1
|
Rahiyab M, Khan I, Ali SS, Hussain Z, Ali S, Iqbal A. Computational profiling of molecular biomarkers in congenital disorders of glycosylation Type-I and binding analysis of Ginkgolide A with P4HB. Comput Biol Med 2025; 190:110042. [PMID: 40117797 DOI: 10.1016/j.compbiomed.2025.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
AIMS Congenital disorders of glycosylation (CDG) comprise a diverse group of genetic diseases characterized by aberrant glycosylation that leads to severe multi-systematic effects. Despite advancements in understanding the underlying molecular mechanisms, curative options remain limited. This study employed computational methods to identify key molecular biomarkers for CDG-I and examine the pharmacological effects of Ginkgolide A (GA), a potent bioactive natural compound. METHODS We analyzed the GSE8440 microarray dataset to discover differentially expressed genes (DEGs) in patients compared to healthy individuals with CDG-I utilizing GEO2R. Functional enrichments, including gene ontologies (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses, were conducted to contextualize the biological mechanisms and molecular signatures involved in CDG-I (Congenital Disorders of Glycosylation Type-1). The protein-protein interaction (PPI) network for DEGs was constructed using the STRING database, and the central hub genes within the PPI network were identified using Cytohubba. Furthermore, the 3D structure of the top hub gene (P4HB) was predicted by using the Robetta server. The CASTp was employed to evaluate the active sites. Molecular docking of P4HB with GA was carried out to investigate the binding affinity using the PyRx tool, and the stability of the docked complex was validated through MD simulation. The pharmacokinetics, toxicity, and bioactivity score of GA were comprehensively assessed using SwissADME, ProTox-II, and Molinspiration. RESULTS Our findings indicated 247 significant DEGs, including 146 up-regulated and 101 down-regulated genes. GO and KEGG pathway analyses confirmed that the up-regulated and hub genes were strongly associated with protein folding, glycoprotein processing in the endoplasmic reticulum, and endoplasmic reticulum stress (ER) pathways. P4HB emerged as the top hub gene in CDG-I, playing a significant role in protein folding and ER stress. The 3D structure of P4HB was refined and validated, achieving 95.8 % residues in the most favored region of the Ramachandran plot, with an overall quality of 92.97 %. The CASTp server predicted the largest active site with an area of 2243.660 Å2 and a volume of 3236.584 Å3. Molecular docking revealed that GA has a strong binding affinity with P4HB (-8.9 kcal/mol). The ADME (Absorption, Distribution, Metabolism, Excretion) and toxicity assessments confirmed promising drug-like characteristics, excellent bioavailability, and minimal toxicity risk. CONCLUSION This study emphasizes GA as a potential treatment possibility option to alleviated CDG-I pathology by targeting protein misfolding and ER stress, which are fundamental aspects of the disease. Additionally, our findings indicate that P4HB is a critical molecular target in CDG-I. These results pave the way for future preclinical and clinical investigations aimed at advancing the targeted and tailored treatments for CDG.
Collapse
Affiliation(s)
- Muhammad Rahiyab
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Ishaq Khan
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Arshad Iqbal
- Center for Biotechnology and Microbiology, University of Swat, KPK, Pakistan.
| |
Collapse
|
2
|
Zhong ML, Lai K. AAV-based gene replacement therapy prevents and halts manifestation of abnormal neurological phenotypes in a novel mouse model of PMM2-CDG. Gene Ther 2025:10.1038/s41434-025-00525-w. [PMID: 40097611 DOI: 10.1038/s41434-025-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Inherited Phosphomannomutase 2 (PMM2) deficiency, also known as PMM2-CDG, is the most prevalent N-linked congenital disorder of glycosylation (CDG), occurring in approximately 1 in 20,000 individuals in certain populations. Patients exhibit a spectrum of symptoms, with neurological involvement being a prominent feature, often manifesting as the initial clinical sign, and can range from isolated neurological deficits to severe multi-organ dysfunction. Given the absence of curative treatments and a high mortality rate before the age of two, alongside considerable lifelong morbidity, there is an urgent need for innovative therapeutic approaches. To address this unmet need, we developed a tamoxifen-inducible Pmm2 knockout (KO) mouse model with widespread tissue deficiency of Pmm2 expression. Characterization of the mouse model to-date revealed distinct neurological phenotypes relevant to PMM2-CDG, as assessed by the Composite Phenotype Scoring System and Open Field Test. Notably, PMM2 augmentation through AAV9-PMM2 gene replacement therapy prevented and halted the disease-relevant neurological phenotypes induced by Pmm2 KO in the animals. These findings underscored the promise of AAV9-PMM2 gene replacement in managing PMM2-CDG.
