1
|
Xiong H, Luo F, Zhou P, Yi J. Development of a reporter gene method to measure the bioactivity of anti-CD38 × CD3 bispecific antibody. Antib Ther 2021; 4:212-221. [PMID: 34676357 PMCID: PMC8524643 DOI: 10.1093/abt/tbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background A T cell-redirecting bispecific antibody (bsAb) consisting of a tumor-binding unit and a T cell-binding unit is a large group of antibody-based biologics against death-causing cancer diseases. The anti-CD38 × anti-CD3 bsAb (Y150) is potential for treating multiple myeloma (MM). When developing a cell-based reporter gene bioassay to assess the activities of Y150, it was found that the expression of CD38 on the human T lymphocyte cells (Jurkat) caused the nonspecific activation, which interfered with the specific T cells activation of mediated by the Y150 and CD38(+) tumor cells. Methods Here, we first knocked-out the CD38 expression on Jurkat T cell line by CRISPR-Cas9 technology, then developed a stable monoclonal CD38(−) Jurkat T cell line with an NFAT-RE driving luciferase expressing system. Further based on the CD38(−) Jurkat cell, we developed a reporter gene method to assess the bioactivity of the anti-CD38 × anti-CD3 bsAb. Results Knocking out CD38 expression abolished the nonspecific self-activation of the Jurkat cells. The selected stable monoclonal CD38(−) Jurkat T cell line assured the robustness of the report genes assay for the anti-CD38 × anti-CD3 bsAb. The relative potencies of the Y150 measured by the developed reporter gene assay were correlated with those by the flow-cytometry-based cell cytotoxicity assay and by the ELISA-based binding assay. Conclusions The developed reporter gene assay was mechanism of action-reflective for the bioactivity of anti-CD38 × anti-CD3 antibody, and suitable for the quality control for the bsAb product.
Collapse
Affiliation(s)
- Hui Xiong
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Fengyan Luo
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
2
|
Romano A, Storti P, Marchica V, Scandura G, Notarfranchi L, Craviotto L, Di Raimondo F, Giuliani N. Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma. Front Oncol 2021; 11:684561. [PMID: 34307150 PMCID: PMC8297441 DOI: 10.3389/fonc.2021.684561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) directed against antigen-specific of multiple myeloma (MM) cells have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), but the choice of the antigen is crucial for the development of effective immuno-therapy in MM. Recently new immunotherapeutic options in MM patients have been developed against different myeloma-related antigens as drug conjugate-antibody, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)-T cells. In this review, we will highlight the mechanism of action of immuno-therapy currently available in clinical practice to target CD38, SLAMF7, and BCMA, focusing on the biological role of the targets and on mechanisms of actions of the different immunotherapeutic approaches underlying their advantages and disadvantages with critical review of the literature data.
Collapse
Affiliation(s)
- Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Grazia Scandura
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- U.O.C. Ematologia, A.O.U. Policlinico–San Marco, Catania, Italy
| | | |
Collapse
|
3
|
Ding Z, He Y, Fu Y, Zhu N, Zhao M, Song Y, Huang X, Chen S, Yang Y, Zhang C, Hu Q, Ni Y, Ding L. CD38 Multi-Functionality in Oral Squamous Cell Carcinoma: Prognostic Implications, Immune Balance, and Immune Checkpoint. Front Oncol 2021; 11:687430. [PMID: 34211854 PMCID: PMC8239289 DOI: 10.3389/fonc.2021.687430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background CD38 belongs to the ribosyl cyclase family and is expressed on various hematological cells and involved in immunosuppression and tumor promotion. Although targeting CD38 antibodies has been approved for treatment of multiple myeloma, the function of CD38 in solid tumor, oral squamous cell carcinoma (OSCC) etc., has not been investigated. Methods This retrospective study included 92 OSCC samples and analyzed the spatial distribution of CD38 by immunohistochemistry (IHC). The values of diagnosis and prognosis of CD38 were evaluated. Additionally, 53 OSCC preoperative peripheral blood samples were used to be analyzed by flow cytometry. Tumor Immune Estimation Resource (TIMER) and cBioPortal databases were used to study CD38 level in various tumors and its correlation with tumor immune microenvironment in head and neck squamous cell carcinoma (HNSCC). Results CD38 ubiquitously presented in tumor cells (TCs), fibroblast-like cells (FLCs), and tumor-infiltrating lymphocytes (TILs). Patients with highly expressed CD38 in TCs (CD38TCs) had higher TNM stage and risk of lymph node metastasis. Upregulation of CD38 in FLCs (CD38FLCs) was significantly associated with poor WPOI. Escalated CD38 in TILs (CD38TILs) led to higher Ki-67 level of tumor cells. Moreover, patients with enhanced CD38TCs were susceptible to postoperative metastasis occurrence, and those with highly expressed CD38TILs independently predicted shorter overall and disease-free survival. Strikingly, patients with highly expressed CD38TILs, but not CD38TCs and CD38FLCs, had significantly lower CD3+CD4+ T cells and higher ratio of CD3-CD16+CD56+NK cells. The imbalance of immune system is attributed to dysregulated immune checkpoint molecules (VISTA, PD-1, LAG-3, CTLA-4, TIGIT, GITR) as well as particular immune cell subsets, which were positively correlated with CD38 expression in HNSCC. Conclusion CD38 is a poor prognostic biomarker for OSCC patients and plays a vital role in governing immune microenvironment and circulating lymphocyte homeostasis. Co-expression between CD38 and immune checkpoint molecules provides new insight into immune checkpoint therapy.
Collapse
Affiliation(s)
- Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijia He
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Nisha Zhu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengxiang Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Yang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Caihong Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Qingang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 2021; 14:75. [PMID: 33941237 PMCID: PMC8091790 DOI: 10.1186/s13045-021-01084-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treatment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments and clinical studies.
Collapse
Affiliation(s)
- Zheng Tian
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
5
|
Aleksonienė R, Besusparis J, Gruslys V, Jurgauskienė L, Laurinavičienė A, Laurinavičius A, Malickaitė R, Norkūnienė J, Zablockis R, Žurauskas E, Danila E. CD31 +, CD38 +, CD44 +, and CD103 + lymphocytes in peripheral blood, bronchoalveolar lavage fluid and lung biopsy tissue in sarcoid patients and controls. J Thorac Dis 2021; 13:2300-2318. [PMID: 34012580 PMCID: PMC8107533 DOI: 10.21037/jtd-20-2396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The mechanisms driving the transition from inflammation to fibrosis in sarcoidosis patients are poorly understood; prognostic features are lacking. Immune cell profiling may provide insights into pathogenesis and prognostic factors of the disease. This study aimed to establish associations in simultaneous of lymphocyte subset profiles in the blood, bronchoalveolar lavage fluid (BALF), and lung biopsy tissue in the patients with newly diagnosed sarcoidosis. Methods A total of 71 sarcoid patients (SPs) and 20 healthy controls (HCs) were enrolled into the study. CD31, CD38, CD44, CD103 positive T lymphocytes in blood and BALF were analysed. Additionally, the densities of CD4, CD8, CD38, CD44, CD103 positive cells in lung tissue biopsies were estimated by digital image analysis. Results Main findings: (I) increase of percentage of CD3+CD4+CD38+ in BALF and blood, and increase of percentage of CD3+CD4+CD44+ in BALF in Löfgren syndrome patients comparing with patients without Löfgren syndrome, (II) increase of percentage of CD3+CD4+103+ in BALF and in blood in patients without Löfgren syndrome (comparing with Löfgren syndrome patients) and increase of percentage of CD3+CD4+103+ in BALF and in blood in more advanced sarcoidosis stage. (III) Increasing percentage of BALF CD3+CD4+CD31+ in sarcoidosis patients when comparing with controls independently of presence of Löfgren syndrome, smoking status or stage of sarcoidosis. Several significant correlations were found. Conclusions Lymphocyte subpopulations in blood, BALF, and lung tissue were substantially different in SPs at the time of diagnosis compared to HCs. CD3+CD4+CD31+ in BALF might be a potential supporting marker for the diagnosis of sarcoidosis. CD3+CD4+CD38+ in BALF and blood and CD3+CD4+CD44+ in BALF may be markers of the acute immune response in sarcoidosis patients. CD4+CD103+ T-cells in BALF and in blood are markers of the persistent immune response in sarcoidosis patients and are potential prognostic features of the chronic course of this disease.
