1
|
Zhang H, Su Q. Low-FODMAP Diet for Irritable Bowel Syndrome: Insights from Microbiome. Nutrients 2025; 17:544. [PMID: 39940404 PMCID: PMC11819959 DOI: 10.3390/nu17030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder characterized by chronic abdominal pain, bloating, and altered bowel habits. Low-FODMAP diets, which involve restricting fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, have emerged as an effective dietary intervention for alleviating IBS symptoms. This review paper aims to synthesize current insights into the impact of a low-FODMAP diet on the gut microbiome and its mechanisms of action in managing IBS. We explore the alterations in microbial composition and function associated with a low-FODMAP diet and discuss the implications of these changes for gut health and symptom relief. Additionally, we examine the balance between symptom improvement and potential negative effects on microbial diversity and long-term gut health. Emerging evidence suggests that while a low-FODMAP diet can significantly reduce IBS symptoms, it may also lead to reductions in beneficial microbial populations. Strategies to mitigate these effects, such as the reintroduction phase and the use of probiotics, are evaluated. This review highlights the importance of a personalized approach to dietary management in IBS, considering individual variations in microbiome responses. Understanding the intricate relationship between diet, the gut microbiome, and IBS symptomatology will guide the development of more effective, sustainable dietary strategies for IBS patients.
Collapse
Affiliation(s)
- Haoshuai Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Azarfarin M, Moradikor N, Matin S, Dadkhah M. Association Between Stress, Neuroinflammation, and Irritable Bowel Syndrome: The Positive Effects of Probiotic Therapy. Cell Biochem Funct 2024; 42:e70009. [PMID: 39487668 DOI: 10.1002/cbf.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Stress refers to an organism's response to environmental threats in normal condition to maintain homeostasis in the body. In addition, strong inflammatory reactions induced by the hypothalamic-pituitary-adrenal (HPA) axis under stress condition during a long time. Reciprocally, chronic stress can induce the irritable bowel syndrome (IBS) which is a well-known gut disorder thereby play an important role in the promotion and pathophysiology of neuropsychiatric diseases. It has been demonstrated that leaky gut is a hallmark of IBS, leads to the entrance the microbiota into the bloodstream and consequent low-grade systemic inflammation. In the current review, we will discuss the mechanisms by which stress can influence the risk and severity of IBS and its relationship with neuroinflammation. Also, the role of probiotics in IBS co-existing with chronic stress conditions is highlighted.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience, Faculty of Advanced Medical, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Somaieh Matin
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Aljeradat B, Kumar D, Abdulmuizz S, Kundu M, Almealawy YF, Batarseh DR, Atallah O, Ennabe M, Alsarafandi M, Alan A, Weinand M. Neuromodulation and the Gut-Brain Axis: Therapeutic Mechanisms and Implications for Gastrointestinal and Neurological Disorders. PATHOPHYSIOLOGY 2024; 31:244-268. [PMID: 38804299 PMCID: PMC11130832 DOI: 10.3390/pathophysiology31020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex, bidirectional communication network that intricately connects the gastrointestinal tract with the central nervous system (CNS). Understanding and intervening in this axis opens a pathway for therapeutic advancements for neurological and gastrointestinal diseases where the GBA has been proposed to play a role in the pathophysiology. In light of this, the current review assesses the effectiveness of neuromodulation techniques in treating neurological and gastrointestinal disorders by modulating the GBA, involving key elements such as gut microbiota, neurotrophic factors, and proinflammatory cytokines. Through a comprehensive literature review encompassing PubMed, Google Scholar, Web of Science, and the Cochrane Library, this research highlights the role played by the GBA in neurological and gastrointestinal diseases, in addition to the impact of neuromodulation on the management of these conditions which include both gastrointestinal (irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gastroesophageal reflux disease (GERD)) and neurological disorders (Parkinson's disease (PD), Alzheimer's disease (AD), autism spectrum disorder (ASD), and neuropsychiatric disorders). Despite existing challenges, the ability of neuromodulation to adjust disrupted neural pathways, alleviate pain, and mitigate inflammation is significant in improving the quality of life for patients, thereby offering exciting prospects for future advancements in patient care.
Collapse
Affiliation(s)
- Baha’ Aljeradat
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Danisha Kumar
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Dow Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Sulaiman Abdulmuizz
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara, Nigeria
| | - Mrinmoy Kundu
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar 751029, India
| | - Yasser F. Almealawy
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Faculty of Medicine, University of Kufa, Kufa P.O. Box 21, Iraq
| | - Dima Ratib Batarseh
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Oday Atallah
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Michelle Ennabe
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Muath Alsarafandi
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, Islamic University of Gaza, Rafa Refugee Camp, Rafa P.O. Box 108, Palestine
- Faculty of Medicine, Islamic University of Gaza, Gaza P.O. Box 108, Palestine
| | - Albert Alan
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| |
Collapse
|
5
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Lachmansingh DA, Lavelle A, Cryan JF, Clarke G. Microbiota-Gut-Brain Axis and Antidepressant Treatment. Curr Top Behav Neurosci 2024; 66:175-216. [PMID: 37962812 DOI: 10.1007/7854_2023_449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the treatment of depressive disorders, conventional antidepressant therapy has been the mainstay of clinical management, along with well-established nonpharmacological interventions such as various kinds of psychotherapy. Over the last 2 decades, there has been considerable interest in the role of the gastrointestinal system and its microbiota on brain function, behavior, and mental health. Components of what is referred to as the microbiota-gut-brain axis have been uncovered, and further research has elicited functional capabilities such as "gut-brain modules." Some studies have found associations with compositional alterations of gut microbiota in patients with depressive disorders and individuals experiencing symptoms of depression. Regarding the pathogenesis and neurobiology of depression itself, there appears to be a multifactorial contribution, in addition to the theories involving deficits in catecholaminergic and monoamine neurotransmission. Interestingly, there is evidence to suggest that antidepressants may play a role in modulating the gut microbiota, thereby possibly having an impact on the microbiota-gut-brain axis in this manner. The development of prebiotics, probiotics, and synbiotics has led to studies investigating not only their impact on the microbiota but also their therapeutic value in mental health. These psychobiotics have the potential to be used as therapeutic adjuncts in the treatment of depression. Regarding future directions, and in an attempt to further understand the role of the microbiota-gut-brain axis in depression, more studies such as those involving fecal microbiota transplantation will be required. In addition to recent findings, it is also suggested that more research will have to be undertaken to elicit whether specific strains of gut organisms are linked to depression. In terms of further investigation of the therapeutic potential of prebiotics, probiotics, and synbiotics as adjuncts to antidepressant treatment, we also expect there to be more research targeting specific microorganisms, as well as a strong focus on the effects of specific prebiotic fibers from an individualized (personalized) point of view.
Collapse
Affiliation(s)
- David Antoine Lachmansingh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Zhang S, Chen L, Feng B. An anesthesia protocol for robust and repeatable measurement of behavioral visceromotor responses to colorectal distension in mice. FRONTIERS IN PAIN RESEARCH 2023; 4:1202590. [PMID: 37305203 PMCID: PMC10250638 DOI: 10.3389/fpain.2023.1202590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Visceral motor responses (VMR) to graded colorectal distension (CRD) have been extensively implemented to assess the level of visceral pain in awake rodents, which are inevitably confounded by movement artifacts and cannot be conveniently implemented to assess invasive neuromodulation protocols for treating visceral pain. In this report, we present an optimized protocol with prolonged urethane infusion that enables robust and repeatable recordings of VMR to CRD in mice under deep anesthesia, providing a two-hour window to objectively assess the efficacy of visceral pain management strategies. Methods During all surgical procedures, C57BL/6 mice of both sexes (8-12 weeks, 25-35 g) were anesthetized with 2% isoflurane inhalation. An abdominal incision was made to allow Teflon-coated stainless steel wire electrodes to be sutured to the oblique abdominal musculature. A thin polyethylene catheter (Φ 0.2 mm) was placed intraperitoneally and externalized from the abdominal incision for delivering the prolonged urethane infusion. A cylindric plastic-film balloon (Φ 8 mm x 15 mm when distended) was inserted intra-anally, and its depth into the colorectum was precisely controlled by measuring the distance between the end of the balloon and the anus. Subsequently, the mouse was switched from isoflurane anesthesia to the new urethane anesthesia protocol, which consisted of a bout of infusion (0.6 g urethane per kg weight, g/kg) administered intraperitoneally via the catheter and continuous low-dose infusion throughout the experiment at 0.15-0.23 g per kg weight per hour (g/kg/h). Results Using this new anesthesia protocol, we systematically investigated the significant impact of balloon depth into the colorectum on evoked VMR, which showed a progressive reduction with increased balloon insertion depth from the rectal region into the distal colonic region. Intracolonic TNBS treatment induced enhanced VMR to CRD of the colonic region (>10 mm from the anus) only in male mice, whereas colonic VMR was not significantly altered by TNBS in female mice. Discussion Conducting VMR to CRD in anesthetized mice using the current protocol will enable future objective assessments of various invasive neuromodulatory strategies for alleviating visceral pain.