Collapse
Affiliation(s)
- Mian-Ling Zhong
- Division of Medical Genetics, Department of Pediatrics, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Alharbi H, Horikoshi S, Jenkins SM, Scaglia F, Lam C, Morava E, Larson A, Edmondson AC. Causes of mortality in the congenital disorders of glycosylation. Mol Genet Metab 2025; 144:109052. [PMID: 39923392 PMCID: PMC11892340 DOI: 10.1016/j.ymgme.2025.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Congenital Disorders of Glycosylation (CDG) are a group of some 200 genetic disorders with PMM2-CDG being the most common disease. These disorders individually remain rare with poorly understood natural history (NH) and causes of mortality. We established a NH study for CDG and collected both prospective and retrospective data on CDG outcomes. In the current data set analysis on deceased patients, we describe the clinical phenotype and causes of death for thirty-seven individuals with various genetic causes of CDG. About a third of this cohort were affected with PMM2-CDG. All of the patients presented with multisystem features with involvement of the neurological system. The majority of patients involved in this study died during the first three years of life, and only four patients lived beyond ten years. The cause of death was unavailable for two patients, and about a third died secondary to cardiopulmonary failure. Progression of neurological involvement, sepsis and respiratory infection were also among the reported causes. Pericardial effusion was the primary cause of death for three infants affected with PMM2-CDG. This study emphasizes the importance of diagnosis and supportive care following the published monitoring and management guidelines for affected patients with CDG to optimize their health and development in the early stages of the disease.
Collapse
Affiliation(s)
- Hana Alharbi
- Department of Pediatrics, Faculty of Medicine, University of Tabuk, Saudi Arabia; Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Seishu Horikoshi
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR, China
| | - Christina Lam
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Morava
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin Larson
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA.
| |
Collapse
|
4
|
Weixel T, Wolfe L, Macnamara EF. Genetic counseling for congenital disorders of glycosylation (CDG). J Genet Couns 2024; 33:1358-1364. [PMID: 38240170 PMCID: PMC11632557 DOI: 10.1002/jgc4.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/12/2024]
Abstract
Congenital disorders of glycosylation (CDGs) are a genetically and clinically diverse group of disorders that arise as a result of defects within glycosylation synthetic pathways. CDGs are caused by pathogenic variants in many different genes in the glycosylation network. With over 160 different CDG types currently identified and a vast range of severity and presentations existing within and across those types, the road to a CDG diagnosis is often lengthy and complicated. The perils of this arduous CDG diagnostic odyssey are fraught with various genetic counseling uncertainties: (1) confusion about family planning, (2) queries about inheritance, (3) managing treatment, and (4) dealing with the uncertainty of rare diseases. Thus, the role of the genetic counselor is paramount in helping affected individuals and their families navigate these genetic counseling complexities. Case examples of common genetic counseling difficulties for CDGs are outlined, providing clinical applications of what CDG presentations, diagnostic processes, and common difficulties look like. Information on the nomenclature, incidence, prevalence, diagnostic testing, treatment, and management of CDGs are also discussed to provide a comprehensive summary of CDGs for genetic counselors, and subsequently to affected individuals and their families.