Collapse
Affiliation(s)
- Regina Aleksonienė
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Justinas Besusparis
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Aida Laurinavičienė
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavičius
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Jolita Norkūnienė
- Department of Mathematical Statistics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edvardas Žurauskas
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
6
|
Lejeune M, Köse MC, Duray E, Einsele H, Beguin Y, Caers J. Bispecific, T-Cell-Recruiting Antibodies in B-Cell Malignancies. Front Immunol 2020; 11:762. [PMID: 32457743 PMCID: PMC7221185 DOI: 10.3389/fimmu.2020.00762] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (BsAbs) are designed to recognize and bind to two different antigens or epitopes. In the last few decades, BsAbs have been developed within the context of cancer therapies and in particular for the treatment of hematologic B-cell malignancies. To date, more than one hundred different BsAb formats exist, including bispecific T-cell engagers (BiTEs), and new constructs are constantly emerging. Advances in protein engineering have enabled the creation of BsAbs with specific mechanisms of action and clinical applications. Moreover, a better understanding of resistance and evasion mechanisms, as well as advances in the protein engineering and in immunology, will help generating a greater variety of BsAbs to treat various cancer types. This review focuses on T-cell-engaging BsAbs and more precisely on the various BsAb formats currently being studied in the context of B-cell malignancies, on ongoing clinical trials and on the clinical concerns to be taken into account in the development of new BsAbs.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Hermann Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
7
|
Hambach J, Riecken K, Cichutek S, Schütze K, Albrecht B, Petry K, Röckendorf JL, Baum N, Kröger N, Hansen T, Schuch G, Haag F, Adam G, Fehse B, Bannas P, Koch-Nolte F. Targeting CD38-Expressing Multiple Myeloma and Burkitt Lymphoma Cells In Vitro with Nanobody-Based Chimeric Antigen Receptors (Nb-CARs). Cells 2020; 9:E321. [PMID: 32013131 PMCID: PMC7072387 DOI: 10.3390/cells9020321] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
The NAD-hydrolyzing ecto-enzyme CD38 is overexpressed by multiple myeloma and other hematological malignancies. We recently generated CD38-specific nanobodies, single immunoglobulin variable domains derived from heavy-chain antibodies naturally occurring in llamas. Nanobodies exhibit high solubility and stability, allowing easy reformatting into recombinant fusion proteins. Here we explore the utility of CD38-specific nanobodies as ligands for nanobody-based chimeric antigen receptors (Nb-CARs). We cloned retroviral expression vectors for CD38-specific Nb-CARs. The human natural killer cell line NK-92 was transduced to stably express these Nb-CARs. As target cells we used CD38-expressing as well as CRISPR/Cas9-generated CD38-deficient tumor cell lines (CA-46, LP-1, and Daudi) transduced with firefly luciferase. With these effector and target cells we established luminescence and flow-cytometry CAR-dependent cellular cytotoxicity assays (CARDCCs). Finally, the cytotoxic efficacy of Nb-CAR NK-92 cells was tested on primary patient-derived CD38-expressing multiple myeloma cells. NK-92 cells expressing CD38-specific Nb-CARs specifically lysed CD38-expressing but not CD38-deficient tumor cell lines. Moreover, the Nb-CAR-NK cells effectively depleted CD38-expressing multiple myeloma cells in primary human bone marrow samples. Our results demonstrate efficacy of Nb-CARs in vitro. The potential clinical efficacy of Nb-CARs in vivo remains to be evaluated.
Collapse
Affiliation(s)
- Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, UKE, 20246 Hamburg, Germany; (K.R.); (S.C.)
- Department of Stem Cell Transplantation, UKE, 20246 Hamburg, Germany;
| | - Sophia Cichutek
- Research Department Cell and Gene Therapy, UKE, 20246 Hamburg, Germany; (K.R.); (S.C.)
- Department of Stem Cell Transplantation, UKE, 20246 Hamburg, Germany;
| | - Kerstin Schütze
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Katharina Petry
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Jana Larissa Röckendorf
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, UKE, 20246 Hamburg, Germany;
| | - Timon Hansen
- Hematological-Oncology Center Altona, 22767 Hamburg, Germany; (T.H.); (G.S.)
| | - Gunter Schuch
- Hematological-Oncology Center Altona, 22767 Hamburg, Germany; (T.H.); (G.S.)
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Boris Fehse
- Research Department Cell and Gene Therapy, UKE, 20246 Hamburg, Germany; (K.R.); (S.C.)
- Department of Stem Cell Transplantation, UKE, 20246 Hamburg, Germany;
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, UKE, 20246 Hamburg, Germany;
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (J.H.); (K.S.); (B.A.); (K.P.); (J.L.R.); (N.B.); (F.H.)
| |
Collapse
|
8
|
Quelven I, Monteil J, Sage M, Saidi A, Mounier J, Bayout A, Garrier J, Cogne M, Durand-Panteix S. 212Pb α-Radioimmunotherapy Targeting CD38 in Multiple Myeloma: A Preclinical Study. J Nucl Med 2019; 61:1058-1065. [PMID: 31862796 PMCID: PMC7383085 DOI: 10.2967/jnumed.119.239491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell cancer and represents the second most frequent hematologic malignancy. Despite new treatments and protocols, including high-dose chemotherapy associated with autologous stem cell transplantation, the prognosis of MM patients is still poor. α-radioimmunotherapy (α-RIT) represents an attractive treatment strategy because of the high-linear-energy transfer and short pathlength of α-radiation in tissues, resulting in high tumor cell killing and low toxicity to surrounding tissues. In this study, we investigated the potential of α-RIT with 212Pb-daratumumab (anti-hCD38), in both in vitro and in vivo models, as well as an antimouse CD38 antibody using in vivo models. Methods: Inhibition of cell proliferation after incubation of the RPMI8226 cell line with an increasing activity (0.185-3.7 kBq/mL) of 212Pb-isotypic control or 212Pb-daratumumab was evaluated. Biodistribution was performed in vivo by SPECT/CT imaging and after death. Dose-range-finding and acute toxicity studies were conducted. Because daratumumab does not bind the murine CD38, biodistribution and dose-range finding were also determined using an antimurine CD38 antibody. To evaluate the in vivo efficacy of 212Pb-daratumumab, mice were engrafted subcutaneously with 5 × 106 RPMI8226 cells. Mice were treated 13 d after engraftment with an intravenous injection of 212Pb-daratumumab or control solution. Therapeutic efficacy was monitored by tumor volume measurements and overall survival. Results: Significant inhibition of proliferation of the human myeloma RPMI8226 cell line was observed after 3 d of incubation with 212Pb-daratumumab, compared with 212Pb-isotypic control or cold antibodies. Biodistribution studies showed a specific tumoral accumulation of daratumumab. No toxicity was observed with 212Pb-daratumumab up to 370 kBq because of lack of cross-reactivity. Nevertheless, acute toxicity experiments with 212Pb-anti-mCD38 established a toxic activity of 277.5 kBq. To remain within realistically safe treatment activities for efficacy studies, mice were treated with 185 kBq or 277.5 kBq of 212Pb-daratumumab. Marked tumor growth inhibition compared with controls was observed, with a median survival of 55 d for 277.5 kBq of 212Pb-daratumumab instead of 11 d for phosphate-buffered saline. Conclusion: These results showed 212Pb-daratumumab to have efficacy in xenografted mice, with significant tumor regression and increased survival. This study highlights the potency of α-RIT in MM treatment.
Collapse
Affiliation(s)
- Isabelle Quelven
- Nuclear Medicine Department, Limoges University Hospital, Limoges, France.,CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | - Jacques Monteil
- Nuclear Medicine Department, Limoges University Hospital, Limoges, France.,CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | - Magali Sage
- CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | | | - Jérémy Mounier
- CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | - Audrey Bayout
- Nuclear Medicine Department, Limoges University Hospital, Limoges, France
| | - Julie Garrier
- CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | - Michel Cogne
- CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| | - Stéphanie Durand-Panteix
- CNRS-UMR7276, INSERM U1262, Contrôle de la Réponse Immune B et Lymphoproliférations, Limoges University, Limoges, France; and
| |
Collapse
|
9
|
CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents. Cells 2019; 8:cells8121632. [PMID: 31847204 PMCID: PMC6952797 DOI: 10.3390/cells8121632] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023] Open
Abstract
In the last decades CD38 has emerged as an attractive target for multiple myeloma (MM). CD38 is a novel multifunctional glycoprotein that acts as a receptor, adhesion molecule interacting with CD31 and as an ectoenzyme. As an ectoenzyme, CD38 functions as a metabolic sensor catalyzing the extracellular conversion of NAD+ to the immunosuppressive factor adenosine (ADO). Other ectoenzymes, CD73 and CD203a, together with CD38, are also involved in the alternative axis of extracellular production of ADO, bypassing the canonical pathway mediated by CD39. CD38 is ubiquitously expressed in the bone marrow microenvironment; however, only MM cells display a very high surface density, which lead to the development of several anti-CD38 monoclonal antibodies (mAbs). The efficacy of anti-CD38 mAbs depends from the presence of CD38 on the surface of MM and immune-microenvironment cells. Interestingly, it has been reported that several drugs like lenalidomide, panobinostat, the all-trans retinoic acid and the DNA methyltransferase inhibitors may increase the expression of CD38. Hence, the possibility to modulate CD38 by increasing its expression on MM cells is the pre-requisite to potentiate the clinical efficacy of the anti-CD38 mAbs and to design clinical trials with the combination of anti-CD38 mAbs and these drugs.
