1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Lim S, Mangala MM, Holliday M, Cserne Szappanos H, Barratt-Ross S, Li S, Thorpe J, Liang W, Ranpura GN, Vandenberg JI, Semsarian C, Hill AP, Hool LC. Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050407. [PMID: 39189070 PMCID: PMC11381919 DOI: 10.1242/dmm.050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.
Collapse
Affiliation(s)
- Seakcheng Lim
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Melissa M. Mangala
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Mira Holliday
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | | | - Samantha Barratt-Ross
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Serena Li
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Jordan Thorpe
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Whitney Liang
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Ginell N. Ranpura
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | | | - Livia C. Hool
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
3
|
Khalilimeybodi A, Saucerman JJ, Rangamani P. Modeling cardiomyocyte signaling and metabolism predicts genotype-to-phenotype mechanisms in hypertrophic cardiomyopathy. Comput Biol Med 2024; 175:108499. [PMID: 38677172 PMCID: PMC11175993 DOI: 10.1016/j.compbiomed.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a significant precursor of heart failure and sudden cardiac death, primarily caused by mutations in sarcomeric and structural proteins. Despite the extensive research on the HCM genotype, the complex and context-specific nature of many signaling and metabolic pathways linking the HCM genotype to phenotype has hindered therapeutic advancements for patients. Here, we have developed a computational model of HCM encompassing cardiomyocyte signaling and metabolic networks and their associated interactions. Utilizing a stochastic logic-based ODE approach, we linked cardiomyocyte signaling to the metabolic network through a gene regulatory network and post-translational modifications. We validated the model against published data on activities of signaling species in the HCM context and transcriptomes of two HCM mouse models (i.e., R403Q-αMyHC and R92W-TnT). Our model predicts that HCM mutation induces changes in metabolic functions such as ATP synthase deficiency and a transition from fatty acids to carbohydrate metabolism. The model indicated major shifts in glutamine-related metabolism and increased apoptosis after HCM-induced ATP synthase deficiency. We predicted that the transcription factors STAT, SRF, GATA4, TP53, and FoxO are the key regulators of cardiomyocyte hypertrophy and apoptosis in HCM in alignment with experiments. Moreover, we identified shared (e.g., activation of PGC1α by AMPK, and FHL1 by titin) and context-specific mechanisms (e.g., regulation of Ca2+ sensitivity by titin in HCM patients) that may control genotype-to-phenotype transition in HCM across different species or mutations. We also predicted potential combination drug targets for HCM (e.g., mavacamten plus ROS inhibitors) preventing or reversing HCM phenotype (i.e., hypertrophic growth, apoptosis, and metabolic remodeling) in cardiomyocytes. This study provides new insights into mechanisms linking genotype to phenotype in familial hypertrophic cardiomyopathy and offers a framework for assessing new treatments and exploring variations in HCM experimental models.
Collapse
Affiliation(s)
- A Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla CA 92093, United States of America.
| |
Collapse
|
4
|
Dababneh S, Hamledari H, Maaref Y, Jayousi F, Hosseini DB, Khan A, Jannati S, Jabbari K, Arslanova A, Butt M, Roston TM, Sanatani S, Tibbits GF. Advances in Hypertrophic Cardiomyopathy Disease Modelling Using hiPSC-Derived Cardiomyocytes. Can J Cardiol 2024; 40:766-776. [PMID: 37952715 DOI: 10.1016/j.cjca.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.
Collapse
Affiliation(s)
- Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dina B Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aasim Khan
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shayan Jannati
- Faculty of Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kosar Jabbari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
5
|
Li J, Fang J, Liu Y, Wei X. Apical hypertrophic cardiomyopathy: pathophysiology, diagnosis and management. Clin Res Cardiol 2024; 113:680-693. [PMID: 37982860 PMCID: PMC11026226 DOI: 10.1007/s00392-023-02328-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
Since the first description of apical hypertrophic cardiomyopathy (ApHCM) in 1976, contrasting information from all over the world has emerged regarding the natural history of the disease. However, the recommended guidelines on hypertrophic cardiomyopathy (HCM) pay a cursory reference to ApHCM, without ApHCM-specific recommendations to guide the diagnosis and management. In addition, cardiologists may not be aware of certain aspects that are specific to this disease subtype, and a robust understanding of specific disease features can facilitate recognition and timely diagnosis. Therefore, the review covers the incidence, pathogenesis, and characteristics of ApHCM and imaging methods. Echocardiography and cardiovascular magnetic resonance imaging (CMR) are the most commonly used imaging methods. Moreover, this review presents the management strategies of this heterogeneous clinical entity. In this review, we introduce a novel transapical beating-heart septal myectomy procedure for ApHCM patients with a promising short-time result.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Jing Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China.
| |
Collapse
|
6
|
Zhang F, Zhou H, Xue J, Zhang Y, Zhou L, Leng J, Fang G, Liu Y, Wang Y, Liu H, Wu Y, Qi L, Duan R, He X, Wang Y, Liu Y, Li L, Yang J, Liang D, Chen YH. Deficiency of Transcription Factor Sp1 Contributes to Hypertrophic Cardiomyopathy. Circ Res 2024; 134:290-306. [PMID: 38197258 DOI: 10.1161/circresaha.123.323272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.