Collapse
Affiliation(s)
| | | | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Concentrations of Plasma Amino Acids and Neurotransmitters in Participants with Functional Gut Disorders and Healthy Controls. Metabolites 2023; 13:metabo13020313. [PMID: 36837931 PMCID: PMC9959678 DOI: 10.3390/metabo13020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Amino acids are important in several biochemical pathways as precursors to neurotransmitters which impact biological processes previously linked to functional gastrointestinal disorders (FGIDs). Dietary protein consumption, metabolic host processes, and the gut microbiome can influence the plasma concentration of amino acids and neurotransmitters, and their uptake by tissues. The aim of this analysis was to quantify 19 proteogenic and 4 non-proteogenic amino acids and 19 neurotransmitters (including precursors and catabolites, herein referred to as neurotransmitters) to ascertain if their circulating concentrations differed between healthy participants and those with FGIDs. Plasma proteogenic and non-proteogenic amino acids and neurotransmitters were measured using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry, respectively, from 165 participants (Rome IV: irritable bowel syndrome (IBS-constipation, IBS-diarrhea), functional constipation, functional diarrhea, and healthy controls). There were significant differences (p < 0.05) in pairwise comparisons between healthy controls and specific FGID groups for branched-chain amino acids (BCAAs), ornithine, and alpha-aminobutyric acid. No other significant differences were observed for the neurotransmitters or any other amino acids analyzed. Multivariate and bivariate correlation analyses between proteogenic and non-proteogenic amino acids and neurotransmitters for constipation (constipation (IBS-C and functional constipation) and phenotypes diarrhea (IBS-D and functional diarrhea)) and healthy controls suggested that associations between BCAAs, 5-hydroxytryptophan, and kynurenine in combination with tyrosine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid and associations with gamma-aminobutyric acid, glutamate, asparagine, and serine are likely disrupted in FGID phenotypes. In conclusion, although correlations were evident between some proteogenic and non-proteogenic amino acids and neurotransmitters, the results showed minor concentration differences in plasma proteogenic and non-proteogenic amino acids, amino acid-derived metabolites, and neurotransmitters between FGID phenotypes and healthy controls.
Collapse
|
9
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Mobasheri F, Shidfar F, Aminianfar A, Keshteli AH, Esmaillzadeh A, Adibi P. The association between dietary acid load and odds and severity of irritable bowel syndrome in adults. Sci Rep 2022; 12:18943. [PMID: 36347922 PMCID: PMC9643348 DOI: 10.1038/s41598-022-23098-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
No study has been conducted to investigate the association between dietary acid load and irritable bowel syndrome (IBS). So, this cross-sectional study was performed to investigate the association between dietary acid load and odds of IBS, its severity, and IBS subtypes. A sample of 3362 Iranian subjects was selected from health centers in Isfahan province. A validated semi-quantitative food frequency questionnaire (DS-FFQ) was applied to estimate dietary intakes. The dietary acid load was measured using net endogenous acid production (NEAP), dietary acid load (DAL), and potential renal acid load (PRAL) scores. In crude models, the highest compared with the lowest category of the PRAL score was significantly associated with increased odds of IBS severity in participants with BMI ≥ 25 (kg/m2) (OR = 1.54; 95% CI = (1.03-2.32). Also, the results indicated a significant positive association between the PARL and odds of mixed subtype of IBS (OR = 1.74; 95% CI = (1.11-2.74); P trend = 0.02). In propensity score-adjusted model with potential confounders, only a positive association was found between PRAL and odds of mixed subtype of IBS (OR = 1.78; 95% CI = (1.05-3.00); P trend = 0.03). The DAL and NEAP scores tended to show non-significant similar findings. This study indicates that dietary acid load might be associated with odds of mixed type of IBS. However, further research is warranted to infer these findings.
Collapse
Affiliation(s)
- Fatemeh Mobasheri
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminianfar
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Ahmad Esmaillzadeh
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran ,grid.411036.10000 0001 1498 685XDepartment of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- grid.411036.10000 0001 1498 685XIntegrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Parental post-traumatic stress disorder and increased risk of chronic pain conditions and major psychiatric disorders in their offspring. Gen Hosp Psychiatry 2022; 79:152-157. [PMID: 36379154 DOI: 10.1016/j.genhosppsych.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Previous research suggests that individuals with post-traumatic stress disorder (PTSD) have higher risk of chronic pain symptoms. It remains unknown whether risk of chronic pain symptoms occurs in the offspring of parents with PTSD. This study aimed to explore the risk of chronic pain conditions and depression in the offspring of parents with PTSD. METHODS Between 1996 and 2011, we included subjects whose parents had PTSD and controls with parents without PTSD or any major psychiatric disorders (MPDs) from the Taiwan National Health Research Database. The controls (1:10) were matched for age, sex, time of birth, income, and residence. Poisson regression was applied to estimate the risk of chronic pain conditions and MPDs between case and control cohorts during the study period. The chronic pain conditions assessed were migraine, tension headache, fibromyalgia, peripheral neuropathy, dorsopathies, dysmenorrhea, irritable bowel syndrome (IBS), and dyspepsia. RESULTS We included 1139 cases and 11,390 matched controls. After adjusting for demographics and family history of psychiatric comorbidities, offspring of parents with PTSD had higher risk for depressive disorder [reported as odds ratio (OR) with 95% confidence interval (CI): 2.59, 1.71-3.92] than controls. For chronic pain conditions, offspring of parents with PTSD had higher risk for migraine (2.01, 1.01-3.98) and IBS (1.55, 1.02-2.34) than controls. CONCLUSIONS Healthcare workers should be aware that offspring of parents with PTSD have a higher risk of chronic pain conditions and depressive disorder. Further intervention to mitigate the risk is warranted.
Collapse
|
12
|
Mróz M, Czub M, Brytek-Matera A. Heart Rate Variability-An Index of the Efficacy of Complementary Therapies in Irritable Bowel Syndrome: A Systematic Review. Nutrients 2022; 14:3447. [PMID: 36014953 PMCID: PMC9416471 DOI: 10.3390/nu14163447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS), as a functional and psychosomatic disease, reduces the quality of life and increases the risk of developing mental disorders. Deregulation of the autonomic nervous system (ANS) is one of the main causes of the disease. The objective of the present study was to identify the studies in which measurements of heart rate variability (HRV) were performed before and after therapeutic intervention, and to evaluate the effectiveness of IBS therapy in terms of a reduction of IBS symptoms and changes in autonomic tone. A systematic review of the literature was carried out in accordance with PRISMA standards. Six databases were searched for articles published before 2022: PubMed®, MEDLINE®, EBSCO, Cochrane, Scopus, and Web of Science. Inclusion criteria were experimental design, diagnosis of IBS (medical and/or diagnosis in accordance with the Rome Criteria), non-pharmacological intervention, and HRV measurement before and after the intervention. The quality of the studies was assessed by JBI Critical appraisal. In total, 455 studies were identified, of which, sixwere included in the review. Expected changes in HRV (increase in parasympathetic activity) were observed in four of the six studies (interventions studied: ear acupressure, transcutaneous auricular vagusnerve stimulation, cognitive behavioral therapy with relaxation elements, yoga). In the same studies, therapeutic interventions significantly reduced the symptoms of IBS. The present review indicated that interventions under investigation improve the efficiency of the ANS and reduce the symptoms of IBS. It is advisable to include HRV measurements as a measure of the effectiveness of interventions in IBS therapy, and to assess autonomic changes as a moderator of the effectiveness of IBS therapy.
Collapse
Affiliation(s)
- Magdalena Mróz
- Institute of Psychology, University of Wrocław, 50-527 Wrocław, Poland
| | | | | |
Collapse
|
13
|
Huang ST, Chen BB, Song ZJ, Tang HL, Hua R, Zhang YM. Unraveling the role of Epac1-SOCS3 signaling in the development of neonatal-CRD-induced visceral hypersensitivity in rats. CNS Neurosci Ther 2022; 28:1393-1408. [PMID: 35702948 PMCID: PMC9344090 DOI: 10.1111/cns.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti‐inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro‐inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1‐SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1‐SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin‐releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). Methods Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1‐SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT‐PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. Results In neonatal‐CRD‐induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL‐6 levels elevated in PVN. However, infusion of Epac agonist 8‐pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV‐SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL‐6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI‐09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL‐6 into PVN simulated the visceral hypersensitivity. Conclusions Inactivation of Epac1‐SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.
Collapse
Affiliation(s)
- Si-Ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Bin-Bin Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Zhi-Jing Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Hui-Li Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
14
|
Kim HY, Park ES, Choi YS, Park SJ, Kim JH, Chang HK, Park KY. Kimchi improves irritable bowel syndrome: results of a randomized, double-blind placebo-controlled study. Food Nutr Res 2022; 66:8268. [PMID: 35721806 PMCID: PMC9180131 DOI: 10.29219/fnr.v66.8268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) can be caused by abnormal bowel movements, altered brain-gut axis, gut microbiota change, and low levels of inflammation or immune activation. The intake of food containing much fiber and lactic acid bacteria (LABs) can alleviate IBS. OBJECTIVE This study was undertaken to confirm the alleviative effect of kimchi on symptoms of IBS. DESIGN Three types of kimchi (standard kimchi, SK; dead nano-sized Lactobacillus plantarum nF1 (nLp) added to standard kimchi, nLpSK; or functional kimchi, FK) were given to 30 individuals in each of three groups, that is, the SK group (n = 30), the nLpSK group (n = 30), or the FK group (n = 30) at 210 g a day for 12 weeks. Food intake records, serum levels of inflammatory factors, fecal levels of harmful enzymes, and microbiome changes were investigated over the 12-week study period. RESULTS After intervention, dietary fiber intake was increased in all groups. Typical IBS symptoms (abdominal pain or inconvenience, desperation, incomplete evacuation, and bloating), defecation time, and stool type were also improved. In serum, all groups showed reductions in tumor necrosis factor (TNF)-α (P < 0.001) levels. In addition, serum IL-4 (P < 0.001), IL-10 (P < 0.001), and IL-12 (P < 0.01) were significantly reduced in the nLpSK and FK groups, and serum monocyte chemotactic protein (MCP)-1 (P < 0.05) was significantly reduced in the nLpSK group. Furthermore, activities of fecal β-glucosidase and β-glucuronidase were significantly decreased in all three groups, and these reductions were greatest in the nLpSK group. Gut microbiome analysis showed that kimchi consumption increased Firmicutes populations at the expense of Bacteroidetes and Tenericutes populations. In addition, the Bifidobacterium adolescentis population increased significantly in the FK group (P = 0.026). CONCLUSION Kimchi intake helps alleviate IBS by increasing dietary fiber intake and reducing serum inflammatory cytokine levels and harmful fecal enzyme activities. Notably, nLp improved the immune system, and several functional ingredients in FK promoted the growth of Bifidobacterium adolescentis in gut.