Collapse
|
10
|
Comparison of the effects of bacteriophage-derived dsRNA and poly(I:C) on ex vivo cultivated peripheral blood mononuclear cells. Immunol Lett 2019; 212:114-119. [PMID: 31254536 DOI: 10.1016/j.imlet.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022]
Abstract
Double-stranded RNA (dsRNA), regardless of the origin and nucleotide sequence, exhibits multiple biological activities, including the establishment of an antiviral state and modulation of the immune response. Both involve the stimulation of innate immunity primarily via the release of pro-inflammatory cytokines, which in turn shapes the adaptive immune response. In this study, we compared the immune response triggered by two different dsRNAs: 1) a well-known synthetic dsRNA-poly (I:C); and 2) bacteriophage-derived dsRNA (bf-dsRNA) that is a replicative form of ssRNA bacteriophage f2. Human peripheral blood mononuclear cells (PBMCs) from 61 heathy volunteers were stimulated ex vivo with both dsRNAs. Subsequently, activation markers on the main lymphocyte subpopulations were analysed by flow cytometry and the production of 29 different cytokines and chemokines was measured by Luminex xMAP technology. The effect of bf-dsRNA on ex vivo cultivated PBMCs is similar to that induced by poly(I:C), albeit with subtle dissimilarities. Both treatments increased expression of the lymphocyte CD38 marker and intracellular IFN-γ in CD8+ T and natural killer (NK) cells, as well as the CD95 marker on the main lymphocyte subpopulations. Poly(I:C) was a stronger inducer of IL-6, IL-1β, and CCL4, whereas bf-dsRNA induced higher levels of IFN-α2, CXCL10, and CCL17. These differences might contribute to a distinct clinical manifestation when used as vaccine adjuvants, and bf-dsRNA may have more profound activity against several types of bacteria.
Collapse
|
11
|
Zuch de Zafra CL, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, Stevens J, Case R, Pearson JT, Liu S, McElroy PL, Canon J, Desjarlais JR, Coxon A, Balazs M, Nolan-Stevaux O. Targeting Multiple Myeloma with AMG 424, a Novel Anti-CD38/CD3 Bispecific T-cell–recruiting Antibody Optimized for Cytotoxicity and Cytokine Release. Clin Cancer Res 2019; 25:3921-3933. [DOI: 10.1158/1078-0432.ccr-18-2752] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
|
12
|
Moreno L, Perez C, Zabaleta A, Manrique I, Alignani D, Ajona D, Blanco L, Lasa M, Maiso P, Rodriguez I, Garate S, Jelinek T, Segura V, Moreno C, Merino J, Rodriguez-Otero P, Panizo C, Prosper F, San-Miguel JF, Paiva B. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin Cancer Res 2019; 25:3176-3187. [PMID: 30692097 DOI: 10.1158/1078-0432.ccr-18-1597] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Knowledge about the mechanism of action (MoA) of monoclonal antibodies (mAb) is required to understand which patients with multiple myeloma (MM) benefit the most from a given mAb, alone or in combination therapy. Although there is considerable research about daratumumab, knowledge about other anti-CD38 mAbs remains scarce. EXPERIMENTAL DESIGN We performed a comprehensive analysis of the MoA of isatuximab. RESULTS Isatuximab induces internalization of CD38 but not its significant release from MM cell surface. In addition, we uncovered an association between levels of CD38 expression and different MoA: (i) Isatuximab was unable to induce direct apoptosis on MM cells with CD38 levels closer to those in patients with MM, (ii) isatuximab sensitized CD38hi MM cells to bortezomib plus dexamethasone in the presence of stroma, (iii) antibody-dependent cellular cytotoxicity (ADCC) was triggered by CD38lo and CD38hi tumor plasma cells (PC), (iv) antibody-dependent cellular phagocytosis (ADCP) was triggered only by CD38hi MM cells, whereas (v) complement-dependent cytotoxicity could be triggered in less than half of the patient samples (those with elevated levels of CD38). Furthermore, we showed that isatuximab depletes CD38hi B-lymphocyte precursors and natural killer (NK) lymphocytes ex vivo-the latter through activation followed by exhaustion and eventually phagocytosis. CONCLUSIONS This study provides a framework to understand response determinants in patients treated with isatuximab based on the number of MoA triggered by CD38 levels of expression, and for the design of effective combinations aimed at capitalizing disrupted tumor-stroma cell protection, augmenting NK lymphocyte-mediated ADCC, or facilitating ADCP in CD38lo MM patients.See related commentary by Malavasi and Faini, p. 2946.
Collapse
Affiliation(s)
- Laura Moreno
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Irene Manrique
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Daniel Ajona
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain.,Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00443, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Laura Blanco
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Marta Lasa
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Patricia Maiso
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Idoia Rodriguez
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Tomas Jelinek
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Victor Segura
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Cristina Moreno
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Juana Merino
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Jesus F San-Miguel
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| |
Collapse
|
13
|
Sepehri B, Ghavami R. Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:21-38. [PMID: 30489181 DOI: 10.1080/1062936x.2018.1545695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules. The r2 values for the training and test sets were 0.89 and 0.82, respectively. The Q2 values for leave-one-out cross-validation (LOO-CV) and leave-many-out cross-validation (LMO-CV) tests on the training set were 0.65 and 0.64, respectively. The CoMFA model was validated by calculating several statistical parameters. CoMFA contour maps were interpreted, and structural features that influence the CD38 inhibitory activity of molecules were determined. Finally, seven new CD38 inhibitors with greater activity with respect to the greatest active molecules were designed.
Collapse
Affiliation(s)
- B Sepehri
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| | - R Ghavami
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| |
Collapse
|
14
|
Chen E, Bakr MM, Firth N, Love RM. Inflammatory cell expression of Toll-like receptor-2 (TLR2) within refractory periapical granuloma. F1000Res 2018; 7:1819. [PMID: 30631444 PMCID: PMC6281009 DOI: 10.12688/f1000research.16678.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Toll-like receptor-2 (TLR2) is highly important within the immune system. Characterization of the expression of TLR2 within inflammatory cells in periapical lesions could help in diagnosis and management of refractory cases. The aim of the study is identification of Toll-like receptor (TLR2) through immunohistochemical and immunofluroscence expression in inflammatory cells within refractory periapical granuloma cases. Methods: Eight cases of refractory periapical granuloma were selected out of 772 cases. Histological examination and immunohistochemical staining with polyclonal rabbit antihuman TLR2, monoclonal mouse antihuman CD38, CD68 and CD83 primary antibodies, as well as immunofluorescence staining with goat anti-rabbit TLR2, donkey anti-mouse CD38, CD68 and CD83 primary antibodies was conducted. Positive controls, negative controls and experimental sections with no primary antibody were included in the study. Qualitative analysis and double immunofluorescence technique was used to characterize the TLR + cells. Results: In periapical granuloma, lymphocytes (CD38 cells) expressed the most amount of TLR reactivity followed by macrophages (CD68 cells), and odontogenic epithelial cells. Neutrophils, red blood cells (RBCs) and collagen ground substance were negative to TLR2. Conclusion: TLR2 was highly expressed by lymphocytes and plasma cells indicative of their major role in the inflammatory process and antigen recognition in refractory periapical granuloma. Dendritic cells expressing TLR2 were low in number suggesting a minor role in sustaining these lesions.
Collapse
Affiliation(s)
- Eric Chen
- School of Dentistry, University of Otago, North Dunedin, Dunedin, 9016, New Zealand
| | - Mahmoud M. Bakr
- School of Dentistry and Oral Health, Griffith University, Southport, Queensland, 4215, Australia
| | - Norman Firth
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Robert M. Love
- School of Dentistry, University of Otago, North Dunedin, Dunedin, 9016, New Zealand
- School of Dentistry and Oral Health, Griffith University, Southport, Queensland, 4215, Australia
| |
Collapse
|
15
|
Köhler M, Greil C, Hudecek M, Lonial S, Raje N, Wäsch R, Engelhardt M. Current developments in immunotherapy in the treatment of multiple myeloma. Cancer 2018; 124:2075-2085. [PMID: 29409124 DOI: 10.1002/cncr.31243] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/23/2017] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and represents approximately 10% of all hematological neoplasms. Standard therapy consists of induction therapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) or, if ASCT cannot be performed, standard doublet, triplet, or quadruplet, novel agent-containing induction treatment until progression. Although MM is still regarded as mostly incurable by current standards, the development of several novel compounds, combination therapies, and immunotherapy approaches has raised great hopes about transforming MM into an indolent, chronic disease and possibly achieving a cure for individual patients. Several new inhibitory and immunological agents have been approved or are under intensive investigation and may lead to new therapeutic options for patients with relapsed/refractory MM, for patients ineligible for ASCT, and for patients after ASCT. Especially in the field of immunotherapy, including monoclonal antibodies, checkpoint inhibition, and chimeric antigen receptor T cells, current advances are rapid and highly promising. This review aims to summarize the newest and most promising immunotherapeutic agents for MM, their clinical efficacy, their adverse event (AE) profiles, and the ways in which these AEs can best be overcome or avoided. Cancer 2018;124:2075-85. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ralph Wäsch
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology, and Stem Cell Transplantation, Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Early Clinical Trial Unit, Comprehensive Cancer Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Arana P, Paiva B, Cedena MT, Puig N, Cordon L, Vidriales MB, Gutierrez NC, Chiodi F, Burgos L, Anglada LL, Martinez-Lopez J, Hernandez MT, Teruel AI, Gironella M, Echeveste MA, Rosiñol L, Martinez R, Oriol A, De la Rubia J, Orfao A, Blade J, Lahuerta JJ, Mateos MV, San Miguel JF. Prognostic value of antigen expression in multiple myeloma: a PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia 2017; 32:971-978. [PMID: 29099494 DOI: 10.1038/leu.2017.320] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/07/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
Persistence of minimal residual disease (MRD) after treatment for myeloma predicts inferior outcomes, but within MRD-positive patients there is great heterogeneity with both early and very late relapses. Among different MRD techniques, flow cytometry provides additional information about antigen expression on tumor cells, which could potentially contribute to stratify MRD-positive patients. We investigated the prognostic value of those antigens required to monitor MRD in 1265 newly diagnosed patients enrolled in the GEM2000, GEM2005MENOS65, GEM2005MAS65 and GEM2010MAS65 protocols. Overall, CD19pos, CD27neg, CD38lo, CD45pos, CD81pos, CD117neg and CD138lo expression predicted inferior outcomes. Through principal component analysis, we found that simultaneous CD38lowCD81posCD117neg expression emerged as the most powerful combination with independent prognostic value for progression-free survival (HR:1.69; P=0.002). This unique phenotypic profile retained prognostic value among MRD-positive patients. We then used next-generation flow to determine antigen stability throughout the course of the disease, and found that the expression of antigens required to monitor MRD is mostly stable from diagnosis to MRD stages, except for CD81 whose expression progressively increased from baseline to chemoresistant tumor cells (14 vs 28%). Altogether, we showed that the phenotypic profile of tumor cells provides additional prognostic information, and could be used to further predict risk of relapse among MRD-positive patients.