Collapse
Affiliation(s)
- Fulei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Huixing Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Jinfeng Xue
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Liping Zhou
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Junwei Leng
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Guojian Fang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yuanyuan Liu
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yan Wang
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Hongyu Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yahan Wu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Lingbin Qi
- Department of Regenerative Medicine (J.X., L.Q.), Tongji University School of Medicine, Shanghai, China
| | - Ran Duan
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Xiaoyu He
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yan Wang
- Jinzhou Medical University, China (Yuanyuan Liu, Y. Wang, Yan Wang)
| | - Yi Liu
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
| | - Li Li
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Jian Yang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Dandan Liang
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| | - Yi-Han Chen
- State Key Laboratory of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Shanghai Arrhythmias Research Center (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., Yuanyuan Liu, Y. Wang, H.L., Y. Wu, R.D., X.H., Yi Liu, L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Cardiology (F.Z., H.Z., Y.Z., L.Z., J.L., G.F., H.L., Y. Wu, R.D., X.H., L.L., J.Y., D.L., Y.-H.C.), Shanghai East Hospital, Tongji University School of Medicine, China
- Department of Pathology and Pathophysiology (L.L., J.Y., Y.-H.C.), Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, China (L.L., J.Y., D.L., Y.-H.C.)
| |
Collapse
|
7
|
Orgil BO, Purevjav E. Molecular Pathways and Animal Models of Cardiomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:991-1019. [PMID: 38884766 DOI: 10.1007/978-3-031-44087-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiomyopathies are a heterogeneous group of disorders of the heart muscle that ultimately result in congestive heart failure. Rapid progress in genetics, molecular and cellular biology with breakthrough innovative genetic-engineering techniques, such as next-generation sequencing and multiomics platforms, stem cell reprogramming, as well as novel groundbreaking gene-editing systems over the past 25 years has greatly improved the understanding of pathogenic signaling pathways in inherited cardiomyopathies. This chapter will focus on intracellular and intercellular molecular signaling pathways that are activated by a genetic insult in cardiomyocytes to maintain tissue and organ level regulation and resultant cardiac remodeling in certain forms of cardiomyopathies. In addition, animal models of different clinical forms of human cardiomyopathies with their summaries of triggered key molecules and signaling pathways will be described.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, The Heart Institute, Division of Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
Seo K, Yamamoto Y, Kirillova A, Kawana M, Yadav S, Huang Y, Wang Q, Lane KV, Pruitt BL, Perez MV, Bernstein D, Wu JC, Wheeler MT, Parikh VN, Ashley EA. Improved Cardiac Performance and Decreased Arrhythmia in Hypertrophic Cardiomyopathy With Non-β-Blocking R-Enantiomer Carvedilol. Circulation 2023; 148:1691-1704. [PMID: 37850394 DOI: 10.1161/circulationaha.123.065017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. β-Adrenergic receptor antagonists (β-blockers) are the first-line therapy for HCM. However, β-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS We screened 21 β-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS We identified that carvedilol, a β-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a β1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of β-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.