Collapse
Affiliation(s)
- Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Eui-Seong Park
- Yuhan Care R&D Center, Yongin, Gyeonggi-do, Republic of Korea
| | - Young Sik Choi
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jae Hyun Kim
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do, Republic of Korea
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
15
|
Holst A, Ekman J, Petersson-Ahrholt M, Relander T, Wiebe T, Linge HM. Identifying causal relationships of cancer treatment and long-term health effects among 5-year survivors of childhood cancer in Southern Sweden. COMMUNICATIONS MEDICINE 2022; 2:21. [PMID: 35603279 PMCID: PMC9053221 DOI: 10.1038/s43856-022-00081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background Survivors of childhood cancer can develop adverse health events later in life. Infrequent occurrences and scarcity of structured information result in analytical and statistical challenges. Alternative statistical approaches are required to investigate the basis of late effects in smaller data sets. Methods Here we describe sex-specific health care use, mortality and causal associations between primary diagnosis, treatment and outcomes in a small cohort (n = 2315) of 5-year survivors of childhood cancer (n = 2129) in southern Sweden and a control group (n = 11,882; age-, sex- and region-matched from the general population). We developed a constraint-based method for causal inference based on Bayesian estimation of distributions, and used it to investigate health care use and causal associations between diagnoses, treatments and outcomes. Mortality was analyzed by the Kaplan–Meier method. Results Our results confirm a significantly higher health care usage and premature mortality among childhood cancer survivors as compared to controls. The developed method for causal inference identifies 98 significant associations (p < 0.0001) where most are well known (n = 73; 74.5%). Hitherto undescribed associations are identified (n = 5; 5.1%). These were between use of alkylating agents and eye conditions, topoisomerase inhibitors and viral infections; pituitary surgery and intestinal infections; and cervical cancer and endometritis. We discuss study-related biases (n = 20; 20.4%) and limitations. Conclusions The findings contribute to a broader understanding of the consequences of cancer treatment. The study shows relevance for small data sets and causal inference, and presents the method as a complement to traditional statistical approaches. Survivors of childhood cancer can develop late effects in adulthood. Knowledge about possible late effects can improve childhood cancer treatments and assist in follow-up. We developed a method to identify causative links between treatments and health outcomes. We applied it to a Swedish patient cohort and identified 98 causative links between treatments and outcomes, many of which are already known. Some, however, have not been previously described, including links between certain treatments and eye conditions or viral infections. We also confirm that childhood cancer survivors use more health care and have higher mortality compared to the general population. This study helps to create a better understanding of the late effects of cancer treatment in children and may help to guide strategies to monitor and treat children to avoid these effects. Holst et al. study the relationship between cancer treatments and long-term health effects using registry data on childhood cancer survivors in Sweden. The authors utilize a causal inference approach to establish relationships between certain therapies and viral infections, eye conditions, and reproductive conditions, amongst others.
Collapse
|
16
|
Zhao Y, Feng B, Pierce DM. Predicting the micromechanics of embedded nerve fibers using a novel three-layered model of mouse distal colon and rectum. J Mech Behav Biomed Mater 2022; 127:105083. [PMID: 35093713 PMCID: PMC8916824 DOI: 10.1016/j.jmbbm.2022.105083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
Mechanotransduction plays a central role in evoking pain from the distal colon and rectum (colorectum) where embedded sensory nerve endings convert micromechanical stresses and strains into neural action potentials. The colorectum displays strong through-thickness and longitudinal heterogeneity with collagen concentrated in the submucosa thus indicating the significant load-bearing role of this layer. The density of sensory nerve endings is also significantly the greatest in the submucosa, suggesting a nociceptive function. Thus biomechanical heterogeneity in the colorectum influences the micromechanical stresses and strains surrounding afferent endings embedded within different layers of the colorectum which is critical for the mechanotransduction of various mechanical stimuli. In this study we aimed to: (1) calibrate and validate a three-layered computational model of the colorectum; (2) predict intra-tissue distributions of stresses and strains during mechanical stimulation of the colorectum ex vivo (i.e. circumferential stretching, punctuate probing, and mucosal shearing); and (3) establish a methodology to calculate local micromechanical stresses and strains surrounding afferent nerve endings embedded in the colorectum. We established three-layered FE models that include mucosa, submucosa, and muscular layers, and incorporated residual stretches, to calculate intra-tissue stresses and strains when the colorectum undergoes the mechanical stimuli used to characterize afferent neural encoding ex vivo. Finally, we established a methodology for detailed calculations of the local micromechanical stresses and strains surrounding afferent endings embedded in the colorectum and demonstrated this with a representative example. Our novel methodologies will bridge the existing neurophysiological and biomechanical evidence from experiments to advance our mechanistic understanding of colorectal mechanotransduction.
Collapse
Affiliation(s)
- Yunmei Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
17
|
Samy W, El Gebaly A, Ahmed NH, Talaat A. Ghrelin polymorphism/TRPV1 receptor expression in Egyptian IBS patients. Cytokine 2022; 152:155827. [PMID: 35182895 DOI: 10.1016/j.cyto.2022.155827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/07/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION/OBJECTIVE Irritable bowel syndrome is a functional gastrointestinal disorder. Ghrelin is a peptide hormone which affects gastrointestinal motility. We have studied the association between ghrelin gene polymorphism, ghrelin expression, and their effect on TRPV1 correlating this with IBS manifestations in the Egyptian patients. METHODS Participants included 60 IBS patients meeting the Rome III criteria and 60 controls similar in age and gender were recruited. Whole blood samples were used for genotyping of Ghrelin polymorphisms rs696217. Colonic biopsies were processed for mRNA expression analysis of ghrelin and TRPV1. RESULTS The rs696217 GG genotype frequency was higher in patients (78.3%) compared to controls (57%). According to GT\TT genotype there was significant difference between IBS and control group: 21.7%, 43% respectively (p = 0.0126). In allele frequency distribution, G allele in the IBS group was 87.5% while in the control group was 74%.T allele presents in 12.5% of IBS patients and 26% in the control group (p = 0.010). The genotype frequencies did not significantly differ between IBS subtypes. TRPV1 mRNA levels in were significantly increased in IBS patients than in controls (p < 0.05), while GHRL mRNA expression was significantly decreased (p < 0.05). The IBS-C group showed significantly higher levels of TRPV1 and lower levels of GHRL mRNA expression (p < 0.05) CONCLUSIONS: we showed that ghrelin rs696217 might have a role in IBS, as those patients carrying the GG genotype showed a significant decrease in ghrelin mRNA expression, with a subsequent significant increase in TRPV1 gene expression, and could explain some of the IBS manifestations.
Collapse
Affiliation(s)
- Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Ahmed El Gebaly
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - Nabila H Ahmed
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
18
|
Chen M, Ruan G, Chen L, Ying S, Li G, Xu F, Xiao Z, Tian Y, Lv L, Ping Y, Cheng Y, Wei Y. Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome. Front Endocrinol (Lausanne) 2022; 13:817100. [PMID: 35250873 PMCID: PMC8888441 DOI: 10.3389/fendo.2022.817100] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder of unknown etiology. IBS is caused by a disruption in the gut-brain axis. Given the importance of the gut microbiota in maintaining local and systemic homeostasis of immunity, endocrine, and other physiological processes, the microbiota-gut-brain axis has been proposed as a key regulator in IBS. Neurotransmitters have been shown to affect blood flow regulation, intestinal motility, nutrient absorption, the gastrointestinal immune system, and the microbiota in recent studies. It has the potential role to play a function in the pathophysiology of the gastrointestinal and neurological systems. Transmitters and their receptors, including 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and histamine, play an important role in IBS, especially in visceral sensitivity and gastrointestinal motility. Studies in this field have shed light on revealing the mechanism by which neurotransmitters act in the pathogenesis of IBS and discovering new therapeutic strategies based on traditional pharmacological approaches that target the nervous system or novel therapies that target the microbiota.