Collapse
Affiliation(s)
- P Arana
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicadas (CIMA); Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBERONC, Pamplona, Spain
| | - B Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicadas (CIMA); Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBERONC, Pamplona, Spain
| | - M-T Cedena
- Hospital 12 de Octubre, CIBERONC, Madrid, Spain
| | - N Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBERONC, Salamanca, Spain
| | - L Cordon
- Hospital Universitario y Politécnico La Fe, CIBERONC, Valencia, Spain
| | - M-B Vidriales
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBERONC, Salamanca, Spain
| | - N C Gutierrez
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBERONC, Salamanca, Spain
| | - F Chiodi
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicadas (CIMA); Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBERONC, Pamplona, Spain
| | - L Burgos
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicadas (CIMA); Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBERONC, Pamplona, Spain
| | - L-L Anglada
- Hospital 12 de Octubre, CIBERONC, Madrid, Spain
| | | | | | - A-I Teruel
- Hospital Clínico de Valencia, Valencia, Spain
| | | | | | - L Rosiñol
- Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - R Martinez
- Hospital Clínico San Carlos, Madrid, Spain
| | - A Oriol
- Institut Català d'Oncologia i Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Spain
| | - J De la Rubia
- Hospital Universitario y Politécnico La Fe, CIBERONC, Valencia, Spain
| | - A Orfao
- Servicio General de Citometría-NUCLEOS, Centro de Investigación del Cancer (IBMCC-USAL, CSIC), IBSAL and Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - J Blade
- Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | | - M-V Mateos
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBERONC, Salamanca, Spain
| | - J-F San Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicadas (CIMA); Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBERONC, Pamplona, Spain
| |
Collapse
|
17
|
Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38 + tumors in mouse models in vivo. Sci Rep 2017; 7:14289. [PMID: 29084989 PMCID: PMC5662768 DOI: 10.1038/s41598-017-14112-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
The cell surface ecto-enzyme CD38 is a promising target antigen for the treatment of hematological malignancies, as illustrated by the recent approval of daratumumab for the treatment of multiple myeloma. Our aim was to evaluate the potential of CD38-specific nanobodies as novel diagnostics for hematological malignancies. We successfully identified 22 CD38-specific nanobody families using phage display technology from immunized llamas. Crossblockade analyses and in-tandem epitope binning revealed that the nanobodies recognize three different non-overlapping epitopes, with four nanobody families binding complementary to daratumumab. Three nanobody families inhibit the enzymatic activity of CD38 in vitro, while two others were found to act as enhancers. In vivo, fluorochrome-conjugated CD38 nanobodies efficiently reach CD38 expressing tumors in a rodent model within 2 hours after intravenous injection, thereby allowing for convenient same day in vivo tumor imaging. These nanobodies represent highly specific tools for modulating the enzymatic activity of CD38 and for diagnostic monitoring CD38-expressing tumors.
Collapse
|
18
|
Yang S, Chen L, Chan DW, Li QK, Zhang H. Protein signatures of molecular pathways in non-small cell lung carcinoma (NSCLC): comparison of glycoproteomics and global proteomics. Clin Proteomics 2017; 14:31. [PMID: 28814946 PMCID: PMC5557576 DOI: 10.1186/s12014-017-9166-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) remains the leading cause of cancer deaths in the United States. More than half of NSCLC patients have clinical presentations with locally advanced or metastatic disease at the time of diagnosis. The large-scale genomic analysis of NSCLC has demonstrated that molecular alterations are substantially different between adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). However, a comprehensive analysis of proteins and glycoproteins in different subtypes of NSCLC using advanced proteomic approaches has not yet been conducted. Methods We applied mass spectrometry (MS) technology featuring proteomics and glycoproteomics to analyze six primary lung SqCCs and eleven ADCs, and we compared the expression level of proteins and glycoproteins in tumors using quantitative proteomics. Glycoproteins were analyzed by enrichment using a chemoenzymatic method, solid-phase extraction of glycopeptides, and quantified by iTRAQ-LC–MS/MS. Protein quantitation was further annotated via Ingenuity Pathway Analysis. Results Over 6000 global proteins and 480 glycoproteins were quantitatively identified in both SqCC and ADC. ADC proteins (8337) consisted of enzymes (22.11%), kinases (5.11%), transcription factors (6.85%), transporters (6.79%), and peptidases (3.30%). SqCC proteins (6967) had a very similar distribution. The identified glycoproteins, in order of relative abundance, included membrane (42%) and extracellular matrix (>33%) glycoproteins. Oncogene-coded proteins (82) increased 1.5-fold among 1047 oncogenes identified in ADC, while 124 proteins from SqCC were up-regulated in tumor tissues among a total of 827 proteins. We identified 680 and 563 tumor suppressor genes from ADC and SqCC, respectively. Conclusion Our systematic analysis of proteins and glycoproteins demonstrates changes of protein and glycoprotein relative abundance in SqCC (TP53, U2AF1, and RXR) and in ADC (SMARCA4, NOTCH1, PTEN, and MST1). Among them, eleven glycoproteins were upregulated in both ADC and SqCC. Two glycoproteins (ELANE and IGFBP3) were only increased in SqCC, and six glycoproteins (ACAN, LAMC2, THBS1, LTBP1, PSAP and COL1A2) were increased in ADC. Ingenuity Pathway Analysis (IPA) showed that several crucial pathways were activated in SqCC and ADC tumor tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medicine, Smith Bldg 4013, 400 N. Broadway, Baltimore, MD 21287 USA
| |
Collapse
|
19
|
Burel JG, Apte SH, Groves PL, Klein K, McCarthy JS, Doolan DL. Reduced Plasmodium Parasite Burden Associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-γ Production. PLoS Pathog 2016; 12:e1005839. [PMID: 27662621 PMCID: PMC5035011 DOI: 10.1371/journal.ppat.1005839] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
Using a unique resource of samples from a controlled human malaria infection (CHMI) study, we identified a novel population of CD4+ T cells whose frequency in the peripheral blood was inversely correlated with parasite burden following P. falciparum infection. These CD4+ T cells expressed the multifunctional ectoenzyme CD38 and had unique features that distinguished them from other CD4+ T cells. Specifically, their phenotype was associated with proliferation, activation and cytotoxic potential as well as significantly impaired production of IFN-γ and other cytokines and reduced basal levels of activated STAT1. A CD38+ CD4+ T cell population with similar features was identified in healthy uninfected individuals, at lower frequency. CD38+ CD4+ T cells could be generated in vitro from CD38- CD4+ T cells after antigenic or mitogenic stimulation. This is the first report of a population of CD38+ CD4+ T cells with a cytotoxic phenotype and markedly impaired IFN-γ capacity in humans. The expansion of this CD38+ CD4+ T population following infection and its significant association with reduced blood-stage parasite burden is consistent with an important functional role for these cells in protective immunity to malaria in humans. Their ubiquitous presence in humans suggests that they may have a broad role in host-pathogen defense. TRIAL REGISTRATION ClinicalTrials.gov clinical trial numbers ACTRN12612000814875, ACTRN12613000565741 and ACTRN12613001040752.