Collapse
Affiliation(s)
- Kinya Seo
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yuta Yamamoto
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Anna Kirillova
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Masataka Kawana
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Sunil Yadav
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yong Huang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Qianru Wang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Kerry V Lane
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
| | - Beth L Pruitt
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
- BioMolecular Science and Engineering (B.L.P.), University of California, Santa Barbara, CA
| | - Marco V Perez
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | | | - Joseph C Wu
- Cardiovascular Research Institute (J.C.W.), Stanford University School of Medicine, CA
| | - Matthew T Wheeler
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Victoria N Parikh
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Euan A Ashley
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
- Genetics (E.A.A.), Stanford University School of Medicine, CA
| |
Collapse
|
9
|
Fujiwara Y, Miki K, Deguchi K, Naka Y, Sasaki M, Sakoda A, Narita M, Imaichi S, Sugo T, Funakoshi S, Nishimoto T, Imahashi K, Yoshida Y. ERRγ agonist under mechanical stretching manifests hypertrophic cardiomyopathy phenotypes of engineered cardiac tissue through maturation. Stem Cell Reports 2023; 18:2108-2122. [PMID: 37802074 PMCID: PMC10679535 DOI: 10.1016/j.stemcr.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023] Open
Abstract
Engineered cardiac tissue (ECT) using human induced pluripotent stem cell-derived cardiomyocytes is a promising tool for modeling heart disease. However, tissue immaturity makes robust disease modeling difficult. Here, we established a method for modeling hypertrophic cardiomyopathy (HCM) malignant (MYH7 R719Q) and nonmalignant (MYBPC3 G115∗) pathogenic sarcomere gene mutations by accelerating ECT maturation using an ERRγ agonist, T112, and mechanical stretching. ECTs treated with T112 under 10% elongation stimulation exhibited more organized and mature characteristics. Whereas matured ECTs with the MYH7 R719Q mutation showed broad HCM phenotypes, including hypertrophy, hypercontraction, diastolic dysfunction, myofibril misalignment, fibrotic change, and glycolytic activation, matured MYBPC3 G115∗ ECTs displayed limited phenotypes, which were primarily observed only under our new maturation protocol (i.e., hypertrophy). Altogether, ERRγ activation combined with mechanical stimulation enhanced ECT maturation, leading to a more accurate manifestation of HCM phenotypes, including non-cardiomyocyte activation, consistent with clinical observations.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Kenji Miki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Center for Organ Engineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Kohei Deguchi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Naka
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Masako Sasaki
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | - Ayaka Sakoda
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Megumi Narita
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan
| | - Sachiko Imaichi
- Pharmaceutical Science, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Shunsuke Funakoshi
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan
| | | | - Kenichi Imahashi
- Takeda-CiRA Joint Program, Fujisawa, Japan; T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cells Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program, Fujisawa, Japan.
| |
Collapse
|
10
|
Rodero C, Baptiste TMG, Barrows RK, Lewalle A, Niederer SA, Strocchi M. Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways. FRONTIERS IN PHYSICS 2023; 11:1306210. [PMID: 38500690 PMCID: PMC7615748 DOI: 10.3389/fphy.2023.1306210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cardiac mechanics models are developed to represent a high level of detail, including refined anatomies, accurate cell mechanics models, and platforms to link microscale physiology to whole-organ function. However, cardiac biomechanics models still have limited clinical translation. In this review, we provide a picture of cardiac mechanics models, focusing on their clinical translation. We review the main experimental and clinical data used in cardiac models, as well as the steps followed in the literature to generate anatomical meshes ready for simulations. We describe the main models in active and passive mechanics and the different lumped parameter models to represent the circulatory system. Lastly, we provide a summary of the state-of-the-art in terms of ventricular, atrial, and four-chamber cardiac biomechanics models. We discuss the steps that may facilitate clinical translation of the biomechanics models we describe. A well-established software to simulate cardiac biomechanics is lacking, with all available platforms involving different levels of documentation, learning curves, accessibility, and cost. Furthermore, there is no regulatory framework that clearly outlines the verification and validation requirements a model has to satisfy in order to be reliably used in applications. Finally, better integration with increasingly rich clinical and/or experimental datasets as well as machine learning techniques to reduce computational costs might increase model reliability at feasible resources. Cardiac biomechanics models provide excellent opportunities to be integrated into clinical workflows, but more refinement and careful validation against clinical data are needed to improve their credibility. In addition, in each context of use, model complexity must be balanced with the associated high computational cost of running these models.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tiffany M. G. Baptiste
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rosie K. Barrows
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alexandre Lewalle
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing Institute, London, United Kingdom
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
12
|
Wang K, Schriver BJ, Aschar-Sobbi R, Yi AY, Feric NT, Graziano MP. Human engineered cardiac tissue model of hypertrophic cardiomyopathy recapitulates key hallmarks of the disease and the effect of chronic mavacamten treatment. Front Bioeng Biotechnol 2023; 11:1227184. [PMID: 37771571 PMCID: PMC10523579 DOI: 10.3389/fbioe.2023.1227184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: The development of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offers an opportunity to study genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM), one of the most common inherited cardiac diseases. However, immaturity of the iPSC-CMs and the lack of a multicellular composition pose concerns over its faithfulness in disease modeling and its utility in developing mechanism-specific treatment. Methods: The Biowire platform was used to generate 3D engineered cardiac tissues (ECTs) using HCM patient-derived iPSC-CMs carrying a β-myosin mutation (MYH7-R403Q) and its isogenic control (WT), withal ECTs contained healthy human cardiac fibroblasts. ECTs were subjected to electro-mechanical maturation for 6 weeks before being used in HCM phenotype studies. Results: Both WT and R403Q ECTs exhibited mature cardiac phenotypes, including a lack of automaticity and a ventricular-like action potential (AP) with a resting membrane potential < -75 mV. Compared to WT, R403Q ECTs demonstrated many HCM-associated pathological changes including increased tissue size and cell volume, shortened sarcomere length and disorganized sarcomere structure. In functional assays, R403Q ECTs showed increased twitch amplitude, slower contractile kinetics, a less pronounced force-frequency relationship, a smaller post-rest potentiation, prolonged AP durations, and slower Ca2+ transient decay time. Finally, we observed downregulation of calcium handling genes and upregulation of NPPB in R403Q vs. WT ECTs. In an HCM phenotype prevention experiment, ECTs were treated for 5-weeks with 250 nM mavacamten or a vehicle control. We found that chronic mavacamten treatment of R403Q ECTs: (i) shortened relaxation time, (ii) reduced APD90 prolongation, (iii) upregulated ADRB2, ATP2A2, RYR2, and CACNA1C, (iv) decreased B-type natriuretic peptide (BNP) mRNA and protein expression levels, and (v) increased sarcomere length and reduced sarcomere disarray. Discussion: Taken together, we demonstrated R403Q ECTs generated in the Biowire platform recapitulated many cardiac hypertrophy phenotypes and that chronic mavacamten treatment prevented much of the pathology. This demonstrates that the Biowire ECTs are well-suited to phenotypic-based drug discovery in a human-relevant disease model.