Collapse
Affiliation(s)
- Minjia Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Pathogenic Biology and Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangcong Ruan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Senhong Ying
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guanhu Li
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fenghua Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linling Lv
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Ping
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Yi Cheng,
| | - Yanling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Yi Cheng,
| |
Collapse
|
19
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
20
|
Zhao Y, Siri S, Feng B, Pierce DM. Toward Elucidating the Physiological Impacts of Residual Stresses in the Colorectum. J Biomech Eng 2022; 144:011008. [PMID: 34286820 PMCID: PMC8420795 DOI: 10.1115/1.4051846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Indexed: 01/03/2023]
Abstract
Irritable bowel syndrome afflicts 10-20% of the global population, causing visceral pain with increased sensitivity to colorectal distension and normal bowel movements. Understanding and predicting these biomechanics will further advance our understanding of visceral pain and complement the existing literature on visceral neurophysiology. We recently performed a series of experiments at three longitudinal segments (colonic, intermediate, and rectal) of the distal 30 mm of colorectums of mice. We also established and fitted constitutive models addressing mechanical heterogeneity in both the through-thickness and longitudinal directions of the colorectum. Afferent nerve endings, strategically located within the submucosa, are likely nociceptors that detect concentrations of mechanical stresses to evoke the perception of pain from the viscera. In this study, we aim to: (1) establish and validate a method for incorporating residual stresses into models of colorectums, (2) predict the effects of residual stresses on the intratissue mechanics within the colorectum, and (3) establish intratissue distributions of stretches and stresses within the colorectum in vivo. To these ends we developed two-layered, composite finite element models of the colorectum based on our experimental evidence and validated our approaches against independent experimental data. We included layer- and segment-specific residual stretches/stresses in our simulations via the prestrain algorithm built into the finite element software febio. Our models and modeling approaches allow researchers to predict both organ and intratissue biomechanics of the colorectum and may facilitate better understanding of the underlying mechanical mechanisms of visceral pain.
Collapse
Affiliation(s)
- Y. Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - S. Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - B. Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - D. M. Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
21
|
Salama R, Arshavsky-Graham S, Sella-Tavor O, Massad-Ivanir N, Segal E. Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids. Talanta 2021; 239:123124. [PMID: 34896821 DOI: 10.1016/j.talanta.2021.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
We present a porous Si (PSi)-based label-free optical biosensor for sensitive and continuous detection of a model target protein biomarker in gastrointestinal (GI) tract fluids. The biosensing platform is designed to continuously monitor its target protein within the complex GI fluids without sample preparation and washing steps. An oxidized PSi Fabry-Pérot thin films are functionalized with aptamers, which are used as the capture probes. The optical response of the aptamer-conjugated PSi is studied upon exposure to unprocessed GI fluids, originated from domestic pigs, spiked with the target protein. We investigate biological and chemical surface passivation methods to stabilize the surface and reduce non-specific adsorption of interfering proteins and molecules within the GI fluids. For the passivated PSi aptasensor we simulate continuous in vivo biosensing conditions, demonstrating that the aptasensor could successfully detect the target in a continuous manner without any need for surface washing after the target protein binding events, at a clinically relevant range. Furthermore, we simulate biosensing conditions within a smart capsule, in which the aptasensor is occasionally exposed to GI fluids in flow or via repeated cycles of injection and static incubation events. Such biosensor can be implemented within ingestible capsule devices and used for in situ biomarker detection in the GI tract.
Collapse
Affiliation(s)
- Rachel Salama
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sofia Arshavsky-Graham
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Naama Massad-Ivanir
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Faculty of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
22
|
Piccione M, Facchinello N, Schrenk S, Gasparella M, Pathak S, Ammar RM, Rabini S, Dalla Valle L, Di Liddo R. STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model. Pharmaceuticals (Basel) 2021; 14:1234. [PMID: 34959635 PMCID: PMC8704787 DOI: 10.3390/ph14121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
AIM Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. MAIN METHODS We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. KEY FINDINGS DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. SIGNIFICANCE Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Marco Gasparella
- Department of Pediatric Surgery, Ca’ Foncello Hospital, 31100 Treviso, Italy;
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India;
| | - Ramy M. Ammar
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-El Sheikh 33516, Egypt
| | - Sabine Rabini
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| |
Collapse
|
23
|
Lu Y, Huang J, Zhang Y, Huang Z, Yan W, Zhou T, Wang Z, Liao L, Cao H, Tan B. Therapeutic Effects of Berberine Hydrochloride on Stress-Induced Diarrhea-Predominant Irritable Bowel Syndrome Rats by Inhibiting Neurotransmission in Colonic Smooth Muscle. Front Pharmacol 2021; 12:596686. [PMID: 34594213 PMCID: PMC8476869 DOI: 10.3389/fphar.2021.596686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
The etiology of diarrhea-predominant irritable bowel syndrome (IBS-D) is complicated and closely related to neurotransmission in the gastrointestinal (GI) tract. Developing new strategies for treating this disease is a major challenge for IBS-D research. Berberine hydrochloride (BBH), the derivative of berberine, is a herbal constituent used to treat IBS. Previous studies have shown that BBH has potential anti-inflammatory, antibacterial, analgesic, and antidiarrheal effects and a wide range of biological activities, especially in regulating the release of some neurotransmitters. A modified IBS-D rat model induced by chronic restraint stress was used in all experiments to study the effects of BBH on the GI tract. This study measured the abdominal withdrawal reflex (AWR) response to graded colorectal distention (CRD; 20, 40, 60, and 80 mmHg) and observed the fecal areas of stress-induced IBS-D model. Experiments were conducted using organ bath techniques, which were performed in vitro using strips of colonic longitudinal smooth muscle. Inhibitory and excitatory neurotransmitter agents were added to each organ bath to observe contractile responses on the strips and the treatment effect exerted by BBH. The IBS-D rat model was successfully induced by chronic restraint stress, which resulted in an increased defecation frequency and visceral hypersensitivity similar to that of humans. BBH could reduce 4-h fecal areas and AWR response to CRD in IBS-D. The stress-induced IBS-D model showed upregulated colonic mRNA expression levels of 5-hydroxytryptamine-3A receptor and downregulated expression levels of neuronal nitric oxide synthase. Meanwhile, BBH could reverse this outcome. The responses of substances that regulate the contraction induced by related neurotransmission in the longitudinal smooth muscle of IBS-D colon (including the agonist of acetylcholine, carbachol; NOS inhibitor, L-NAME; and P2Y1 receptor antagonist, MRS2500) can be inhibited by BBH. In summary, BBH promotes defecation frequency and visceral hypersensitivity in IBS-D and exerts inhibitory effects on contractile responses in colonic longitudinal smooth muscle. Thus, BBH may represent a new therapeutic approach for treating IBS-D.
Collapse
Affiliation(s)
- Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianran Zhou
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Tang HY, Jiang AJ, Wang XY, Wang H, Guan YY, Li F, Shen GM. Uncovering the pathophysiology of irritable bowel syndrome by exploring the gut-brain axis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1187. [PMID: 34430628 PMCID: PMC8350700 DOI: 10.21037/atm-21-2779] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Objective To improve the pathophysiological understanding of irritable bowel syndrome (IBS) by exploring the gut-brain axis. Background Disorders of gut-brain interaction (DGBIs) are gastrointestinal (GI) disorders in which alterations in bowel functions occur. IBS, which is one of the most studied DGBIs, is linked with abdominal distress or pain without obvious structural or biochemical anomalies. Methods The etiology of IBS has not been clearly described but is known to be multifactorial, involving GI motility changes, post-infectious reactivity, visceral hypersensitivity, gut-brain interactions, microbiota dysbiosis, small intestinal bacterial overgrowth, food sensitivity, carbohydrate malabsorption, and intestinal inflammation. Conclusions One of the main features of IBS is the occurrence of structural and functional disruptions in the gut-brain axis, which alter reflective and perceptual nervous system reactions. Herein, we provide a brief summary of this topic. Furthermore, we discuss animal models, which are important in the study of IBS, especially as it is linked with stressors. These animal models cannot fully represent the human disease but serve as important tools for understanding this complicated disorder. In the future, technologies, such as organ-on-a-chip models and metabolomics, will provide novel information regarding the pathophysiology of IBS, which will play an important role in treatment development. Finally, we take a brief glance at how acupuncture treatments may hold potential for patients with IBS.
Collapse
Affiliation(s)
- He-Yong Tang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Ai-Juan Jiang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xi-Yang Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yuan-Yuan Guan
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Fei Li
- Department of Rehabilitation, Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guo-Ming Shen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
26
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
27
|
Keane JM, Khashan AS, McCarthy FP, Kenny LC, Collins JM, O'Donovan S, Brown J, Cryan JF, Dinan TG, Clarke G, O'Mahony SM. Identifying a biological signature of prenatal maternal stress. JCI Insight 2021; 6:143007. [PMID: 33301421 PMCID: PMC7934857 DOI: 10.1172/jci.insight.143007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Psychological stress affects maternal gastrointestinal (GI) permeability, leading to low-grade inflammation, which can negatively affect fetal development. We investigated a panel of circulating markers as a biological signature of this stress exposure in pregnant women with and without the stress-related GI disorder irritable bowel syndrome (IBS). Markers of GI permeability and inflammation were measured in plasma from healthy and IBS cohorts of women at 15 and 20 weeks’ gestation. Biomarkers were evaluated with respect to their degree of association to levels of stress, anxiety, and depression as indicated by responses from the Perceived Stress Scale, State-Trait Anxiety Inventory, and Edinburgh Postnatal Depression Scale. High levels of stress were associated with elevations of soluble CD14, lipopolysaccharide binding protein (LBP), and tumor necrosis factor–α, while anxiety was associated with elevated concentrations of C-reactive protein (CRP) in otherwise healthy pregnancies. Prenatal depression was associated with higher levels of soluble CD14, LBP, and CRP in the healthy cohort. High levels of prenatal anxiety and depression were also associated with lower concentrations of tryptophan and kynurenine, respectively, in the IBS cohort. These markers may represent a core maternal biological signature of active prenatal stress, which can be used to inform intervention strategies via stress reduction techniques or other lifestyle approaches. Such interventions may need to be tailored to reflect underlying GI conditions, such as IBS.