Collapse
Affiliation(s)
- Julie G. Burel
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
| | - Simon H. Apte
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Penny L. Groves
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerenaftali Klein
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Denise L. Doolan
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail:
| |
Collapse
|
20
|
Alsagaby SA, Brennan P, Pepper C. Key Molecular Drivers of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:593-606. [PMID: 27601002 DOI: 10.1016/j.clml.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an adult neoplastic disease of B cells characterized by variable clinical outcomes. Although some patients have an aggressive form of the disease and often encounter treatment failure and short survival, others have more stable disease with long-term survival and little or no need for theraphy. In the past decade, significant advances have been made in our understanding of the molecular drivers that affect the natural pathology of CLL. The present review describes what is known about these key molecules in the context of their role in tumor pathogenicity, prognosis, and therapy.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory, College of Science, Majmaah University, Al-Zuli, Kingdom of Saudi Arabia; Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Paul Brennan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chris Pepper
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, Koch-Nolte F, Hao Q, Zhang H, Lee HC, Zhao YJ. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 2016; 6:27055. [PMID: 27251573 PMCID: PMC4890012 DOI: 10.1038/srep27055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.
Collapse
Affiliation(s)
- Ting Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shali Qi
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mandy Unger
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yun Nan Hou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi Wen Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Connie M C Lam
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Du Xin
- Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518029, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department of Biology, and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
22
|
Lee SY, Lee AR, Hwangbo R, Han J, Hong M, Bahn GH. Is Oxytocin Application for Autism Spectrum Disorder Evidence-Based? Exp Neurobiol 2015; 24:312-24. [PMID: 26713079 PMCID: PMC4688331 DOI: 10.5607/en.2015.24.4.312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by persistent deficits within two core symptom domains: social communication and restricted, repetitive behaviors. Although numerous studies have reported psychopharmacological treatment outcomes for the core symptom domains of ASD, there are not enough studies on fundamental treatments based on the etiological pathology of ASD. Studies on candidate medications related to the pathogenesis of ASD, such as naltrexone and secretin, were conducted, but the results were inconclusive. Oxytocin has been identified as having an important role in maternal behavior and attachment, and it has been recognized as a key factor in the social developmental deficit seen in ASD. Genetic studies have also identified associations between ASD and the oxytocin pathway. As ASD has its onset in infancy, parents are willing to try even experimental or unapproved treatments in an effort to avoid missing the critical period for diagnosis and treatment, which can place their child in an irreversible state. While therapeutic application of oxytocin for ASD is in its early stages, we have concluded that oxytocin would be a promising therapeutic substance via a thorough literature review focusing on the following: the relationship between oxytocin and sociality; single nucleotide polymorphisms as a biological marker of ASD; and validity verification of oxytocin treatment in humans. We also reviewed materials related to the mechanism of oxytocin action that may support its potential application in treating ASD.
Collapse
Affiliation(s)
- Seung Yup Lee
- Graduate School of Medicine, Kyung Hee University, Seoul 02543, Korea
| | - Ah Rah Lee
- Kyung Hee University School of Medicine, Seoul 02543, Korea
| | - Ram Hwangbo
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Juhee Han
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Minha Hong
- Department of Psychiatry, Seonam University, College of Medicine, Myongji Hospital, Goyang 10475, Korea
| | - Geon Ho Bahn
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul 02447, Korea
| |
Collapse
|
23
|
Wong SW, Comenzo RL. CD38 Monoclonal Antibody Therapies for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:635-45. [PMID: 26443328 DOI: 10.1016/j.clml.2015.07.642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
The goal of this review is to provide historical, recent preclinical, and current clinical summaries of efforts to understand the CD38 molecule and to develop monoclonal antibodies that target it. We focus particularly on efforts involving multiple myeloma, a malignancy of terminally differentiated B cells that remains incurable despite many advances. An era of anti-CD38 monoclonal antibody therapy for myeloma is approaching, one that, we hope, will enable patients to live longer and better lives.
Collapse
Affiliation(s)
- Sandy W Wong
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA.
| | - Raymond L Comenzo
- Departments of Medicine and Pathology and the Division of Hematology-Oncology, Tufts Medical Center, Boston, MA
| |
Collapse
|
24
|
Zhang S, Xue X, Zhang L, Zhang L, Liu Z. Comparative Analysis of Pharmacophore Features and Quantitative Structure-Activity Relationships for CD38 Covalent and Non-covalent Inhibitors. Chem Biol Drug Des 2015; 86:1411-24. [PMID: 26072680 DOI: 10.1111/cbdd.12606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 01/19/2023]
Abstract
In the past decade, the discovery, synthesis, and evaluation for hundreds of CD38 covalent and non-covalent inhibitors has been reported sequentially by our group and partners; however, a systematic structure-based guidance is still lacking for rational design of CD38 inhibitor. Here, we carried out a comparative analysis of pharmacophore features and quantitative structure-activity relationships for CD38 inhibitors. The results uncover that the essential interactions between key residues and covalent/non-covalent CD38 inhibitors include (i) hydrogen bond and hydrophobic interactions with residues Glu226 and Trp125, (ii) electrostatic or hydrogen bond interaction with the positively charged residue Arg127 region, and (iii) the hydrophobic interaction with residue Trp189. For covalent inhibitors, besides the covalent effect with residue Glu226, the electrostatic interaction with residue Arg127 is also necessary, while another hydrogen/non-bonded interaction with residues Trp125 and Trp189 can also be detected. By means of the SYBYL multifit alignment function, the best CoMFA and CoMSIA with CD38 covalent inhibitors presented cross-validated correlation coefficient values (q(2)) of 0.564 and 0.571, and non-cross-validated values (r(2)) of 0.967 and 0.971, respectively. The CD38 non-covalent inhibitors can be classified into five groups according to their chemical scaffolds, and the residues Glu226, Trp189, and Trp125 are indispensable for those non-covalent inhibitors binding to CD38, while the residues Ser126, Arg127, Asp155, Thr221, and Phe222 are also important. The best CoMFA and CoMSIA with the F12 analogues presented cross-validated correlation coefficient values (q(2)) of 0.469 and 0.454, and non-cross-validated values (r(2)) of 0.814 and 0.819, respectively.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiwen Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
25
|
Zheng D, Liao S, Zhu G, Luo G, Xiao S, He J, Pei Z, Li G, Zhou Y. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol Carcinog 2015; 55:300-11. [PMID: 25630761 DOI: 10.1002/mc.22279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Abstract
Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line.
Collapse
Affiliation(s)
- Danwei Zheng
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Shan Liao
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guangchao Zhu
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Gengqiu Luo
- Department of Pathology, Basic School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Junyu He
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhen Pei
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guiyuan Li
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yanhong Zhou
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
26
|
Ou Y, Wu J, Sandberg M, Weber SG. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures. Anal Bioanal Chem 2014; 406:6455-68. [PMID: 25168111 DOI: 10.1007/s00216-014-8067-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
Abstract
This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push-pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push-pull perfusion can distinguish ectoenzyme activity with a ~100 μm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
27
|
Schalper KA, Carvajal-Hausdorf D, Oyarzo MP. Possible role of hemichannels in cancer. Front Physiol 2014; 5:237. [PMID: 25018732 PMCID: PMC4073485 DOI: 10.3389/fphys.2014.00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
Collapse
Affiliation(s)
- Kurt A Schalper
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile ; Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | | | - Mauricio P Oyarzo
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
28
|
Clinical significance of serum ADP-ribosylation and NAD glycohydrolase activity in patients with colorectal cancer. Tumour Biol 2014; 35:5575-82. [PMID: 24535779 DOI: 10.1007/s13277-014-1735-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022] Open
Abstract
The objective of this study was to evaluate the clinical significance of serum ADP-ribosylation and NAD glycohydrolase activity in patients with colorectal cancer (CRC). A total of 108 patients with CRC who underwent curative surgery and 20 healthy volunteers were enrolled in this study. ADP-ribosylation and NAD glycohydrolase activity levels were determined. The association of ADP-ribosylation and NAD glycohydrolase with clinical and laboratory factors and their impact on overall survival (OS) and disease free survival (DFS) were shown. The preoperative ADP-ribosylation and NAD glycohydrolase activity levels were significantly higher in patients with CRC than in the control group (p<0.001). ADP-ribosylation and NAD glycohydrolase activity levels were correlated with tumor stage (p=0.05, p=0.001), stage of disease (p<0.001, p<0.001), serum CEA level (p<0.001, p<0.001), and site of lesion (p<0.001, p<0.001), respectively. Patients with high ADP-ribosylation had significantly unfavorable OS and DFS compared with those with lower levels (p<0.001, p<0.001), respectively. Moreover, the patients with high NAD glycohydrolase activity showed significantly worse OS and DFS rates, similar to ADP-ribosylation. Serum levels of ADP-ribosylation and NAD glycohydrolase activity correlate well with tumor stage, stage of disease, serum CEA level, and site of lesion. In conclusion, elevated levels of preoperative ADP-ribosylation and NAD glycohydrolase levels in serum are associated with poor prognosis in patients with CRC.