Collapse
Affiliation(s)
- Kai Wang
- Valo Health, Inc., Department of Discovery Research, New York, NY, United States
| | | | | | | | | | | |
Collapse
|
13
|
Sewanan LR, Shimada YJ. Prospects for remodeling the hypertrophic heart with myosin modulators. Front Cardiovasc Med 2022; 9:1051564. [PMID: 36330009 PMCID: PMC9622926 DOI: 10.3389/fcvm.2022.1051564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 09/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a complex but relatively common genetic disease that usually arises from pathogenic variants that disrupt sarcomere function and lead to variable structural, hypertrophic, and fibrotic remodeling of the heart which result in substantial adverse clinical outcomes including arrhythmias, heart failure, and sudden cardiac death. HCM has had few effective treatments with the potential to ameliorate disease progression until the recent advent of inhibitory myosin modulators like mavacamten. Preclinical investigations and clinical trials utilizing this treatment targeted to this specific pathophysiological mechanism of sarcomere hypercontractility in HCM have confirmed that myosin modulators can alter disease expression and attenuate hypertrophic remodeling. Here, we summarize the state of hypertrophic remodeling and consider the arguments for and against salutary HCM disease modification using targeted myosin modulators. Further, we consider critical unanswered questions for future investigative and therapeutic avenues in HCM disease modification. We are at the precipice of a new era in understanding and treating HCM, with the potential to target agents toward modifying disease expression and natural history of this most common inherited disease of the heart.
Collapse
Affiliation(s)
- Lorenzo R. Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Yuichi J. Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
16
|
Lewalle A, Campbell KS, Campbell SG, Milburn GN, Niederer SA. Functional and structural differences between skinned and intact muscle preparations. J Gen Physiol 2022; 154:e202112990. [PMID: 35045156 PMCID: PMC8929306 DOI: 10.1085/jgp.202112990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.
Collapse
Affiliation(s)
- Alex Lewalle
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Stuart G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Gregory N. Milburn
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Steven A. Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
17
|
James V, Nizamudeen ZA, Lea D, Dottorini T, Holmes TL, Johnson BB, Arkill KP, Denning C, Smith JGW. Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo. Stem Cells Dev 2021; 30:1215-1227. [PMID: 34806414 PMCID: PMC8742282 DOI: 10.1089/scd.2021.0202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness that can lead to devastating conditions such as heart failure and sudden cardiac death. Despite extensive study, the mechanisms mediating many of the associated clinical manifestations remain unknown and human models are required. To address this, human-induced pluripotent stem cell (hiPSC) lines were generated from patients with a HCM-associated mutation (c.ACTC1G301A) and isogenic controls created by correcting the mutation using CRISPR/Cas9 gene editing technology. Cardiomyocytes (hiPSC-CMs) were differentiated from these hiPSCs and analyzed at baseline, and at increased contractile workload (2 Hz electrical stimulation). Released extracellular vesicles (EVs) were isolated and characterized after a 24-h culture period and transcriptomic analysis performed on both hiPSC-CMs and released EVs. Transcriptomic analysis of cellular mRNA showed the HCM mutation caused differential splicing within known HCM pathways, and disrupted metabolic pathways. Analysis at increasing contraction frequency showed further disruption of metabolic gene expression, with an additive effect in the HCM background. Intriguingly, we observed differences in snoRNA cargo within HCM released EVs that specifically altered when HCM hiPSC-CMs were subjected to increased workload. These snoRNAs were predicted to have roles in post-translational modifications and alternative splicing, processes differentially regulated in HCM. As such, the snoRNAs identified in this study may unveil mechanistic insight into unexplained HCM phenotypes and offer potential future use as HCM biomarkers or as targets in future RNA-targeting therapies.