Collapse
Affiliation(s)
| | - Ali S Khashan
- School of Public Health, University College Cork, Ireland.,The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.,Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
| | - Louise C Kenny
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, United Kingdom
| | - James M Collins
- APC Microbiome Ireland and.,Department of Anatomy and Neuroscience and
| | | | | | - John F Cryan
- APC Microbiome Ireland and.,Department of Anatomy and Neuroscience and
| | - Timothy G Dinan
- APC Microbiome Ireland and.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland and.,The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | |
Collapse
|
28
|
Zhao Y, Siri S, Feng B, Pierce DM. Computational Modeling of Mouse Colorectum Capturing Longitudinal and Through-thickness Biomechanical Heterogeneity. J Mech Behav Biomed Mater 2021; 113:104127. [PMID: 33125950 PMCID: PMC8053306 DOI: 10.1016/j.jmbbm.2020.104127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/03/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Mechanotransduction, the encoding of local mechanical stresses and strains at sensory endings into neural action potentials at the viscera, plays a critical role in evoking visceral pain, e.g., in the distal colon and rectum (colorectum). The wall of the colorectum is structurally heterogeneous, including two major composites: the inner consists of muscular and submucosal layers, and the outer consists of circular muscular, intermuscular, longitudinal muscular, and serosal layers. In fact the colorectum presents biomechanical heterogenity across both the longitudinal and through-thickness directions thus highlighting the differential roles of sensory nerve endings within different regions of the colorectum in visceral mechanotransduction. We determined constitutive models and model parameters for individual layers of the colorectum from three longitudinal locations (colonic, intermediate, and distal) using nonlinear optimization to fit our experimental results from biaxial extension tests on layer-separated colorectal tissues (mouse model, 7×7 mm2, Siri et al., Am. J. Physiol. Gastrointest. Liver Physiol. 316, G473-G481 and 317, G349-G358), and quantified the thicknesses of the layers. In this study we also quantified the residual stretches stemming from separating colorectal specimens into inner and outer composites and we completed new pressure-diameter mechanical testing to provide an additional validation case. We implemented the constitutive equations and created two-layered, 3-D finite element models using FEBio (University of Utah), and incorporated the residual stretches. We validated the modeling framework by comparing FE-predicted results for both biaxial extension testing of bulk specimens of colorectum and pressure-diameter testing of bulk segments against corresponding experimental results independent of those used in our model fitting. We present the first theoretical framework to simulate the biomechanics of distal colorectum, including both longitudinal and through-thickness heterogeneity, based on constitutive modeling of biaxial extension tests of colon tissues from mice. Our constitutive models and modeling framework facilitate analyses of both fundamental questions (e.g., the impact of organ/tissue biomechanics on mechanotransduction of the sensory nerve endings, structure-function relationships, and growth and remodeling in health and disease) and specific applications (e.g., device design, minimally invasive surgery, and biomedical research).
Collapse
Affiliation(s)
- Y Zhao
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - S Siri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
29
|
Saidi K, Nilholm C, Roth B, Ohlsson B. A carbohydrate-restricted diet for patients with irritable bowel syndrome lowers serum C-peptide, insulin, and leptin without any correlation with symptom reduction. Nutr Res 2020; 86:23-36. [PMID: 33450656 DOI: 10.1016/j.nutres.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Alterations in gut endocrine cells and hormone levels have been measured in patients with irritable bowel syndrome (IBS). The hypothesis of the present study was that hormone levels would change after 4 weeks of a starch- and sucrose-reduced diet (SSRD) intervention corresponding to decreased carbohydrate intake and symptoms. Among 105 IBS patients from primary and tertiary healthcare, 80 were randomized to SSRD, while 25 followed their ordinary diet. Food diaries, Rome IV, and IBS-symptom severity score (IBS-SSS) questionnaires were completed, and blood samples were collected at baseline and after the intervention. Serum C-peptide, gastric inhibitory peptide, glucagon, glucagon-like peptide-1, insulin, leptin, luteinizing hormone, polypeptide YY, and glucose were measured, along with the prevalence of autoantibodies against gonadotropin-releasing hormone; its precursor, progonadoliberin-2, and receptor; and tenascin C. Carbohydrate intake was lower in the intervention group than in controls at week 4 (median: 88 [66-128] g vs 182 [89-224] g; P < .001). The change in carbohydrate intake, adjusted for weight, was associated with a decrease in C-peptide (β: 14.43; 95% confidence interval [CI]: 4.12-24.75) and insulin (β: 0.18; 95% CI: 0.04-0.32) levels. Glucose levels remained unchanged. The IBS-SSS scores were lower in the intervention group but not in controls (P < .001), without any association with changes in hormone concentrations. There was no difference in autoantibody prevalence between patients and healthy controls. In conclusion, the hypothesis that reduced carbohydrate intake corresponded to altered hormonal levels in IBS was accepted; however, there was no relationship between hormonal concentrations and symptoms.
Collapse
Affiliation(s)
- Khadija Saidi
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden.
| | - Clara Nilholm
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden.
| | - Bodil Roth
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden.
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden.
| |
Collapse
|
30
|
Orlando A, Tutino V, Notarnicola M, Riezzo G, Linsalata M, Clemente C, Prospero L, Martulli M, D’Attoma B, De Nunzio V, Russo F. Improved Symptom Profiles and Minimal Inflammation in IBS-D Patients Undergoing a Long-Term Low-FODMAP Diet: A Lipidomic Perspective. Nutrients 2020; 12:nu12061652. [PMID: 32498383 PMCID: PMC7353020 DOI: 10.3390/nu12061652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Given the link between the minimal inflammation underlying irritable bowel syndrome (IBS) and dietary treatments, considerable attention has focused on diets low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs). In this context, inflammatory patterns and lipidomic investigations may shed light on the pathophysiological mechanisms whereby a low-FODMAP diet (LFD) improves the IBS diarrhoea (IBS-D) variant. Thus, we investigated whether a long-term LFD induced changes in symptom profiles, anthropometric characteristics, inflammatory markers (C-reactive protein, cyclooxygenase-2, and prostaglandin E2) and erythrocyte-membrane fatty acid (FA) composition in IBS-D patients. Twenty IBS-D patients underwent a 90 day personalised LFD programme, and were regularly evaluated at scheduled visits. At the diet’s end, both IBS symptoms and anthropometric parameters were significantly improved. A significant decrease in prostaglandin E2 also accompanied these reductions. As for FAs, the putative inflammatory indicators, arachidonic acid (AA) levels and the AA/eicosapentaenoic acid ratio were significantly decreased. In conclusion, IBS-D patients following a controlled long-term LFD experienced improved symptom profiles and decreased inflammatory markers linked to FAs. Lipidomic data may be insightful for unravelling the molecular mechanisms associated with IBS-D pathophysiology.
Collapse
Affiliation(s)
- Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (V.T.); (M.N.); (V.D.N.)
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (V.T.); (M.N.); (V.D.N.)
| | - Giuseppe Riezzo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Michele Linsalata
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Caterina Clemente
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Laura Prospero
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Manuela Martulli
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Benedetta D’Attoma
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (V.T.); (M.N.); (V.D.N.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (G.R.); (M.L.); (C.C.); (L.P.); (M.M.); (B.D.)
- Correspondence:
| |
Collapse
|
31
|
Wang T, Yan YF, Yang L, Huang YZ, Duan XH, Su KH, Liu WL. Effects of Zuojin pill on depressive behavior and gastrointestinal function in rats with chronic unpredictable mild stress: Role of the brain-gut axis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112713. [PMID: 32109545 DOI: 10.1016/j.jep.2020.112713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/27/2019] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zoujin pill (ZJP), a medication used to treat gastrointestinal disorders since the 15th Century in China, have been reported to exert anti-depressant effects in various models. STUDY AIM To assess the effects of ZJP on gastrointestinal function and depressive behavior in rats under chronic unpredictable mild stress (CUMS), and to examine the underlying mechanisms related to brain-gut axis. METHODS The rats suffered the stressor once daily for 5 weeks. ZJP (0.6 and 1.2 g/kg) and fluoxetine (15 mg/kg) as positive control were administered to the rats through gastric intubation once daily for 5 consecutive weeks. The anti-depression effects were compared by performing sucrose preference tests and open field tests. Gastrointestinal motility was investigated by determining the gastrointestinal transit rate and by electrogastrogram. The serum levels of the gastrointestinal hormone (GAS, MOT, VIP, SP), inflammatory cytokine (IL-1β, IL-6; , TNFα) and glucagon-like peptide-1 (GLP-1) were assayed by enzyme-linked immunosorbent assay. For monoamine neurotransmitters (NE, 5-HT, DA), the levels were determined by high-performance liquid chromatography and electrochemical detection in conjunction, which was applied on the samples taken from the hypothalamus, hippocampus, and striatum. RESULTS The depression-like symptoms among rats under CUMS were significantly relieved by ZJP administration (0.6 and 1.2 g/kg). Gastrointestinal motility was also improved by restoring gastric electrical rhythm and promoting gastrointestinal propulsion. The ZJP at 0.6 g/kg dosage obviously up-regulated 5-HT and DA levels in hippocampus. The ZJP at 1.2 g/kg dosage could increase 5-HT and DA levels in hypothalamus, striatum, and hippocampus, while down-regulated the NE level in hypothalamus and hippocampus. ZJP also reversed the alterations in serum gastrointestinal hormones. Furthermore, treatment with ZJP significantly reduced levels of IL-1β, IL-6 and TNF-α and increased serum GLP-1 compared with the CUMS group. Fluoxetine also exerted similar anti-depressant effects in the absence of effects on gastrointestinal motility and the levels of serum hormone, inflammatory cytokine and GLP-1. CONCLUSION ZJP imposed anti-depressant and gastrointestinal regulating functions in rats under CUMS, suggesting potential clinical application. .