Collapse
|
29
|
Green DJ, Orgun NN, Jones JC, Hylarides MD, Pagel JM, Hamlin DK, Wilbur DS, Lin Y, Fisher DR, Kenoyer AL, Frayo SL, Gopal AK, Orozco JJ, Gooley TA, Wood BL, Bensinger WI, Press OW. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies. Cancer Res 2013; 74:1179-89. [PMID: 24371230 DOI: 10.1158/0008-5472.can-13-1589] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vast majority of patients with plasma cell neoplasms die of progressive disease despite high response rates to novel agents. Malignant plasma cells are very radiosensitive, but the potential role of radioimmunotherapy (RIT) in the management of plasmacytomas and multiple myeloma has undergone only limited evaluation. Furthermore, CD38 has not been explored as a RIT target despite its uniform high expression on malignant plasma cells. In this report, both conventional RIT (directly radiolabeled antibody) and streptavidin-biotin pretargeted RIT (PRIT) directed against the CD38 antigen were assessed as approaches to deliver radiation doses sufficient for multiple myeloma cell eradication. PRIT demonstrated biodistributions that were markedly superior to conventional RIT. Tumor-to-blood ratios as high as 638:1 were seen 24 hours after PRIT, whereas ratios never exceeded 1:1 with conventional RIT. (90)Yttrium absorbed dose estimates demonstrated excellent target-to-normal organ ratios (6:1 for the kidney, lung, liver; 10:1 for the whole body). Objective remissions were observed within 7 days in 100% of the mice treated with doses ranging from 800 to 1,200 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in treated mice compared with tumors that were 2,982% ± 2,834% of initial tumor volume in control animals) by day 23. Furthermore, 100% of animals bearing NCI-H929 multiple myeloma tumor xenografts treated with 800 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin achieved long-term myeloma-free survival (>70 days) compared with none (0%) of the control animals.
Collapse
Affiliation(s)
- Damian J Green
- Authors' Affiliations: Clinical Research Division, Fred Hutchinson Cancer Research Center; Departments of Medicine, Radiation Oncology, and Laboratory Medicine, University of Washington, Seattle; and Dade Moeller Health Group, Richland, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
A variety of B-cell dysfunctions are manifested during HIV-1 infection, as reported early during the HIV-1 epidemic. It is not unusual that the pathogenic mechanisms presented to elucidate impairment of B-cell responses during HIV-1 infection focus on the impact of reduced T-cell numbers and functions, and lack of germinal center formation in lymphoid tissues. To our understanding, however, perturbation of B-cell phenotype and function during HIV-1 infection may begin at several different B-cell developmental stages. These impairments can be mediated by intrinsic B-cell defects as well as by the lack of proper T-cell help. In this review, we will highlight some of the pathways and molecular interactions leading to B-cell impairment prior to germinal center formation and B-cell activation mediated through the B-cell receptor in response to HIV-1 antigens. Recent studies indicate a regulatory role for B cells on T-cell biology and immune responses. We will discuss some of these novel findings and how these regulatory mechanisms could potentially be affected by the intrinsic defects of B cells taking place during HIV-1 infection.
Collapse
|
31
|
COŞKUN ÖZLEM, NURTEN RÜSTEM. Purification of NAD+ glycohydrolase from human serum. Oncol Lett 2013; 6:227-231. [PMID: 23946809 PMCID: PMC3742813 DOI: 10.3892/ol.2013.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/03/2013] [Indexed: 11/14/2022] Open
Abstract
In the present study, NAD+ glycohydrolase was purified from serum samples collected from healthy individuals using ammonium sulfate fractionation, Affi-Gel blue (Cibacron Blue F3GA) affinity chromatography, Sephadex G-100 column chromatography and isoelectric focusing. The final step was followed by a second Sephadex G-100 column chromatography assay in order to remove the ampholytes from the isoelectric focusing step. In terms of enhancement of specific activity, the NAD+ glycohydrolase protein was purified ∼480-fold, with a yield of 1% compared with the initial serum fraction. The purified fraction appeared to be homogeneous, with a molecular weight of 39 kDa, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and also corresponded to the soluble (monomeric) form of surface antigen CD38.
Collapse
|
32
|
Pavón EJ, Zumaquero E, Rosal-Vela A, Khoo KM, Cerezo-Wallis D, García-Rodríguez S, Carrascal M, Abian J, Graeff R, Callejas-Rubio JL, Ortego-Centeno N, Malavasi F, Zubiaur M, Sancho J. Increased CD38 expression in T cells and circulating anti-CD38 IgG autoantibodies differentially correlate with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Cytokine 2013; 62:232-43. [PMID: 23538292 DOI: 10.1016/j.cyto.2013.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 01/05/2023]
Abstract
CD38 is a multifunctional protein possessing ADP-ribosyl cyclase activity responsible for both the synthesis and the degradation of several Ca(2+)-mobilizing second messengers. In mammals, CD38 also functions as a receptor. In this study CD38 expression in CD4(+), CD8(+), or CD25(+) T cells was significantly higher in systemic lupus erythematosus (SLE) patients than in Normal controls. Increased CD38 expression in SLE T cells correlated with plasma levels of Th2 (IL-4, IL-10, IL-13) and Th1 (IL-1β, IL-12, IFN-γ, TNF-α) cytokines, and was more prevalent in clinically active SLE patients than in Normal controls. In contrast, elevated anti-CD38 IgG autoantibodies were more frequent in clinically quiescent SLE patients (SLEDAI=0) than in Normal controls, and correlated with moderate increased plasma levels of IL-10 and IFN-γ. However, clinically active SLE patients were mainly discriminated from quiescent SLE patients by increased levels of IL-10 and anti-dsDNA antibodies, with odds ratios (ORs) of 3.7 and 4.8, respectively. Increased frequency of anti-CD38 autoantibodies showed an inverse relationship with clinical activity (OR=0.43), and in particular with the frequency of anti-dsDNA autoantibodies (OR=0.21). Increased cell death occurred in CD38(+) Jurkat T cells treated with anti-CD38(+) SLE plasmas, and not in these cells treated with anti-CD38(-) SLE plasmas, or Normal plasmas. This effect did not occur in CD38-negative Jurkat T cells, suggesting that it could be attributed to anti-CD38 autoantibodies. These results support the hypothesis that anti-CD38 IgG autoantibodies or their associated plasma factors may dampen immune activation by affecting the viability of CD38(+) effector T cells and may provide protection from certain clinical SLE features.
Collapse
Affiliation(s)
- Esther J Pavón
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud (PTS), Avenida del Conocimiento s/n, 18016 Armilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vaisitti T, Serra S, Pepper C, Rossi D, Laurenti L, Gaidano G, Malavasi F, Deaglio S. CD38 signals upregulate expression and functions of matrix metalloproteinase-9 in chronic lymphocytic leukemia cells. Leukemia 2012; 27:1177-81. [PMID: 22955446 DOI: 10.1038/leu.2012.260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Audrito V, Vaisitti T, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S. Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options. Cancer Lett 2012; 328:27-35. [PMID: 22910767 DOI: 10.1016/j.canlet.2012.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells display features consistent with a defect in apoptosis and exhibit prolonged survival in vivo. Survival of these malignant cells is influenced by interactions with non-leukemic cells located in permissive niches in lymphoid organs. Leukemic cells subvert the normal architecture of the lymphoid organs, recruiting stromal cells, dendritic cells and T lymphocytes, all reported as playing active roles in the survival and proliferation of CLL. The same survival-promoting environment also rescues/protects leukemic cells from cytotoxic therapies, giving way to disease relapse. This review summarizes and discusses current knowledge about the intricate network of soluble and cell-bound signals regulating the life and death of CLL cells in different districts. At the same time, it seeks to hone in on which discrete molecular elements are best suited as targets for treating this still incurable disease.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy; Human Genetics Foundation (HuGeF), Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Mraz M, Zent CS, Church AK, Jelinek DF, Wu X, Pospisilova S, Ansell SM, Novak AJ, Kay NE, Witzig TE, Nowakowski GS. Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin α-4-β-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol 2011; 155:53-64. [PMID: 21749361 DOI: 10.1111/j.1365-2141.2011.08794.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rituximab improves the outcome of patients with non-Hodgkin lymphoma, but does not completely eradicate residual B-cell populations in the microenvironment of the bone marrow and lymph nodes. Adhesion to stromal cells can protect B-cells from apoptosis induced by chemotherapy drugs [(cell adhesion-mediated drug resistance (CAM-DR)]. A similar mechanism of resistance to rituximab has not, to our knowledge, been described. We tested the hypothesis that the microenvironment protects malignant B-cells from rituximab-induced apoptosis, and that blocking these interactions with natalizumab, an antibody targeting VLA-4 (integrin alfa-4-beta-1/CD49d), can overcome this protection. VLA-4 is an adhesion molecule constitutively expressed on malignant B-cells and is important for pro-survival signalling in the bone marrow and lymph node microenvironment. The human bone marrow stromal cell line HS-5 was shown to strongly protect B-cell lymphoma cells from rituximab cytotoxicity, suggesting the existence of a stromal cell adhesion-mediated antibody resistance (CAM-AR) mechanism analogous to CAM-DR. Natalizumab decreased B-lymphocyte adherence to fibronectin by 75-95% and partially overcame stromal protection against rituximab and cytotoxic drugs. These pre-clinical findings suggest that the addition of stromal adhesion-disruptive drugs to rituximab-containing therapy could improve treatment efficacy.