Collapse
Affiliation(s)
- Tara Weixel
- Department of Psychological SciencesKent State UniversityKentOhioUSA
| | - Lynne Wolfe
- Undiagnosed Diseases Program, National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ellen F. Macnamara
- Undiagnosed Diseases Program, National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
ZHENG Y, CAO C, GUO Z, YAN J, LIANG X. [Applications of chromatography in glycomics]. Se Pu 2024; 42:646-657. [PMID: 38966973 PMCID: PMC11224943 DOI: 10.3724/sp.j.1123.2023.12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/06/2024] Open
Abstract
Glycomics, an emerging "omics" technology that was developed after genomics and proteomics, is a discipline that studies the composition, structure, and functions of glycomes in cells, tissues, and organisms. Glycomics plays key roles in understanding the laws of major life activities, disease prevention and treatment, and drug quality control and development. At present, the structural analysis of glycans relies mainly on mass spectrometry. However, glycans have low abundance in biological samples. In addition, factors such as variable monosaccharide compositions, differences in glycosidic bond positions and modes, diverse branching structures, contribute to the complexity of the compositions and structures of glycans, posing great challenges to glycomics research. Liquid chromatography can effectively remove matrix interferences and enhance glycan separation to improve the mass spectrometric response of glycans. Thus, liquid chromatography and liquid chromatography coupled with mass spectrometry are important technical tools that have been actively applied to solve these problems; these technologies play indispensable roles in glycomics research. Different studies have highlighted similarities and differences in the applications of various types of liquid chromatography, which also reflects the versatility and flexibility of this technology. In this review, we first discuss the enrichment methods for glycans and their applications in glycomics research from the perspective of chromatographic separation mechanisms. We then compare the advantages and disadvantages of these methods. Some glycan-enrichment modes include affinity, hydrophilic interactions, size exclusion, and porous graphitized carbon adsorption. A number of newly developed materials exhibit excellent glycan-enrichment ability. We enumerate the separation mechanisms of reversed-phase high performance liquid chromatography (RP-HPLC), high performance anion-exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC), and porous graphitic carbon (PGC) chromatography in the separation and analysis of glycans, and describe the applications of these methods in the separation of glycans, glycoconjugates, and glyco-derivatives. Among these methods, HILIC and PGC chromatography are the most widely used, whereas HPAEC and RP-HPLC are less commonly used. The HILIC and RP-HPLC modes are often used for the separation of derived glycans. The ionization efficiency and detectability of glycans are significantly improved after derivatization. However, the derivatization process is relatively cumbersome, and byproducts inevitably affect the accuracy and completeness of the detection results. HPAEC and PGC chromatography exhibit good separation effects on nonderivative glycans, but issues related to the detection integrity of low-abundance glycans owing to their poor detection effect continue to persist. Therefore, the appropriate analytical method for a specific sample or target analyte or mutual verification must be selected. Finally, we highlight the research progress in various chromatographic methods coupled with mass spectrometry for glycomics analysis. Significant progress has been made in glycomics research in recent years owing to advancements in the development of chromatographic separation techniques. However, several significant challenges remain. As the development of novel separation materials and methods continues, chromatographic techniques may be expected to play a critical role in future glycomics research.
Collapse
|
7
|
Starosta RT, Lee AJ, Toolan ER, He M, Wongkittichote P, Daniel EJP, Radenkovic S, Budhraja R, Pandey A, Sharma J, Morava E, Nguyen H, Dickson PI. D-mannose as a new therapy for fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG). Mol Genet Metab 2024; 142:108488. [PMID: 38735264 DOI: 10.1016/j.ymgme.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION D-mannose is a promising new treatment for FCSK-CDG.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA; Division of Clinical Genetics and Metabolism, University of Colorado Anschutz, Aurora, CO, USA; Graduate Program in Science: Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Angela J Lee
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth R Toolan
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Parith Wongkittichote
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Rohit Budhraja
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaiprakash Sharma
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Hoanh Nguyen
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia I Dickson
- Division of Medical Genetics and Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Muthusamy K, Perez-Ortiz JM, Ligezka AN, Altassan R, Johnsen C, Schultz MJ, Patterson MC, Morava E. Neurological manifestations in PMM2-congenital disorders of glycosylation (PMM2-CDG): Insights into clinico-radiological characteristics, recommendations for follow-up, and future directions. Genet Med 2024; 26:101027. [PMID: 37955240 DOI: 10.1016/j.gim.2023.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.
