- 1] Melanoma and Immunotherapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, New York 10065, USA [2] Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, New York 10065, USA
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, New York 10065, USA
| | - Hector Peinado
- 1] Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA [2] Tumor Metastasis Laboratory, Fundación Centro Nacional de Investigaciones Oncológicas, Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Niroshana Anandasabapathy
- Brigham and Women's Hospital, Department of Dermatology, Harvard Medical School, 221 Longwood Avenue EBRC, Room 513, Boston, Massachusetts 02118, USA
| | - Allyson J Ocean
- Department of Medicine, Weill Cornell Medical College and Medical Oncology/Solid Tumor Program, 1305 York Avenue, New York City, New York 10021, USA
| | - Rosandra N Kaplan
- Center for Cancer Research, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10-Hatfield CRC, Room 1-3940, Bethesda, Maryland 20892, USA
| | - Jeffrey P Greenfield
- Department of Neurosurgery, Weill Cornell Medical College, 1300 York Avenue, New York City, New York 10065, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, New York 10065, USA
| | | | - David Lyden
- 1] Children's Cancer and Blood Foundation Laboratories and Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, 413 East 69th Street, New York City, New York 10021, USA [2] Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, New York 10065, USA
| |
Collapse
|
46
|
Oneyama C, Okada M. MicroRNAs as the fine-tuners of Src oncogenic signalling. J Biochem 2015; 157:431-8. [PMID: 25862810 DOI: 10.1093/jb/mvv036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
The cellular Src (c-Src) tyrosine kinase is upregulated and believed to play a pivotal role in various human cancers. However, the molecular mechanism underlying c-Src-mediated tumour progression remains elusive. Recent studies have revealed that several microRNAs (miRNAs) function as tumour suppressors by regulating the malignant expression of signalling molecules. Aberrant expression of miRNAs is frequently observed in human cancers and should be exploited to seek related molecular targets. In this review, we focus on miRNAs found to be involved in Src signalling in various cancers. We summarize recent findings on Src-related miRNAs, their target genes, mechanisms behind their interplay and their implications for cancer therapeutics.
Collapse
Affiliation(s)
- Chitose Oneyama
- Division of Microbiology and Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan and Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan Division of Microbiology and Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan and Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Okada
- Division of Microbiology and Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan and Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 314:43-116. [DOI: 10.1016/bs.ircmb.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Zhou Y, Ming J, Xu Y, Zhang Y, Jiang J. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner. Biochem Biophys Res Commun 2014; 457:141-7. [PMID: 25514034 DOI: 10.1016/j.bbrc.2014.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 02/07/2023]
Abstract
ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Yan Zhou
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jia Ming
- Department of Breast, Thyroid and Pancreas Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
49
|
Manrique I, Nguewa P, Bleau AM, Nistal-Villan E, Lopez I, Villalba M, Gil-Bazo I, Calvo A. The inhibitor of differentiation isoform Id1b, generated by alternative splicing, maintains cell quiescence and confers self-renewal and cancer stem cell-like properties. Cancer Lett 2014; 356:899-909. [PMID: 25449776 DOI: 10.1016/j.canlet.2014.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Id1 has been shown to play a critical role in tumorigenesis and angiogenesis. Moreover, recent reports have involved Id1 in the maintenance of cancer stem cell features in some tumor types. The Id1 gene generates two isoforms through alternative splicing: Id1a and Id1b. We have investigated the role of each isoform in cancer development. Using lentiviral systems we modified the endogenous expression of each of these isoforms in cancer cells and analyzed their biological effect both in vitro and in vivo. Overexpression of Id1b in murine CT26 and 3LL cells caused a G0/G1 cell cycle arrest and reduced proliferation, clonogenicity and phospho-ERK1/2 levels, while increasing p27 levels. High levels of Id1a had an opposite effect and the proportion of cells in the S phase increased significantly. In vivo models confirmed the inhibitory role of Id1b in primary tumor growth and metastasis. Through microarray analysis we found that the cancer stem cell (CSC) markers ALDH1A1 and Notch-1 were up-regulated specifically in Id1b-overexpressing cells. By using qPCR we also found overexpression of Sca-1, Tert, Sox-2 and Oct-4 in these cells. Increased levels of Id1b promoted self-renewal and CSC-like properties, as shown by their high capacity for developing secondary tumorspheres and retaining the PKH26 dye. The acquisition of CSC phenotype was confirmed in human PC-3 cells that overexpressed Id1b. Our results show that Id1b maintains cells in a quiescent state and promotes self-renewal and CSC-like features. On the contrary, Id1a promotes cell proliferation.
Collapse
Affiliation(s)
- Irene Manrique
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paul Nguewa
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Instituto de Salud Tropical and Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Anne-Marie Bleau
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Estanislao Nistal-Villan
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ines Lopez
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Villalba
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Histology and Pathology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
50
|
Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, Liu Z, Lin K, Xu-Monette ZY, Young KH, Liu J, Shen Z, Feng Z, Hu W. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun 2014; 5:5218. [PMID: 25323535 PMCID: PMC4203416 DOI: 10.1038/ncomms6218] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022] Open
Abstract
Leukaemia inhibitory factor (LIF) has been recently identified as a p53 target gene, which mediates the role of p53 in maternal implantation under normal physiological conditions. Here we report that LIF is a negative regulator of p53; LIF downregulates p53 protein levels and function in human colorectal cancer (CRC) cells. The downregulation of p53 by LIF is mediated by the activation of Stat3, which transcriptionally induces inhibitor of DNA-binding 1 (ID1). ID1 upregulates MDM2, a key negative regulator of p53, and promotes p53 protein degradation. LIF is overexpressed in a large percentage of CRCs. LIF overexpression promotes cellular resistance towards chemotherapeutic agents in cultured CRC cells and colorectal xenograft tumours in a largely p53-dependent manner. Overexpression of LIF is associated with a poor prognosis in CRC patients. Taken together, LIF is a novel negative regulator of p53, overexpression of LIF is an important mechanism for the attenuation of p53, which promotes chemoresistance in CRCs.
Collapse
Affiliation(s)
- Haiyang Yu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Xiaoyan Li
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
- Department of Breast Surgery, Qilu Hospital, Shandong University, Ji’nan, China
| | - Lihua Wu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
- First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Cen Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Zhen Liu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Kevin Lin
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Ken H. Young
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903
| |
Collapse
|