Collapse
Affiliation(s)
- Marek Mraz
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Albeniz I, Demir-Coşkun O, Türker-Şener L, Baş A, Asoğlu O, Nurten R. CD38 expression as response of hematopoietic system to cancer. Oncol Lett 2011; 2:659-664. [PMID: 22848245 DOI: 10.3892/ol.2011.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/06/2011] [Indexed: 11/06/2022] Open
Abstract
Erythrocyte and lymphocyte NAD(+) glycohydrolase levels were previously found to be elevated in cancer patients. These results were confirmed in an animal model. The administration of live Ehrlich ascites tumor cells to BALB/c mice led to increases in erythrocyte and lymphocyte NAD(+) glycohydrolase, along with tumor development. Serum samples, ascites fluid from mice with developed tumors, serum samples from cancer patients and Ehrlich cell supernatants had a similar stimulatory effect when administered to mice or when incubated with peripheric lymphocytes in culture. These increases were accompanied by the appearance of an anti-CD38 reactive band of 45 kDa in SDS-PAGE/Western blot analyses of erythrocyte ghost and lymphocyte membrane proteins. The results, supported by flow cytometry data, support previous clinical findings that an enhancement in CD38 expression occurs in the hematopoietic system during proliferative processes. Moreover, they suggest that CD38 expression is triggered at least in part by a certain cytokine(s) secreted by cancer cells. Finally, the results emphasize the prospective use of CD38 expression as a marker of tumor development and progression.
Collapse
Affiliation(s)
- Işil Albeniz
- Department of Biophysics, Istanbul University, Istanbul Faculty of Medicine, 34093 Çapa-Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
37
|
Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H. Flavonoids as inhibitors of human CD38. Bioorg Med Chem Lett 2011; 21:3939-42. [PMID: 21641214 DOI: 10.1016/j.bmcl.2011.05.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
Abstract
CD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)(+) into cyclic ADP-ribose, NAADP(+) and ADP-ribose and the role of these metabolites in multiple Ca(2+) signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable. We report that human CD38 is inhibited at low micromolar concentrations by flavonoids such as luteolinidin, kuromanin and luteolin (IC(50) <10 μM). Docking studies provide some clues on the mode of interaction of these molecules with the active site of CD38.
Collapse
Affiliation(s)
- Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | |
Collapse
|
38
|
Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett 2011; 585:1529-36. [PMID: 21557943 DOI: 10.1016/j.febslet.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that the nonapeptide, oxytocin (OT), helps shape social and affiliative behaviors not only in lower mammals but also in humans. Recently, an essential mediator of brain OT release has been discovered, ADP-ribosyl cyclase and/or CD38. We have subsequently shown that polymorphisms across the CD38 gene are associated with autism spectrum disorders (ASD). Notably, CD38 expression in lymphoblastoid cells (LBC) is reduced in cell lines derived from ASD subjects compared to parental cell lines. Intriguingly, a correlation was observed between CD38 expression and measures of social function in ASD. Finally, we have shown that all-trans retinoic acid (ATRA), a known inducer of CD38 transcription, can rescue low CD38 expressing LBC lines derived from ASD subjects and restore normal levels of transcription of this ectoenzyme providing 'proof of principle' in a peripheral model that retinoids are potential therapeutic agents in ASD.
Collapse
|
39
|
Riebold M, Mankuta D, Lerer E, Israel S, Zhong S, Nemanov L, Monakhov MV, Levi S, Yirmiya N, Yaari M, Malavasi F, Ebstein RP. All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from Autism spectrum disorder. Mol Med 2011; 17:799-806. [PMID: 21528155 DOI: 10.2119/molmed.2011.00080] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023] Open
Abstract
Deficits in social behavior in mice lacking the CD38 gene have been attributed to impaired secretion of oxytocin. In humans, similar deficits in social behavior are associated with autistic spectrum disorder (ASD), for which genetic variants of CD38 have been pinpointed as provisional risk factors. We sought to explore, in an in vitro model, the feasibility of the theory that restoring the level of CD38 in ASD patients could be of potential clinical benefit. CD38 transcription is highly sensitive to several cytokines and vitamins. One of these, all-trans retinoic acid (ATRA), a known inducer of CD38, was added during cell culture and tested on a large sample of N = 120 lymphoblastoid cell (LBC) lines from ASD patients and their parents. Analysis of CD38 mRNA levels shows that ATRA has an upmodulatory potential on LBC derived from ASD patients as well as from their parents. The next crucial issue addressed in our study was the relationship between levels of CD38 expression and psychological parameters. The results obtained indicate a positive correlation between CD38 expression levels and patient scores on the Vineland Adaptive Behavior Scale. In addition, analysis of the role of genetic polymorphisms in the dynamics of the molecule revealed that the genotype of a single-nucleotide polymorphism (rs6449182; C>G variation) in the CpG island of intron 1, harboring the retinoic-acid response element, exerts differential roles in CD38 expression in ASD and in parental LBC. In conclusion, our results provide an empirical basis for the development of a pharmacological ASD treatment strategy based on retinoids.
Collapse
Affiliation(s)
- Mathias Riebold
- Department of Human Genetics, Hebrew University, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zumaquero E, Muñoz P, Cobo M, Lucena G, Pavón EJ, Martín A, Navarro P, García-Pérez A, Ariza-Veguillas A, Malavasi F, Sancho J, Zubiaur M. Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Exp Cell Res 2010; 316:2692-706. [DOI: 10.1016/j.yexcr.2010.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 12/14/2022]
|
41
|
Nasir O, Wang K, Föller M, Bhandaru M, Sandulache D, Artunc F, Ackermann TF, Ebrahim A, Palmada M, Klingel K, Saeed AM, Lang F. Downregulation of Angiogenin Transcript Levels and Inhibition of Colonic Carcinoma by Gum Arabic (Acacia senegal). Nutr Cancer 2010; 62:802-10. [DOI: 10.1080/01635581003605920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Pearce L, Morgan L, Lin TT, Hewamana S, Matthews RJ, Deaglio S, Rowntree C, Fegan C, Pepper C, Brennan P. Genetic modification of primary chronic lymphocytic leukemia cells with a lentivirus expressing CD38. Haematologica 2010; 95:514-7. [PMID: 20207849 DOI: 10.3324/haematol.2009.014381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Studies of the role of individual genes in chronic lymphocytic leukemia (CLL) have been hampered by the inability to consistently transfect primary tumor cells. Here, we describe a highly efficient method of genetically modifying primary CLL cells using a VSVG pseudotyped lentiviral vector. We transduced CD38 negative CLL cells with a lentiviral vector encoding CD38 which caused increased surface CD38 expression in all the samples tested (n=17) with no evidence of plasmacytoid differentiation. The mean percentage of positive cells expressing CD38 was 87%+/-8.5% and the mean cell viability 74%+/-17%. This high level of transduction of all the CLL cell samples tested demonstrates the utility of this technique which should prove applicable for the introduction and analysis of other genes in these non-dividing cells.
Collapse
Affiliation(s)
- Laurence Pearce
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K, Asaka T, Liu HX, Jin D, Koizumi K, Islam MS, Huang JJ, Ma WJ, Kim UH, Kim SJ, Park K, Kim D, Kikuchi M, Ono Y, Nakatani H, Suda S, Miyachi T, Hirai H, Salmina A, Pichugina YA, Soumarokov AA, Takei N, Mori N, Tsujii M, Sugiyama T, Yagi K, Yamagishi M, Sasaki T, Yamasue H, Kato N, Hashimoto R, Taniike M, Hayashi Y, Hamada J, Suzuki S, Ooi A, Noda M, Kamiyama Y, Kido MA, Lopatina O, Hashii M, Amina S, Malavasi F, Huang EJ, Zhang J, Shimizu N, Yoshikawa T, Matsushima A, Minabe Y, Higashida H. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 2010; 67:181-191. [PMID: 20435366 DOI: 10.1016/j.neures.2010.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 02/09/2023]
Abstract
The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Toshio Munesue
- Kanazawa University 21st Century Center of Excellence (COE) Program on Innovative Brain Science on Development, Learning and Memory, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Salmina AB, Lopatina O, Ekimova MV, Mikhutkina SV, Higashida H. CD38/cyclic ADP-ribose system: a new player for oxytocin secretion and regulation of social behaviour. J Neuroendocrinol 2010; 22:380-92. [PMID: 20141572 DOI: 10.1111/j.1365-2826.2010.01970.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxytocin is important for regulating a number of physiological processes. Disruption of the secretion, metabolism or action of oxytocin results in an impairment of reproductive function, social and sexual behaviours, and stress responses. This review discusses current views on the regulation and autoregulation of oxytocin release in the hypothalamic-neurohypophysial system, with special focus on the activity of the CD38/cADP-ribose system as a new component in this regulation. Data from our laboratories indicate that an impairment of this system results in alterations of oxytocin secretion and abnormal social behaviour, thus suggesting new clues that help in our understanding of the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- A B Salmina
- Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
| | | | | | | | | |
Collapse
|
45
|
Deaglio S, Malavasi F. Chronic lymphocytic leukemia microenvironment: shifting the balance from apoptosis to proliferation. Haematologica 2009; 94:752-6. [PMID: 19483151 DOI: 10.3324/haematol.2009.006676] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Dal-Bo M, Bertoni F, Forconi F, Zucchetto A, Bomben R, Marasca R, Deaglio S, Laurenti L, Efremov DG, Gaidano G, Del Poeta G, Gattei V. Intrinsic and extrinsic factors influencing the clinical course of B-cell chronic lymphocytic leukemia: prognostic markers with pathogenetic relevance. J Transl Med 2009; 7:76. [PMID: 19715592 PMCID: PMC2747913 DOI: 10.1186/1479-5876-7-76] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 08/28/2009] [Indexed: 11/13/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL), the most frequent leukemia in the Western world, is characterized by extremely variable clinical courses with survivals ranging from 1 to more than 15 years. The pathogenetic factors playing a key role in defining the biological features of CLL cells, hence eventually influencing the clinical aggressiveness of the disease, are here divided into "intrinsic factors", mainly genomic alterations of CLL cells, and "extrinsic factors", responsible for direct microenvironmental interactions of CLL cells; the latter group includes interactions of CLL cells occurring via the surface B cell receptor (BCR) and dependent to specific molecular features of the BCR itself and/or to the presence of the BCR-associated molecule ZAP-70, or via other non-BCR-dependent interactions, e.g. specific receptor/ligand interactions, such as CD38/CD31 or CD49d/VCAM-1. A putative final model, discussing the pathogenesis and the clinicobiological features of CLL in relationship of these factors, is also provided.