Collapse
Affiliation(s)
| | - Judit M Perez-Ortiz
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | | | - Marc C Patterson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN; Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Medical Genetics, University Medical School, Pecs, Hungary
| |
Collapse
|
9
|
Altassan R, Allers MM, De Graef D, Shah R, de Vries M, Larson A, Glamuzina E, Morava E. Defining the phenotype of PGAP3-congenital disorder of glycosylation; a review of 65 cases. Mol Genet Metab 2023; 140:107688. [PMID: 37647829 PMCID: PMC10872732 DOI: 10.1016/j.ymgme.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Biallelic pathogenic variants in PGAP3 cause a rare glycosylphosphatidyl-inositol biogenesis disorder, PGAP3-CDG. This multisystem condition presents with a predominantly neurological phenotype, including developmental delay, intellectual disability, seizures, and hyperphosphatemia. Here, we summarized the phenotype of sixty-five individuals including six unreported individuals from our CDG natural history study with a confirmed PGAP3-CDG diagnosis. Common additional features found in this disorder included brain malformations, behavioral abnormalities, cleft palate, and characteristic facial features. This report aims to review the genetic and metabolic findings and characterize the disease's phenotype while highlighting the necessary clinical approach to improve the management of this rare CDG.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Michael M Allers
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Diederik De Graef
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Maaike de Vries
- Department of Pediatrics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Austin Larson
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic Service, Auckland City Hospital, Auckland, New Zealand
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States; Department of Medical Genetics, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
10
|
Özsoy Ö, Cinleti T, Günay Ç, Sarıkaya Uzan G, Yeşilmen MC, Lochmüller H, Horvath R, Yiş U, Oktay Y, Hiz Kurul S. DPAGT1-CDG: Report of Two New Pediatric Patients and Brief Review of the Literature. Mol Syndromol 2023; 14:322-330. [PMID: 37766827 PMCID: PMC10521235 DOI: 10.1159/000529494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/27/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Congenital glycosylation disorders are multisystem diseases with heterogeneous clinical manifestations caused by defects in the synthesis of the glycan moiety of glycoproteins or glycolipids or the binding of glycans to proteins and lipids. DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) is an initiating protein in the biosynthetic pathway of dolichol-linked oligosaccharides required for protein N-glycosylation. Pathogenic variants in DPAGT1 (UDP-GlcNAc: dolichol phosphate N-acetylglucosamine-1-phosphotransferase) gene cause a rare type of congenital glycosylation disorder called DPAGT1-CDG (formerly CDG-Ij) (OMIM #608093). It is a rare autosomal recessive disease or a milder version with congenital myasthenic syndrome known as DPAGT1-CMS. A severe disease course with hypotonia, cataracts, skeletal deformities, resistant epilepsy, intellectual disability, global developmental delay, premature death has been described in most patients with DPAGT1-CDG. Patient Presentation We describe two patients with variants in the DPAGT1 gene: an 8-month-old boy with a homozygous, missense DPAGT1:c.339T>G (p.Phe113Leu) novel variant and a 13-year-old female patient with compound heterozygous variants, DPAGT1:c.466C>T (p.Arg156Cys, R156C) and DPAGT1:c.161+5G>A. While the 8-month-old patient was diagnosed with congenital cataract at the age of 1 month, had dysmorphic findings, and epilepsy, clinical symptoms in the other patient appeared later but with more prominent muscle weakness, behavioral disorder, dysmorphic findings, and no epilepsy. Discussion Cholinesterase inhibitor therapy was found to be effective in patients against muscle weakness, supporting DPAGT1 deficiency as the underlying etiology. We started pyridostigmine treatment in our patient with more pronounced muscle weakness, and we saw its benefit. We aimed to present our patients diagnosed with DPAGT1-CDG due to different variants in the same gene and different clinical presentations, treatment and to compare them with other patients in the literature.
Collapse
Affiliation(s)
- Özlem Özsoy
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Çağatay Günay
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gamze Sarıkaya Uzan
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Mehmet Can Yeşilmen
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Uluç Yiş
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, İzmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Semra Hiz Kurul
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, İzmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
11
|
Radenkovic S, Ligezka AN, Mokashi SS, Driesen K, Dukes-Rimsky L, Preston G, Owuocha LF, Sabbagh L, Mousa J, Lam C, Edmondson A, Larson A, Schultz M, Vermeersch P, Cassiman D, Witters P, Beamer LJ, Kozicz T, Flanagan-Steet H, Ghesquière B, Morava E. Tracer metabolomics reveals the role of aldose reductase in glycosylation. Cell Rep Med 2023; 4:101056. [PMID: 37257447 PMCID: PMC10313913 DOI: 10.1016/j.xcrm.2023.101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of CHROMETA, KU Leuven, 3000 Leuven, Belgium.