Collapse
Affiliation(s)
- Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zubair A Nizamudeen
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Daniel Lea
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Terri L Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Benjamin B Johnson
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Kenton P Arkill
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
18
|
Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021; 10:cells10113032. [PMID: 34831254 PMCID: PMC8622662 DOI: 10.3390/cells10113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.
Collapse
Affiliation(s)
- Joel Jihwan Hwang
- College of Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jinhyeok Choi
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoojun Nam
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Ji Hyeon Ju
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
19
|
Zhao Y, Ling S, Li J, Zhong G, Du R, Li Y, Wang Y, Liu C, Jin X, Liu W, Liu T, Li Y, Zhao D, Sun W, Liu Z, Liu Z, Pan J, Yuan X, Gao X, Xing W, Chang YZ, Li Y. 3' untranslated region of Ckip-1 inhibits cardiac hypertrophy independently of its cognate protein. Eur Heart J 2021; 42:3786-3799. [PMID: 34347073 DOI: 10.1093/eurheartj/ehab503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yinlong Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, No.20 Road East 2nd Ring South, Yuhua District, Shijiazhuang 050200, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Wei Liu
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Tong Liu
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Zifan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
- Department of Cardiovascular Medicine, Chinese PLA General Hospital & Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Junjie Pan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
- Department of Cardiology, Medical College of Soochow University, No.1 Shizi Road, Gusu District, Suzhou 215006, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, No.20 Road East 2nd Ring South, Yuhua District, Shijiazhuang 050200, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No.26 Beiqing Road, Haidian District, Beijing 100094, China
| |
Collapse
|
20
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
21
|
Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, Jacoby DL, Moore JR, Lehman W, Qyang Y, Campbell SG. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. J Gen Physiol 2021; 153:212516. [PMID: 34319370 PMCID: PMC8321830 DOI: 10.1085/jgp.202012640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jinkyu Park
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Alice W Racca
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - Nikolaos Papoutsidakis
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Daniel L Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Yibing Qyang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.,Department of Pathology, Yale University, New Haven, CT
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports 2021; 15:983-998. [PMID: 33053362 PMCID: PMC7561618 DOI: 10.1016/j.stemcr.2020.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.
Collapse
|
23
|
Wang L, Lu F, Xu J. Identification of Potential miRNA-mRNA Regulatory Network Contributing to Hypertrophic Cardiomyopathy (HCM). Front Cardiovasc Med 2021; 8:660372. [PMID: 34136543 PMCID: PMC8200816 DOI: 10.3389/fcvm.2021.660372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is a myocardial disease with unidentified pathogenesis. Increasing evidence indicated the potential role of microRNA (miRNA)-mRNA regulatory network in disease development. This study aimed to explore the miRNA-mRNA axis in HCM. Methods: The miRNA and mRNA expression profiles obtained from the Gene Expression Omnibus (GEO) database were used to identify differentially expressed miRNAs (DEMs) and genes (DEGs) between HCM and normal samples. Target genes of DEMs were determined by miRTarBase. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to identify biological functions of the DEGs and DEMs. miRNA-mRNA regulatory network was constructed to identify the hub genes and miRNAs. Logistic regression model for HCM prediction was established basing on the network. Results: A total of 224 upregulated and 366 downregulated DEGs and 10 upregulated and 14 downregulated DEMs were determined. We identified 384 DEM-targeted genes, and 20 of them were overlapped with the DEGs. The enriched functions include extracellular structure organization, organ growth, and phagosome and melanoma pathways. The four miRNAs and three mRNAs, including hsa-miR-373, hsa-miR-371-3p, hsa-miR-34b, hsa-miR-452, ARHGDIA, SEC61A1, and MYC, were identified through miRNA-mRNA regulatory network to construct the logistic regression model. The area under curve (AUC) values over 0.9 suggested the good performance of the model. Conclusion: The potential miRNA-mRNA regulatory network and established logistic regression model in our study may provide promising diagnostic methods for HCM.