Collapse
Affiliation(s)
- Michele Dal-Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The mainstay of therapy of chronic lymphocytic leukemia (CLL) is cytotoxic chemotherapy; however, CLL is still an incurable disease with resistance to therapy developing in the majority of patients. In recent years, our understanding of the biological basis of CLL pathogenesis has substantially improved and novel treatment strategies are emerging. Tailoring and individualizing therapy according to the molecular and cellular biology of the disease is on the horizon, and advances with targeted agents such as monoclonal antibodies combined with traditional chemotherapy have lead to improved remission rates. The proposed key role of the B-cell receptor (BCR) in CLL pathogenesis has led to a number of possible opportunities for therapeutic exploitation. We are beginning to understand that the microenvironment is of utmost importance in CLL because certain T-cell subsets and stromal cells support the outgrowth and development of the malignant clone. Furthermore, an increase in our understanding of the deregulated cell-death machinery in CLL is a prerequisite to developing new targeted strategies that might be more effective in engaging with the cell-death machinery. This Review summarizes the progress made in understanding these features of CLL biology and describes novel treatment strategies that have also been exploited in current clinical trials.
Collapse
|
48
|
López-Guerra M, Roué G, Pérez-Galán P, Alonso R, Villamor N, Montserrat E, Campo E, Colomer D. p65 activity and ZAP-70 status predict the sensitivity of chronic lymphocytic leukemia cells to the selective IkappaB kinase inhibitor BMS-345541. Clin Cancer Res 2009; 15:2767-76. [PMID: 19351760 DOI: 10.1158/1078-0432.ccr-08-2382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Constitutive nuclear factor-kappaB (NF-kappaB) activation has been implicated in the pathogenesis of chronic lymphocytic leukemia (CLL). Our purpose was to characterize the molecular mechanisms underlying for the selective IkappaB kinase inhibitor BMS-345541 in CLL cells together with the analysis of its combination with several antineoplasic drugs. EXPERIMENTAL DESIGN Primary cells from 34 CLL patients were incubated with different doses of BMS-345541. NF-kappaB DNA-binding activity was analyzed by ELISA-based kits and the characterization of the apoptotic pathway was done by flow cytometry, immunoblotting, quantitative reverse transcription-PCR, and immunofluorescence techniques. RESULTS BMS-345541 selectively induced apoptosis in CLL cells in the low micromolar range irrespective of p53 status. Noteworthy, the high ZAP-70 group was significantly more sensitive to BMS-345541 than the low ZAP-70 group, in correlation with high levels of p65 phosphorylation and DNA-binding activity. Following NF-kappaB inhibition, BMS-345541 led to induction of the mitochondrial apoptotic pathway and activation of both caspase-dependent and caspase-independent factors. Moreover, BMS-345541-induced apoptosis was accompanied by down-regulation of several antiapoptotic NF-kappaB-target genes, including both BCL2 family members and apoptotic endogenous inhibitors. In addition, we showed a strong synergism between BMS-345541 and conventional chemotherapeutics such as mitoxantrone and dexamethasone as well as with new promising drugs such as the BH3-mimetic GX15-070/Obatoclax or the anti-TRAIL-R1 monoclonal antibody mapatumumab. CONCLUSIONS These data confirm that NF-kappaB is a relevant target in CLL and indicate that inhibitors of IkappaB kinase, alone or in combination, represent a novel therapeutic strategy for the treatment of CLL patients, especially for the group with high ZAP-70.
Collapse
Affiliation(s)
- Mónica López-Guerra
- Authors' Affiliations: Hematopathology Unit, Department of Pathology and Department of Hematology, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ohtsuji M, Yagi K, Shintaku-Kubota M, Kojima-Koba Y, Ito N, Sugihara M, Yamaaki N, Chujo D, Nohara A, Takeda Y, Kobayashi J, Yamagishi M, Higashida H. Decreased ADP-ribosyl cyclase activity in peripheral blood mononuclear cells from diabetic patients with nephropathy. EXPERIMENTAL DIABETES RESEARCH 2009; 2008:897508. [PMID: 19300526 PMCID: PMC2656910 DOI: 10.1155/2008/897508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/12/2008] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS ADP-ribosyl-cyclase activity (ADPRCA) of CD38 and other ectoenzymes mainly generate cyclic adenosine 5'diphosphate-(ADP-) ribose (cADPR) as a second messenger in various mammalian cells, including pancreatic beta cells and peripheral blood mononuclear cells (PBMCs). Since PBMCs contribute to the pathogenesis of diabetic nephropathy, ADPRCA of PBMCs could serve as a clinical prognostic marker for diabetic nephropathy. This study aimed to investigate the connection between ADPRCA in PBMCs and diabetic complications. METHODS PBMCs from 60 diabetic patients (10 for type 1 and 50 for type 2) and 15 nondiabetic controls were fluorometrically measured for ADPRCA based on the conversion of nicotinamide guanine dinucleotide (NGD(+)) into cyclic GDP-ribose. RESULTS ADPRCA negatively correlated with the level of HbA1c (P = .040, R(2) = .073), although ADPRCA showed no significant correlation with gender, age, BMI, blood pressure, level of fasting plasma glucose and lipid levels, as well as type, duration, or medication of diabetes. Interestingly, patients with nephropathy, but not other complications, presented significantly lower ADPRCA than those without nephropathy (P = .0198) and diabetes (P = .0332). ANCOVA analysis adjusted for HbA1c showed no significant correlation between ADPRCA and nephropathy. However, logistic regression analyses revealed that determinants for nephropathy were systolic blood pressure and ADPRCA, not HbA1c. CONCLUSION/INTERPRETATION Decreased ADPRCA significantly correlated with diabetic nephropathy. ADPRCA in PBMCs would be an important marker associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Michio Ohtsuji
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Kunimasa Yagi
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Miyuki Shintaku-Kubota
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Yukiko Kojima-Koba
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Naoko Ito
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Masako Sugihara
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Naoto Yamaaki
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Daisuke Chujo
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Atsushi Nohara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Yoshiyu Takeda
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Junji Kobayashi
- Division of Endocrinology and Diabetology, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| | - Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takaramachi, Kanazawa 920 8640, Japan
| |
Collapse
|
50
|
CD38 gene polymorphism and chronic lymphocytic leukemia: a role in transformation to Richter syndrome? Blood 2008; 111:5646-53. [PMID: 18424664 DOI: 10.1182/blood-2008-01-129726] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD38 rules proliferation signals in chronic lymphocytic leukemia (CLL) cells, suggesting that the molecule is not merely a prognostic marker but also a key element in the pathogenetic network underlying the disease. CD38 has a genetic polymorphism, characterized by a C>G variation in the regulatory region of intron 1. The working hypothesis is that the presence of different alleles in CLL patients marks (or accounts for) some of the clinical heterogeneity. CD38 allele distribution in 248 Italian patients overlapped with that of the controls (n = 232), suggesting that susceptibility to CLL is not influenced by CD38 genotype. Stratification of patients according to markers of unfavorable prognosis constantly resulted in a significantly higher frequency of the rare G allele. Furthermore, analysis of clinical parameters showed that G allele is independently associated with nodal/splenic involvement. The highest G allele frequency was observed in the 16 patients of the cohort that developed Richter syndrome (RS). Five-year cumulative incidence of transformation was significantly higher in G allele carriers than in CC homozygotes. Multivariate analysis on a total of 30 RS patients confirmed that the probability of transformation is strongly associated with G allele, likely representing an independent risk factor for RS development.
Collapse
|