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Karen Driesen
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Luckio F Owuocha
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | - Leila Sabbagh
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew Schultz
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - David Cassiman
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, 3000 Leuven, Belgium; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lesa J Beamer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Anatomy and Department of Genetics, University of Pecs Medical School, Pecs, Hungary
| | | | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Anatomy and Department of Genetics, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
12
|
Shah R, Johnsen C, Pletcher BA, Edmondson AC, Kozicz T, Morava E. Long-term outcomes in ALG13-Congenital Disorder of Glycosylation. Am J Med Genet A 2023; 191:1626-1631. [PMID: 36930724 PMCID: PMC10175127 DOI: 10.1002/ajmg.a.63179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
ALG13-CDG is a rare X-linked disorder of N-linked glycosylation. Given the lack of long-term outcome data in ALG13-CDG, we collected natural history data and reviewed individuals surviving to young adulthood with confirmed pathogenic variants in ALG13 in our own cohort and in the literature. From the 14 ALG13-CDG patients enrolled into our Frontiers of Congenital Disorders of Glycosylation Consortium natural history study only two patients were older than 16 years; one of these two females is so far unreported. From the 52 patients described in the medical literature with confirmed pathogenic variants in ALG13 only five patients were older than 16 years (all females), in addition to the new, unreported patient from our natural history study. Two male patients have died due to ALG13-CDG, and there were no surviving males older than 16 years with a confirmed ALG13-CDG diagnosis. Our adolescent and young adult cohort of six patients presented with epilepsy, muscular hypotonia, speech, and developmental delay. Intellectual disability was present in all female patients with ALG13-CDG. Unreported features included ataxia, neuropathy, and severe gastrointestinal symptoms requiring G/J tube placement. In addition, two patients from our natural history study developed unilateral hearing loss. Skeletal abnormalities were found in four patients, including osteopenia and scoliosis. Major health problems included persistent seizures in three patients. Ketogenic diet was efficient for seizures in three out of four patients. Although all patients were mobile, they all had severe communication problems with mostly absent speech and were unable to function without parental support. In summary, long-term outcome in ALG13-CDG includes gastrointestinal and skeletal involvement in addition to a chronic, mostly non-progressive neurologic phenotype.
Collapse
Affiliation(s)
- Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, University Clinic of Göttingen, Göttingen, Germany
| | - Beth A Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, NJ, USA
| | - Andrew C. Edmondson
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, PA, US
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
- Department of Medical Genetics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
13
|
De Graef D, Ligezka AN, Rezents J, Mazza GL, Preston G, Schwartz K, Krzysciak W, Lam C, Edmondson AC, Johnsen C, Kozicz T, Morava E. Coagulation abnormalities in a prospective cohort of 50 patients with PMM2-congenital disorder of glycosylation. Mol Genet Metab 2023; 139:107606. [PMID: 37224763 PMCID: PMC10530657 DOI: 10.1016/j.ymgme.2023.107606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.
Collapse
Affiliation(s)
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Joseph Rezents
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Gina L Mazza
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Kaitlin Schwartz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Wirginia Krzysciak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Christina Lam
- Section of Biochemical Genetics, Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, USA
| | - Andrew C Edmondson
- Section of Biochemical Genetics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, University Medicine Göttingen, Göttingen, Germany
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Medical Genetics, University of Pecs, Pecs, Hungary.