Collapse
Affiliation(s)
- Lin Wang
- Cardiology Department, Tianjin Chest Hospital, Tianjin, China
| | | | | |
Collapse
|
24
|
Sewanan LR, Jacoby DL. Novel Myosin-Based Therapies in Hypertrophic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00921-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Liu L, Shenoy SP, Jahng JWS, Liu Y, Knowles JW, Zhuge Y, Wu JC. Generation of two heterozygous MYBPC3 mutation-carrying human iPSC lines, SCVIi001-A and SCVIi002-A, for modeling hypertrophic cardiomyopathy. Stem Cell Res 2021; 53:102279. [PMID: 33743363 PMCID: PMC9393020 DOI: 10.1016/j.scr.2021.102279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 11/02/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited heart disease that can cause sudden cardiac death and heart failure. HCM often arises from mutations in sarcomeric genes, among which the MYBPC3 is the most frequently mutated. Here we generated two human induced pluripotent stem cell (iPSC) lines from a HCM patient who has a familial history of HCM and his daughter who carries the pathogenic non-coding mutation. All lines show the typical morphology of pluripotent cells, a high expression of pluripotency markers, normal karyotype, and in vitro capacity to differentiate into all three germ layers. These lines provide a valuable resource for studying the molecular basis of HCM and drug screening for HCM.
Collapse
Affiliation(s)
- Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Sushma P Shenoy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Yu Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Joshua W Knowles
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Division of Cardiovascular Medicine, Depart of Medicine, Stanford University School of Medicine, CA, USA
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Division of Cardiovascular Medicine, Depart of Medicine, Stanford University School of Medicine, CA, USA; Department of Radiology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
26
|
Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med 2021; 7:604581. [PMID: 33585579 PMCID: PMC7874022 DOI: 10.3389/fcvm.2020.604581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial medicine is an exciting and rapidly evolving field. While the mitochondrial genome is small and differs from the nuclear genome in that it is circular and free of histones, it has been implicated in neurodegenerative diseases, type 2 diabetes, aging and cardiovascular disorders. Currently, there is a lack of efficient treatments for mitochondrial diseases. This has promoted the need for developing an appropriate platform to investigate and target the mitochondrial genome. However, developing these therapeutics requires a model system that enables rapid and effective studying of potential candidate therapeutics. In the past decade, induced pluripotent stem cells (iPSCs) have become a promising technology for applications in basic science and clinical trials, and have the potential to be transformative for mitochondrial drug development. Engineered iPSC-derived cardiomyocytes (iPSC-CM) offer a unique tool to model mitochondrial disorders. Additionally, these cellular models enable the discovery and testing of novel therapeutics and their impact on pathogenic mtDNA variants and dysfunctional mitochondria. Herein, we review recent advances in iPSC-CM models focused on mitochondrial dysfunction often causing cardiovascular diseases. The importance of mitochondrial disease systems biology coupled with genetically encoded NAD+/NADH sensors is addressed toward developing an in vitro translational approach to establish effective therapies.
Collapse
Affiliation(s)
- Parisa K Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Li X, Fu W, Guo G, Liu M, Du W, Zhao J, Liu Y, Wang L, Dong J, Zhao X. A heterozygous MYH7 (c. 2156G > A) mutant human induced pluripotent stem cell line (ZZUNEUi020-A) generated from a patient with hypertrophic cardiomyopathy. Stem Cell Res 2021; 51:102158. [PMID: 33453578 DOI: 10.1016/j.scr.2021.102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heterogeneous myocardial disease often caused by sarcomeric gene mutations. MYH7 is one of the most common genes associated with HCM. In this study, we generated a human induced pluripotent stem cell (iPSC) line ZZUNEUi020-A from peripheral blood mononuclear cells of a female HCM patient with the p. R719Q (c. 2156G > A) mutation in MYH7. This cell line expressed pluripotency markers, showed normal female karyotype and could differentiate into all three germ layers in vitro.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Wanrong Fu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Guangli Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengduan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Wenting Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jing Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Lu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China.
| |
Collapse
|
28
|
Bodbin SE, Denning C, Mosqueira D. Transfection of hPSC-Cardiomyocytes Using Viafect™ Transfection Reagent. Methods Protoc 2020; 3:E57. [PMID: 32784848 PMCID: PMC7564709 DOI: 10.3390/mps3030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Twenty years since their first derivation, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider realisation of the potential this model system has to offer. We endeavoured to produce a protocol for improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection, (iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy. This protocol greatly adds value to the field by overcoming limited transfection efficiencies of hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.
Collapse
Affiliation(s)
- Sara E. Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
29
|
Kargaran PK, Evans JM, Bodbin SE, Smith JGW, Nelson TJ, Denning C, Mosqueira D. Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy. J Clin Med 2020; 9:E2349. [PMID: 32718021 PMCID: PMC7463557 DOI: 10.3390/jcm9082349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options.