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yan-Feng Yan
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Lu Yang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Yu-Zhen Huang
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China
| | - Xin-Hui Duan
- Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Kun-Han Su
- Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Wan-Li Liu
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China.
| |
Collapse
|
32
|
The Effects on Immune Function and Digestive Health of Consuming the Skin and Flesh of Zespri® SunGold Kiwifruit (Actinidia Chinensis var. Chinensis ‘Zesy002’) in Healthy and IBS-Constipated Individuals. Nutrients 2020; 12:nu12051453. [PMID: 32443433 PMCID: PMC7284715 DOI: 10.3390/nu12051453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that results in constipation (IBS-C) or diarrhoea with abdominal pain, flatulence, nausea and bloating. Kiwifruit (Actinidia spp.) are nutrient-dense fruit with a number of reported health benefits that include lowering glycaemic response, improving cardiovascular and inflammatory biomarkers, and enhancing gut comfort and laxation. This study investigated the effect of consuming three whole Zespri® SunGold kiwifruit (Actinidia chinensis var. chinensis ‘Zesy002’) with or without skin on cytokine production and immune and gut health in healthy people and those with IBS-C symptoms. This study enrolled thirty-eight participants in a 16 week randomized cross-over study (19 healthy and 19 participants with IBS-C). Participants were randomized to consume either three kiwifruit without eating the skin or three kiwifruit including the skin for 4 weeks each, with a 4 week washout in between each intervention. There was a significant decrease in the pro-inflammatory cytokine, TNF-α, for both the healthy and the IBS-C participants when they consumed whole kiwifruit and skin, and also for the healthy participants when they ate whole kiwifruit without the skin (p < 0.001). The kiwifruit interventions increased bowel frequency and significantly reduced the gastrointestinal symptom rating scale constipation and Birmingham IBS pain scores for both participant groups. We have demonstrated that consuming the skin of SunGold kiwifruit might have beneficial effects on gastrointestinal health that are not produced by consuming the flesh alone.
Collapse
|
33
|
Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm 2020; 2020:9560684. [PMID: 32322167 PMCID: PMC7160717 DOI: 10.1155/2020/9560684] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/23/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
Collapse
|
34
|
Evrensel A, Ünsalver BÖ, Ceylan ME. Immune-Kynurenine Pathways and the Gut Microbiota-Brain Axis in Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:155-167. [PMID: 32002928 DOI: 10.1007/978-981-32-9705-0_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety disorders are a complex set of illnesses in which genetic factors, particularly stress, play a role in the etiopathogenesis. In recent years, inflammation and intestinal microbiota have also been included in this complex network of relationships. The functions associated with tryptophan catabolism and serotonin biosynthesis have long been associated with anxiety disorders. Tryptophan catabolism progresses toward the path of the kynurenine in the presence of stress and inflammation. The catabolism of kynurenine is a pathway in which many enzymes play a role and a large number of catabolites with neuroactive properties occur. The body's serotonin biosynthesis is primarily performed by enterochromaffin cells located in the intestines. A change in the intestinal microbiota composition (dysbiosis) directly affects the serotonin biosynthesis. Stress, unhealthy nutrition, and the use of antibiotics cause dysbiosis. In the light of this new perspective, the role of dysbiosis-induced inflammation and kynurenine pathway catabolites activated sequentially come into prominence in the etiopathogenesis of anxiety disorders.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Umraniye, Istanbul, Turkey.
| | - Barış Önen Ünsalver
- Vocational School of Health Services, Department of Medical Documentation and Secretariat, Uskudar University, Istanbul, Turkey
| | - Mehmet Emin Ceylan
- Departments of Psychology and Philosophy, Uskudar University, Istanbul, Turkey
| |
Collapse
|
35
|
Mahurkar-Joshi S, Chang L. Epigenetic Mechanisms in Irritable Bowel Syndrome. Front Psychiatry 2020; 11:805. [PMID: 32922317 PMCID: PMC7456856 DOI: 10.3389/fpsyt.2020.00805] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a brain-gut axis disorder characterized by abdominal pain and altered bowel habits. IBS is a multifactorial, stress-sensitive disorder with evidence for familial clustering attributed to genetic or shared environmental factors. However, there are weak genetic associations reported with IBS and a lack of evidence to suggest that major genetic factor(s) contribute to IBS pathophysiology. Studies on animal models of stress, including early life stress, suggest a role for environmental factors, specifically, stress associated with dysregulation of corticotropin releasing factor and hypothalamus-pituitary-adrenal (HPA) axis pathways in the pathophysiology of IBS. Recent evidence suggests that epigenetic mechanisms, which constitute molecular changes not driven by a change in gene sequence, can mediate environmental effects on central and peripheral function. Epigenetic alterations including DNA methylation changes, histone modifications, and differential expression of non-coding RNAs (microRNA [miRNA] and long non-coding RNA) have been associated with several diseases. The objective of this review is to elucidate the molecular factors in the pathophysiology of IBS with an emphasis on epigenetic mechanisms. Emerging evidence for epigenetic changes in IBS includes changes in DNA methylation in animal models of IBS and patients with IBS, and various miRNAs that have been associated with IBS and endophenotypes, such as increased visceral sensitivity and intestinal permeability. DNA methylation, in particular, is an emerging field in the realm of complex diseases and a promising mechanism which can provide important insights into IBS pathogenesis and identify potential targets for treatment.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
36
|
Potential Determinants of Gastrointestinal Dysfunction in Autism Spectrum Disorders. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2019. [DOI: 10.1007/s40489-019-00187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Siri S, Maier F, Santos S, Pierce DM, Feng B. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am J Physiol Gastrointest Liver Physiol 2019; 317:G349-G358. [PMID: 31268771 PMCID: PMC6774086 DOI: 10.1152/ajpgi.00127.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum), and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected this tissue into inner and outer composite layers. The inner composite consists of the mucosa and submucosa, whereas the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10-mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second-harmonic generation (SHG). Our results reveal that the inner composite is slightly stiffer in the axial direction, whereas the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30° to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under the load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa, which likely encode tissue-injurious mechanical distension.NEW & NOTEWORTHY Visceral pain from distal colon and rectum (colorectum) is usually elicited from mechanical distension/stretch, rather than from heating, cutting, or pinching, which usually evoke pain from the skin. We conducted layer-separated biomechanical tests on mouse colorectum and identified an unexpected role of submucosa as the load-bearing structure of the colorectum. Outcomes of this study will focus attention on sensory nerve endings in the submucosa that likely encode tissue-injurious distension/stretch to cause visceral pain.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
38
|
Rude KM, Keogh CE, Gareau MG. The role of the gut microbiome in mediating neurotoxic outcomes to PCB exposure. Neurotoxicology 2019; 75:30-40. [PMID: 31454514 DOI: 10.1016/j.neuro.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
A series of complex physiological processes underlie the development of the microbiota, gut, and brain in early life, which together communicate via the microbiota-gut-brain axis to maintain health and homeostasis. Disruption of these processes can lead to dysbiosis of the microbiota, pathophysiology of the gut and behavioral deficits including depression, anxiety and cognitive deficits. Environmental exposures, particularly in early life, can interfere with development and impact these pathways. This review will focus on the role of the microbiome and the gut in neurodevelopment and neurodegeneration as well as the impacts of environmental exposures, particularly to the neurotoxicant polychlorinated biphenyls (PCBs), given that the gut serves as the primary exposure route. There exists extensive research on the importance of the microbiome in the developing brain and connections with autism spectrum disorder (ASD) and increasing links being established between the microbiome and development of Alzheimer's disease (AD) in the elderly. Finally, we will speculate on the mechanisms through which PCBs can induce dysbiosis and dysregulate physiology of the gut and brain.
Collapse
Affiliation(s)
- Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
39
|
Siri S, Maier F, Chen L, Santos S, Pierce DM, Feng B. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G473-G481. [PMID: 30702901 PMCID: PMC6483024 DOI: 10.1152/ajpgi.00324.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain is one of the principal complaints of patients with irritable bowel syndrome, and this pain is reliably evoked by mechanical distension and stretch of distal colon and rectum (colorectum). This study focuses on the biomechanics of the colorectum that could play critical roles in mechanical neural encoding. We harvested the distal 30 mm of the colorectum from mice, divided evenly into three 10-mm-long segments (colonic, intermediate and rectal), and conducted biaxial mechanical stretch tests and opening-angle measurements for each tissue segment. In addition, we determined the collagen fiber orientations and contents across the thickness of the colorectal wall by nonlinear imaging via second harmonic generation (SHG). Our results reveal a progressive increase in tissue compliance and prestress from colonic to rectal segments, which supports prior electrophysiological findings of distinct mechanical neural encodings by afferents in the lumbar splanchnic nerves (LSN) and pelvic nerves (PN) that dominate colonic and rectal innervations, respectively. The colorectum is significantly more viscoelastic in the circumferential direction than in the axial direction. In addition, our SHG results reveal a rich collagen network in the submucosa and orients approximately ±30° to the axial direction, consistent with the biaxial test results presenting almost twice the stiffness in axial direction versus the circumferential direction. Results from current biomechanical study strongly indicate the prominent roles of local tissue biomechanics in determining the differential mechanical neural encoding functions in different regions of the colorectum. NEW & NOTEWORTHY Mechanical distension and stretch-not heat, cutting, or pinching-reliably evoke pain from distal colon and rectum. We report different local mechanics along the longitudinal length of the colorectum, which is consistent with the existing literature on distinct mechanotransduction of afferents innervating proximal and distal regions of the colorectum. This study draws attention to local mechanics as a potential determinant factor for mechanical neural encoding of the colorectum, which is crucial in visceral nociception.