| |
Collapse
|
14
|
Tian J, Ji M, Liu J, Xia Y, Zhang K, Li H, Gong W, Li Z, Xie W, Wang G, Xie J, Yu E. N-glycosylomic analysis provides new insight into the molecular mechanism of firmness of fish fillet. Food Chem 2023; 424:136417. [PMID: 37244189 DOI: 10.1016/j.foodchem.2023.136417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Post-translational protein modification affects muscle physiochemistry. To understand the roles of N-glycosylation in this process, the muscle N-glycoproteomes of crisp grass carp (CGC) and ordinary grass carp (GC) were analyzed and compared. We identified 325 N-glycosylated sites with the NxT motif, classified 177 proteins, and identified 10 upregulated and 19 downregulated differentially glycosylated proteins (DGPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these DGPs participate in myogenesis, extracellular matrix content formation, and muscle function. The DGPs partially accounted for the molecular mechanisms associated with the relatively smaller fiber diameter and higher collagen content observed in CGC. Though the DGPs diverged from the identified differentially phosphorylated proteins and differentially expressed proteins detected in previous study, they all shared similar metabolic and signaling pathways. Thus, they might independently alter fish muscle texture. Overall, the present study provides novel insights into the mechanisms underlying fillet quality.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Ji
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Xia
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wenping Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
15
|
Tahata S, Weckwerth J, Ligezka A, He M, Lee HE, Heimbach J, Ibrahim SH, Kozicz T, Furuya K, Morava E. Liver transplantation recovers hepatic N-glycosylation with persistent IgG glycosylation abnormalities: Three-year follow-up in a patient with phosphomannomutase-2-congenital disorder of glycosylation. Mol Genet Metab 2023; 138:107559. [PMID: 36965289 PMCID: PMC10164344 DOI: 10.1016/j.ymgme.2023.107559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.
Collapse
Affiliation(s)
- Shawn Tahata
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Division of Medical Genetics, Stanford University, CA, United States of America
| | - Jody Weckwerth
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Anna Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America
| | - Miao He
- Metabolic and Advanced Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Hee Eun Lee
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Julie Heimbach
- Division of Transplant Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Samar H Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Katryn Furuya
- Pediatric Liver Transplant Program, University of Wisconsin Health, Madison, WI, United States of America
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States of America; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
16
|
Zhou SY. [Advances in the diagnosis and treatment of phosphomannomutase 2 deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:223-228. [PMID: 36854702 DOI: 10.7499/j.issn.1008-8830.2209049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Phosphomannomutase 2 deficiency is the most common form of N-glycosylation disorders and is also known as phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG). It is an autosomal recessive disease with multi-system involvements and is caused by mutations in the PMM2 gene (OMIM: 601785), with varying severities in individuals. At present, there is still no specific therapy for PMM2-CDG, and early identification, early diagnosis, and early treatment can effectively prolong the life span of pediatric patients. This article reviews the advances in the diagnosis and treatment of PMM2-CDG.
Collapse
Affiliation(s)
- Shu-Yan Zhou
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
17
|
Ng BG, Sosicka P, Xia Z, Freeze HH. GLUT1 is a highly efficient L-fucose transporter. J Biol Chem 2023; 299:102738. [PMID: 36423686 PMCID: PMC9758431 DOI: 10.1016/j.jbc.2022.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zhijie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
18
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Hyde LF, Kong Y, Zhao L, Rao SR, Wang J, Stone L, Njaa A, Collin GB, Krebs MP, Chang B, Fliesler SJ, Nishina PM, Naggert JK. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci 2022; 23:12005. [PMID: 36233305 PMCID: PMC9570038 DOI: 10.3390/ijms231912005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
| | - Yang Kong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Andrew Njaa
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | | | | |
Collapse
|
20
|
Brasil S, Allocca M, Magrinho SCM, Santos I, Raposo M, Francisco R, Pascoal C, Martins T, Videira PA, Pereira F, Andreotti G, Jaeken J, Kantautas KA, Perlstein EO, Ferreira VDR. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int J Mol Sci 2022; 23:8725. [PMID: 35955863 PMCID: PMC9369176 DOI: 10.3390/ijms23158725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders' views on AI for therapy discovery in CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Mariateresa Allocca
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Salvador C. M. Magrinho
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- LAQV-Requimte, Chemistry Department, School of Science and Technology, Nova University of Lisbon, 2819-516 Caparica, Portugal
| | - Inês Santos
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Madalena Raposo
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Rita Francisco
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Carlota Pascoal
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Tiago Martins
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Paula A. Videira
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Florbela Pereira
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- LAQV-Requimte, Chemistry Department, School of Science and Technology, Nova University of Lisbon, 2819-516 Caparica, Portugal
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Jaak Jaeken
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Vanessa dos Reis Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|