Collapse
Affiliation(s)
- Parisa K. Kargaran
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jared M. Evans
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara E. Bodbin
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - James G. W. Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Timothy J. Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA;
| | - Chris Denning
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Diogo Mosqueira
- Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
30
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Song B, Yao B, Dang H, Dong R. Soluble ST2, Galectin-3 and clinical prognosis of patients with hypertrophic cardiomyopathy undergoing ventricular septal myectomy: a correlation analysis. Cardiovasc Diagn Ther 2020; 10:145-152. [PMID: 32420094 DOI: 10.21037/cdt.2020.01.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is the most common chromosomal abnormal heart disease. The pathophysiological mechanism of HCM is complex. Several studies have suggested that the level of Soluble ST2 (sST2) may be a biomarker of chronic systolic heart failure, however, the role of sST2 in HCM remains unclear. So we performed this study to analyze the role of Soluble ST2 (sST2), Galectin-3 (Gal-3) and its correlations with clinical prognosis of patients with hypertrophic cardiomyopathy (HCM) undergoing ventricular septal myectomy. Methods HCM patients who underwent modified Morrow surgery in our hospital during June 2016-June 2018 were included. We divided the patients into different groups stratified by sST2 and Gal-3 level. Besides, we included volunteers without heart disease for medical examination as normal controls. Biochemical analyses were conducted to identify the biomarkers difference. The predictive value of sST2 and Gal-3 on all-cause mortality was evaluated with Cox regression analysis. Results A total of 125 HCM patients were included in this present study. The sST2 and Gal-3 levels in HCM patients were significantly higher than that in control group (all P<0.001); there were significant differences in the incidence of all-cause mortality for HCM patients stratified by the sST2 and Gal-3 level; Cox univariate regression survival analysis showed that the hypertension (HR =1.19, 95% CI: 1.01-1.38), maximum wall thickness (HR =1.48, 95% CI: 1.04-1.98), Log sST2 (HR =1.02, 95% CI: 1.01-1.05), Log Gal-3 (HR =1.17, 95% CI: 1.09-1.32) were the predictors for all-cause mortality in patients with HCM, and Cox multivariate risk regression showed that maximum wall thickness was the independent predictors of all-cause mortality in patients with HCM (HR =1.63, 95% CI: 1.35-1.97). Conclusions Even through sST2 and Gal-3 were not associated with clinical prognosis of patients with HCM undergoing ventricular septal myectomy, it may be involved in the progress of HCM, more studies are warranted to identify the potential mechanism and reverence value.
Collapse
Affiliation(s)
- Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo Yao
- Cardiology Section 2, Zibo City Linzi District People's Hospital, Zibo 255400, China
| | - Haiming Dang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
32
|
Tafelmeier M, Baessler A, Wagner S, Unsoeld B, Preveden A, Barlocco F, Tomberli A, Popovic D, Brennan P, MacGowan GA, Ristic A, Velicki L, Olivotto I, Jakovljevic DG, Maier LS. Design of the SILICOFCM study: Effect of sacubitril/valsartan vs lifestyle intervention on functional capacity in patients with hypertrophic cardiomyopathy. Clin Cardiol 2020; 43:430-440. [PMID: 32125709 PMCID: PMC7244301 DOI: 10.1002/clc.23346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease with a broad spectrum of disease severity. HCM ranges from a benign course to a progressive disorder characterized by angina, heart failure, malignant arrhythmia, syncope, or sudden cardiac death. So far, no medical treatment has reliably shown to halt or reverse progression of HCM or to alleviate its symptoms. While the angiotensin receptor neprilysin inhibitor sacubitril/valsartan has shown to reduce mortality and hospitalization in heart failure with reduced ejection fraction, data on its effect on HCM are sparse. HYPOTHESIS A 4-month pharmacological (sacubitril/valsartan) or lifestyle intervention will significantly improve exercise tolerance (ie, peak oxygen consumption) in patients with nonobstructive HCM compared to the optimal standard therapy (control group). METHODS SILICOFCM is a prospective, multicenter, open-label, randomized, controlled, three-arm clinical trial (NCT03832660) that will recruit 240 adult patients with a confirmed diagnosis of nonobstructive HCM. Eligible patients are randomized to sacubitril/valsartan, lifestyle intervention (physical activity and dietary supplementation with inorganic nitrate), or optimal standard therapy alone (control group). The primary endpoint is the change in functional capacity (ie, peak oxygen consumption). Secondary endpoints include: (a) Change in cardiac structure and function as assessed by transthoracic echocardiography and cardiac magnetic resonance (MRI imaging), (b) change in biomarkers (ie, CK, CKMB, and NT-proBNP), (c) physical activity, and (d) quality of life. RESULTS Until December 2019, a total of 41 patients were recruited into the ongoing SILICOFCM study and were allocated to the study groups and the control group. There was no significant difference in key baseline characteristics between the three groups. CONCLUSION The SILICOFCM study will provide novel evidence about the effect of sacubitril/valsartan or lifestyle intervention on functional capacity, clinical phenotype, injury and stretch activation markers, physical activity, and quality of life in patients with nonobstructive HCM.