Collapse
Affiliation(s)
- Saeed Siri
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Franz Maier
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Longtu Chen
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Stephany Santos
- 2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - David M. Pierce
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut,2Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Bin Feng
- 1Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
40
|
Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 2019; 20:ijms20061482. [PMID: 30934533 PMCID: PMC6471396 DOI: 10.3390/ijms20061482] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the “gut-brain axis” it is now renamed the “microbiota-gut-brain axis” considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.
Collapse
|
41
|
Koutouratsas T, Kalli T, Karamanolis G, Gazouli M. Contribution of ghrelin to functional gastrointestinal disorders' pathogenesis. World J Gastroenterol 2019; 25:539-551. [PMID: 30774270 PMCID: PMC6371003 DOI: 10.3748/wjg.v25.i5.539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Functional gastrointestinal disorders (FGID) are heterogeneous disorders with a variety of clinical manifestations, primarily defined by signs and symptoms rather than a definite underlying cause. Their pathophysiology remains obscure and, although it is expected to differ according to the specific FGID, disruptions in the brain-gut axis are now thought to be a common denominator in their pathogenesis. The hormone ghrelin is an important component of this axis, exerting a wide repertoire of physiological actions, including regulation of gastrointestinal motility and protection of mucosal tissue. Ghrelin's gene shows genetic polymorphism, while its protein product undergoes complex regulation and metabolism in the human body. Numerous studies have studied ghrelin's relation to the emergence of FGIDs, its potential value as an index of disease severity and as a predictive marker for symptom relief during attempted treatment. Despite the mixed results currently available in scientific literature, the plethora of statistically significant findings shows that disruptions in ghrelin genetics and expression are plausibly related to FGID pathogenesis. The aim of this paper is to review current literature studying these associations, in an effort to uncover certain patterns of alterations in both genetics and expression, which could delineate its true contribution to FGID emergence, either as a causative agent or as a pathogenetic intermediate.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine, University of Athens, Athens 11527, Greece
| | - Theodora Kalli
- Gastroenterology Department, Larnaca General Hospital, Larnaca 6301, Cyprus
| | - Georgios Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, “Aretaieio” University Hospital, School of Medicine, University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine, University of Athens, Athens 11527, Greece
| |
Collapse
|
42
|
Cao W, Wang C, Chin Y, Chen X, Gao Y, Yuan S, Xue C, Wang Y, Tang Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct 2019; 10:277-288. [DOI: 10.1039/c8fo01404c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DHA-PL and EPA-PL may effectively protect mice against intestinal dysfunction under chronic stress exposure.
Collapse
Affiliation(s)
- Wanxiu Cao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Chengcheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yaoxian Chin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Xin Chen
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuan Gao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shihan Yuan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qingjuan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
43
|
Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. Systematic review with meta-analysis: The association between post-traumatic stress disorder and irritable bowel syndrome. J Gastroenterol Hepatol 2019; 34:68-73. [PMID: 30144372 DOI: 10.1111/jgh.14446] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by symptoms of hyperarousal and hypervigilance. Increasing research on the "gut-brain" axis (bidirectional signaling between the gut and the brain) has drawn links between PTSD and irritable bowel syndrome (IBS), an exceedingly common yet incompletely understood gastrointestinal condition. This meta-analysis thus aimed to examine the body of evidence and extent of association of PTSD with IBS. METHODS Using the keywords [early abuse OR childhood abuse OR violence OR trauma OR PTSD] AND [irritable bowel syndrome or IBS], a preliminary search on the PubMed, Medline, Embase, ScienceDirect, PsychINFO, Web of Science, and Google Scholar databases yielded 11,257 papers published in English between January 1, 1988, and May 1, 2018. Of these, only eight studies were included in the final meta-analysis. RESULTS The eight studies (four cross-sectional and four cohort) contained a total of 648,375 subjects. Most studies were from the USA and conducted on army veterans. The funnel plot revealed a roughly symmetrical distribution of studies, and Egger test was not significant for publication bias (P = 0.583). Random-effects meta-analysis found PTSD to be a significant risk factor for IBS (pooled odds ratio 2.80, 95% confidence interval: 2.06 to 3.54, P < 0.001). CONCLUSIONS Overall, PTSD is associated with an increased likelihood of IBS. This is the first meta-analysis to specifically examine the association between PTSD and IBS, and it provides insights into the probable (patho)physiology and management of IBS, supporting a holistic consideration of the psychosocial aspects of IBS and further research into effective multi-modal therapeutics.
Collapse
Affiliation(s)
- Qin Xiang Ng
- National University Hospital, National University Health System, Singapore
- MOH Holdings Pte Ltd, Singapore
| | - Alex Yu Sen Soh
- National University Hospital, National University Health System, Singapore
| | | | | | | | - Wee-Song Yeo
- National University Hospital, National University Health System, Singapore
| |
Collapse
|
44
|
Lee SH, Kim CR, Kim KN. Changes in Fecal Calprotectin After Rifaximin Treatment in Patients With Nonconstipated Irritable Bowel Syndrome. Am J Med Sci 2018; 357:23-28. [PMID: 30611316 DOI: 10.1016/j.amjms.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fecal calprotectin, an indicator of colonic inflammation, is associated with nonconstipated irritable bowel syndrome. Rifaximin is an antibiotic used to treat nonconstipated irritable bowel syndrome. We performed a retrospective review of patient charts to investigate the changes in fecal calprotectin levels and intestinal symptoms following treatment with rifaximin in patients with nonconstipated irritable bowel syndrome with elevated fecal calprotectin. METHODS This study included 198 patients presenting with gastrointestinal complaints consistent with Rome III criteria for irritable bowel syndrome. We treated them with rifaximin for 4-12 weeks, until fecal calprotectin levels were normalized, and divided these into 4-, 8-, and 12-week groups according to the treatment period. Fecal calprotectin levels and gastrointestinal symptoms were assessed following rifaximin therapy. RESULTS A total of 162 subjects achieved normalized fecal calprotectin values. Of these, most patients who used rifaximin for 8 or 12 weeks showed a significant improvement in gastrointestinal symptoms by the fourth week of treatment, and gradually improved symptoms after 4 weeks. Fecal calprotectin levels were reduced with concomitant improvement of clinical symptoms. In addition, 36 patients who had elevated fecal calprotectin even after 12 weeks of rifaximin treatment showed a gradual reduction in gastrointestinal symptoms and fecal calprotectin during the course of treatment for 12 weeks. CONCLUSIONS These findings suggest that fecal calprotectin might be a useful biomarker for measuring the effect of rifaximin therapy in nonconstipated irritable bowel syndrome patients with elevated fecal calprotectin values.
Collapse
Affiliation(s)
- Seok-Hoon Lee
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Cho-Rong Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Kyu-Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
45
|
Bennet SMP, Palsson O, Whitehead WE, Barrow DA, Törnblom H, Öhman L, Simrén M, van Tilburg MAL. Systemic cytokines are elevated in a subset of patients with irritable bowel syndrome but largely unrelated to symptom characteristics. Neurogastroenterol Motil 2018; 30:e13378. [PMID: 29797382 DOI: 10.1111/nmo.13378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Serum levels of pro-inflammatory cytokines tend to be increased in irritable bowel syndrome (IBS) patients, or subgroups thereof. Still, the link between cytokine levels and IBS symptoms is unclear. We aim to determine systemic cytokine levels in IBS patients and healthy subjects (HS), confirm the presence of a subset of patients with an increased immune activity and to establish if cytokines are linked to IBS symptoms and pathophysiological factors. METHODS Serum levels of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF), and IL-10 were measured. All subjects reported IBS symptoms using validated questionnaires and underwent colonic sensorimotor testing. Multivariate supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) and unsupervised principal component analysis (PCA) and hierarchical cluster analysis (HCA) were implemented. KEY RESULTS Irritable bowel syndrome patients (n = 246) had higher serum levels of IL-1β, IL-6, IL-8, TNF, and IL-10 compared to HS (n = 21); however, serum cytokine profiles could not discriminate patients from HS. Moreover, cytokine levels were not correlated with symptoms among patients. Supervised OPLS-DA identified 104 patients (40% of patients) and unsupervised HCA analysis identified 49 patients (20%) with an increased immune activity indicated by elevated levels of serum cytokines compared to HS and the other patients. However, irrespective of how patients with increased immune activity were identified they were symptomatically similar to patients with no indication of increased immune activity. CONCLUSIONS & INFERENCES Serum cytokines are elevated in IBS patients compared to HS. Immune activation characterizes a subset of patients, but modest associations between cytokine profile and symptoms suggest immune activity does not directly influence symptoms in IBS.