Collapse
Affiliation(s)
- Maria Tafelmeier
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Andrea Baessler
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Stefan Wagner
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Bernhard Unsoeld
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| | - Andrej Preveden
- Medical Faculty, University of Novi Sad, Novi SadSerbia and Institute of cardiovascular diseases of VojvodinaSremska KamenicaSerbia
| | - Fausto Barlocco
- Careggi University HospitalUniversity of FlorenceFlorenceItaly
| | | | - Dejana Popovic
- Cardiology Department, Clinical Centre of Serbia, Faculties of Medicine and PharmacyUniversity of BelgradeBelgradeSerbia
| | - Paul Brennan
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Guy A. MacGowan
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Arsen Ristic
- Cardiology Department, Clinical Centre of Serbia, Faculties of Medicine and PharmacyUniversity of BelgradeBelgradeSerbia
| | - Lazar Velicki
- Medical Faculty, University of Novi Sad, Novi SadSerbia and Institute of cardiovascular diseases of VojvodinaSremska KamenicaSerbia
| | - Iacopo Olivotto
- Careggi University HospitalUniversity of FlorenceFlorenceItaly
| | - Djordje G. Jakovljevic
- Cardiovascular Research, Clinical and Translational Research InstituteNewcastle University and Newcastle upon Tyne Hospitals NHF Foundation TrustNewcastle upon TyneUK
| | - Lars S. Maier
- Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care)University Medical Centre RegensburgRegensburgGermany
| |
Collapse
|
33
|
Abstract
The finding of "glycogen synthase kinase-3" (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3β inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3β inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3β in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.
Collapse
|
34
|
Spoladore R, Fragasso G, Pannone L, Slavich M, Margonato A. Pharmacotherapy for the treatment of obstructive hypertrophic cardiomyopathy. Expert Opin Pharmacother 2020; 21:233-242. [PMID: 31893930 DOI: 10.1080/14656566.2019.1702023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is one of the most common genetic heart diseases and represents a leading cause of sudden cardiac death as well as a prevalent cause of heart failure and stroke. HCM is characterized by a very complex pathophysiology, consisting of heterogeneous clinical manifestations and natural history. Left ventricular outflow tract (LVOT) obstruction has been considered the most knowable feature of HCM since the initial clinical descriptions of the disease.Areas covered: In this review, the authors discuss the most recent reports on the pharmacological treatment of obstructive HCM, mainly based on three different levels of intervention: control of symptoms, cardiac metabolism modulation and disease-modifying approaches, including genetic preventive therapies.Expert opinion: There are presently limited data supporting pharmacological interventions for this complex disease. However, an improved understanding of HCM pathophysiology will allow the development of novel treatment options. Two important key messages are to further study drugs with negative but limited previous results and to design new and larger trials for those molecules that have already produced positive results in HCM, especially for pressure gradients and symptoms control.
Collapse
Affiliation(s)
- R Spoladore
- Head - Referral ambulatory for Hypertrophy Cardiomyopathy, IRCCS San Raffaele University Hospital, Milan, Italy.,Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - G Fragasso
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Head - Heart Failure Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - L Pannone
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - M Slavich
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - A Margonato
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
35
|
High-Throughput Phenotyping Toolkit for Characterizing Cellular Models of Hypertrophic Cardiomyopathy In Vitro. Methods Protoc 2019; 2:mps2040083. [PMID: 31717790 PMCID: PMC6961126 DOI: 10.3390/mps2040083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease characterised by multifarious hallmarks, a heterogeneous set of clinical manifestations, and several molecular mechanisms. Various disease models have been developed to study this condition, but they often show contradictory results, due to technical constraints and/or model limitations. Therefore, new tools are needed to better investigate pathological features in an unbiased and technically refined approach, towards improving understanding of disease progression. Herein, we describe three simple protocols to phenotype cellular models of HCM in vitro, in a high-throughput manner where technical artefacts are minimized. These are aimed at investigating: (1) Hypertrophy, by measuring cell volume by flow cytometry; (2) HCM molecular features, through the analysis of a hypertrophic marker, multinucleation, and sarcomeric disarray by high-content imaging; and (3) mitochondrial respiration and content via the Seahorse™ platform. Collectively, these protocols comprise straightforward tools to evaluate molecular and functional parameters of HCM phenotypes in cardiomyocytes in vitro. These facilitate greater understanding of HCM and high-throughput drug screening approaches and are accessible to all researchers of cardiac disease modelling. Whilst HCM is used as an exemplar, the approaches described are applicable to other cellular models where the investigation of identical biological changes is paramount.
Collapse
|