Collapse
Affiliation(s)
- S M P Bennet
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - O Palsson
- Center for Functional Gastrointestinal and Motility Disorders, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - W E Whitehead
- Center for Functional Gastrointestinal and Motility Disorders, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - D A Barrow
- Center for Oral and Systemic Diseases, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - H Törnblom
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - L Öhman
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - M Simrén
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - M A L van Tilburg
- Center for Functional Gastrointestinal and Motility Disorders, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- School of Social Work, University of Washington, Seattle, WA, USA
- College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC, USA
| |
Collapse
|
46
|
Ng QX, Soh AYS, Loke W, Lim DY, Yeo WS. The role of inflammation in irritable bowel syndrome (IBS). J Inflamm Res 2018; 11:345-349. [PMID: 30288077 PMCID: PMC6159811 DOI: 10.2147/jir.s174982] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a complex, functional gastrointestinal disorder characterized by chronic abdominal pain or discomfort and altered bowel habits. Despite the global prevalence and disease burden of IBS, its underlying pathophysiology remains unclear. Inflammation may play a pathogenic role in IBS. Studies have highlighted the persistence of mucosal inflammation at the microscopic and molecular level in IBS, with increased recruitment of enteroendocrine cells. Substantial overlaps between IBS and inflammatory bowel disease have also been reported. This review thus aimed to discuss the body of evidence pertaining to the presence of mucosal inflammation in IBS, its putative role in the disease process of IBS, and its clinical relevance. Increased mast cell density and activity in the gut may correlate with symptoms of visceral hypersensitivity. As evidenced by patients who develop postinfectious IBS, infective gastroenteritis could cause systemic inflammation and altered microbiome diversity, which in turn perpetuates a cycle of chronic, low-grade, subclinical inflammation. Apart from mucosal inflammation, neuroinflammation is probably involved in the pathophysiology of IBS via the "gut-brain" axis, resulting in altered neuroendocrine pathways and glucocorticoid receptor genes. This gives rise to an overall proinflammatory phenotype and dysregulated hypothalamic-pituitary-adrenal axis and serotonergic (5-HT) functioning, which could, at least in part, account for the symptoms of IBS. Although a definite and reproducible pattern of immune response has yet to be recognized, further research into anti-inflammatories may be of clinical value.
Collapse
Affiliation(s)
- Qin Xiang Ng
- National University Hospital, National University Health System, Singapore,
- MOH Holdings Pte Ltd, Singapore,
| | - Alex Yu Sen Soh
- National University Hospital, National University Health System, Singapore,
| | | | | | - Wee-Song Yeo
- National University Hospital, National University Health System, Singapore,
| |
Collapse
|
47
|
Almario CV, Noah BD, Jusufagic A, Lew D, Spiegel BMR. Cost Effectiveness of Biomarker Tests for Irritable Bowel Syndrome With Diarrhea: A Framework for Payers. Clin Gastroenterol Hepatol 2018; 16:1434-1441.e21. [PMID: 29596984 PMCID: PMC6098734 DOI: 10.1016/j.cgh.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Diagnosis of diarrhea-predominant irritable bowel syndrome (IBS-D) relies on the Rome IV symptom-based criteria, which are imperfect for separating functional vs organic disease. Biomarker tests for IBS-D might be added to symptom data to allow clinicians to make more accurate and precise diagnoses in a cost-effective manner. We tested the economic consequences of using a range of hypothetical IBS-D biomarkers, and explored at what cost and level of accuracy a biomarker becomes cost effective. We produced a framework for payers to evaluate the return on an investment of implementing IBS-D biomarkers of varying accuracy and cost. METHODS We used decision analysis software to evaluate a hypothetical cohort of patients who met Rome IV criteria for IBS-D. We conducted cost-utility and budget impact analyses of 2 competing approaches: usual care or an IBS biomarker-based diagnostic approach. Patients in the usual care group received empiric IBS treatment; non-responders received additional diagnostic tests for organic disease. In the group evaluated with a biomarker test, those with a positive result received IBS treatment before additional diagnostic analyses, whereas patients with a negative result underwent upfront diagnostic testing. Outcomes were incremental cost per quality-adjusted life year gained (third-party payer perspective) and incremental per-member per-month cost. RESULTS In the base-case analysis, using a willingness-to-pay threshold of $100,000/quality-adjusted life year, we found that biomarkers are not cost effective when the biomarker test costs more than $846, even if the test is 100% accurate in detecting IBS-D. In probabilistic analysis using 1,000 simulations, most trials (75% or more) show that the biomarker-based diagnostic approach is cost effective above the following accuracy thresholds: a $100 biomarker test with 51% accuracy, a $200 test with 57% accuracy, a $300 test with 63% accuracy, a $400 test with 69% accuracy, a $500 test with 76% accuracy, a $600 test with 82% accuracy, a $700 test with 89% accuracy, and a $800 test with 94% accuracy. CONCLUSIONS In decision analysis of a hypothetical cohort of patients who met Rome IV criteria for IBS-D, we identified cost and accuracy thresholds that can guide investigators and payers as they develop, validate, price, and/or reimburse IBS-D biomarker tests for use in everyday clinical practice.
Collapse
Affiliation(s)
- Christopher V Almario
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California; Division of Health Services Research, Cedars-Sinai Medical Center, Los Angeles, California; Cedars-Sinai Center for Outcomes Research and Education (CS-CORE), Los Angeles, California
| | - Benjamin D Noah
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cedars-Sinai Center for Outcomes Research and Education (CS-CORE), Los Angeles, California
| | - Alma Jusufagic
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cedars-Sinai Center for Outcomes Research and Education (CS-CORE), Los Angeles, California; Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, California
| | - Daniel Lew
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brennan M R Spiegel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California; Division of Health Services Research, Cedars-Sinai Medical Center, Los Angeles, California; Cedars-Sinai Center for Outcomes Research and Education (CS-CORE), Los Angeles, California; Department of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, California.
| |
Collapse
|
48
|
MacEachern SJ, Keenan CM, Papakonstantinou E, Sharkey KA, Patel BA. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis. Br J Pharmacol 2018; 175:1535-1547. [PMID: 29447434 DOI: 10.1111/bph.14163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. EXPERIMENTAL APPROACH Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. KEY RESULTS We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. CONCLUSION AND IMPLICATIONS Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release.
Collapse
Affiliation(s)
- Sarah J MacEachern
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton, UK.,Centre for Stress and Age-related Diseases, University of Brighton, Huxley Building, Brighton, UK
| |
Collapse
|
49
|
Felice VD, O'Mahony SM. The microbiome and disorders of the central nervous system. Pharmacol Biochem Behav 2017; 160:1-13. [PMID: 28666895 DOI: 10.1016/j.pbb.2017.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Alterations of the gut microbiota have been associated with stress-related disorders including depression and anxiety and irritable bowel syndrome (IBS). More recently, researchers have started investigating the implication of perturbation of the microbiota composition in neurodevelopmental disorders including autism spectrum disorders and Attention-Deficit Hypersensitivity Disorder (ADHD). In this review we will discuss how the microbiota is established and its functions in maintaining health. We also summarize both pre and post-natal factors that shape the developing neonatal microbiota and how they may impact on health outcomes with relevance to disorders of the central nervous system. Finally, we discuss potential therapeutic approaches based on the manipulation of the gut bacterial composition.
Collapse
Affiliation(s)
- Valeria D Felice
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
50
|
Li ZY, Zhang N, Wen S, Zhang J, Sun XL, Fan XM, Sun YH. Decreased glucagon-like peptide-1 correlates with abdominal pain in patients with constipation-predominant irritable bowel syndrome. Clin Res Hepatol Gastroenterol 2017; 41:459-465. [PMID: 28215540 DOI: 10.1016/j.clinre.2016.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/26/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The glucagon-like peptide-1 (GLP-1) analog, ROSE-010, plays a critical role in alleviating abdominal pain in patients with irritable bowel syndrome (IBS); however, the underling mechanism is unclear. In the present study, we determined the serum GLP-1 level in patients with constipation-predominant IBS (IBS-C). The relationship between GLP-1 and abdominal pain was investigated. In addition, the expression of the GLP-1 receptor in the colon was determined. METHODS Rectosigmoid biopsies were gathered from 38 patients with IBS-C who met the Rome III criteria, and 22 healthy controls. Abdominal pain was quantified by a validated questionnaire. Serum GLP-1 was measured by ELISA and correlated with abdominal pain scores. The presence of the GLP-1 receptor in the colonic mucosa was assessed by immunohistochemistry. RESULTS Serum GLP-1 was substantially decreased in patients with IBS-C. Decreased serum GLP-1 had a negative correlation with the abdominal pain scores. Biopsies from patients with IBS-C revealed a significant down-regulation of the GLP-1 receptor in colonic mucosa compared with control subjects. CONCLUSIONS Decreased serum GLP-1 correlates with abdominal pain in patients with IBS-C. Decreased expression of GLP-1 and GLP-1 receptor may be the basis for alleviation of abdominal pain in patients with IBS-C by ROSE-010.
Collapse
Affiliation(s)
- Zheng-Yang Li
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China
| | - Na Zhang
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China
| | - Shuang Wen
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China
| | - Jing Zhang
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China
| | - Xiu-Li Sun
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China
| | - Xiao-Ming Fan
- Department of Gastroenterology, Jinshan hospital of Fudan University, Shanghai 201508, PR China.
| | - Yong-Hong Sun
- Department of Gastroenterology, Dalian friendship Hospital, Dalian, Liaoning 116001, PR China.
| |
Collapse
|