1
|
Damiani F, Giuliano MG, Cornuti S, Putignano E, Tognozzi A, Suckow V, Kalscheuer VM, Pizzorusso T, Tognini P. Multi-site investigation of gut microbiota in CDKL5 deficiency disorder mouse models: Targeting dysbiosis to improve neurological outcomes. Cell Rep 2025; 44:115546. [PMID: 40220293 PMCID: PMC12014524 DOI: 10.1016/j.celrep.2025.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disorder often associated with gastrointestinal (GI) issues and subclinical immune dysregulation, suggesting a link to the gut microbiota. We analyze the fecal microbiota composition in two CDKL5 knockout (KO) mouse models at postnatal days (P) 25, 32 (youth), and 70 (adulthood), revealing significant microbial imbalances, particularly during juvenile stages. To investigate the role of the intestinal microbiota in CDD and assess causality, we administer antibiotics, which lead to improved visual cortical responses and reduce hyperactivity. Additionally, microglia morphology changes, indicative of altered surveillance and activation states, are reversed. Strikingly, fecal transplantation from CDKL5 KO to wild-type (WT) recipient mice successfully transfers both visual response deficits and hyperactive behavior. These findings show that gut microbiota alterations contribute to the severity of neurological symptoms in CDD, shedding light on the interplay between microbiota, microglia, and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Francesca Damiani
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Maria Grazia Giuliano
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Sara Cornuti
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Andrea Tognozzi
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; PhD Program in Clinical and Translational Science, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Vanessa Suckow
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Vera M Kalscheuer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Tommaso Pizzorusso
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Paola Tognini
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
2
|
Ionescu VA, Diaconu CC, Gheorghe G, Mihai MM, Diaconu CC, Bostan M, Bleotu C. Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection. Int J Mol Sci 2025; 26:3733. [PMID: 40332367 PMCID: PMC12028331 DOI: 10.3390/ijms26083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host-microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Mara-Madalina Mihai
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Department of Oncologic Dermathology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Department of Immunology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Coralia Bleotu
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| |
Collapse
|
3
|
Fang X, Zhang Y, Huang X, Miao R, Zhang Y, Tian J. Gut microbiome research: Revealing the pathological mechanisms and treatment strategies of type 2 diabetes. Diabetes Obes Metab 2025. [PMID: 40230225 DOI: 10.1111/dom.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025]
Abstract
The high prevalence and disability rate of type 2 diabetes (T2D) caused a huge social burden to the world. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. With in-depth research on the pathogenesis of T2D and growing advances in microbiome sequencing technology, the association between T2D and gut microbiota has been confirmed. The gut microbiota participates in the regulation of inflammation, intestinal permeability, short-chain fatty acid metabolism, branched-chain amino acid metabolism and bile acid metabolism, thereby affecting host glucose and lipid metabolism. Interventions focusing on the gut microbiota are gaining traction as a promising approach to T2D management. For example, dietary intervention, prebiotics and probiotics, faecal microbiota transplant and phage therapy. Meticulous experimental design and choice of analytical methods are crucial for obtaining accurate and meaningful results from microbiome studies. How to design gut microbiome research in T2D and choose different machine learning methods for data analysis are extremely critical to achieve personalized precision medicine.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Xie Q, Ni J, Guo W, Ding C, Wang F, Wu Y, Zhao Y, Zhu L, Xu K, Chen Y. Two-year follow-up of gut microbiota alterations in patients after COVID-19: from the perspective of gut enterotype. Microbiol Spectr 2025; 13:e0277424. [PMID: 40207964 PMCID: PMC12054050 DOI: 10.1128/spectrum.02774-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Gut microbiota dysbiosis plays a role in the pathogenesis of post-acute coronavirus disease (COVID-19); however, the long-term recovery of the gut microbiota following SARS-CoV-2 infection remains insufficiently understood. In this study, 239 fecal samples were collected from 87 COVID-19 patients during the acute phase, and at 6 months, 1 year, and 2 years post-discharge. An additional 48 fecal samples from non-COVID-19 controls were also analyzed. Gut enterotypes were determined through 16S rRNA sequencing, and dynamic changes from the acute phase through recovery were assessed. Correlations between enterotypes and clinical characteristics were also examined. Two distinct enterotypes were identified: a Blautia-dominated enterotype (Enterotype-B) and a Streptococcus-dominated enterotype (Enterotype-S). Species diversity and richness were significantly higher in Enterotype-B. Enterotype-S, associated with inflammation, was more prevalent during the acute phase. Six months post-discharge, the ratio of Enterotype-B to Enterotype-S approached normal levels. Patients with Enterotype-S at admission had a higher incidence of severe cases during hospitalization and a longer duration of nasopharyngeal viral shedding compared with those with Enterotype-B. Furthermore, at 6 months post-discharge, residual pulmonary Computed Tomography (CT) abnormalities were more common in patients with Enterotype-S (55%) than in those with Enterotype-B (20%, P = 0.046). An index, B/S, representing the ratio of Blautia and Bifidobacterium to Streptococcus, was introduced and found to correlate closely with clinical characteristics. The Streptococcus-dominated enterotype is associated with inflammation and appears to influence both the severity of illness during the acute phase and cardiopulmonary recovery. IMPORTANCE This study sheds new light on the intricate process of rehabilitating the gut microbiota following disruptions caused by COVID-19. Our approach, which examines the dynamics from the vantage point of enterotypes, reveals a more rapid recovery than previously reported, with the majority of the microbiota rebounding within a 6-month timeframe. Furthermore, our findings underscore the importance of the Blautia-dominated enterotype as a marker of gut health, which plays a pivotal role in mitigating the risk of severe progression and lingering effects post-SARS-CoV-2 infection. By scrutinizing these enterotypes, we can now foresee the potential severity and aftermath of COVID-19, offering a valuable tool for prognosis and intervention.
Collapse
Affiliation(s)
- Qianhan Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiali Ni
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanru Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengjiao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yechen Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yuxi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingxiao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang D, Gui S, Pu J, Zhong X, Yan L, Li Z, Tao X, Yang D, Zhou H, Qiao R, Zhang H, Cheng X, Ren Y, Chen W, Chen X, Tao W, Chen Y, Chen X, Liu Y, Xie P. PsycGM: a comprehensive database for associations between gut microbiota and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03000-5. [PMID: 40185904 DOI: 10.1038/s41380-025-03000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Psychiatric disorders pose substantial global burdens on public health, yet therapeutic options remain limited. Recently, gut microbiota is in the spotlight of new research on psychiatric disorders, as emerging discoveries have highlighted the importance of gut microbiome in the regulation of central nervous system via mediating the gut-brain-axis bidirectional communication. While metagenomics studies have accumulated for psychiatric disorders, few systematic efforts were dedicated to integrating these high-throughput data across diverse phenotypes, interventions, geographical regions, and biological species. To present a panoramic view of global data and provide a comprehensive resource for investigating the gut microbiota dysbiosis in psychiatric disorders, we developed the PsycGM, a manually curated and well-annotated database that provides the literature-supported associations between gut microbiota and psychiatric disorders or intervention measures. In total, PsycGM incorporated 559 studies from 31 countries worldwide, encompassing research involving humans, rats, mice, and non-human primates. PsycGM documented 8907 curated associations between 1514 gut microbial taxa and 11 psychiatric disorders, as well as 4050 associations between 869 taxa and 232 microbiota-based and non-microbiota-based interventions. Moreover, PsycGM provided a user-friendly web interface with comprehensive information, enabling browsing, retrieving and downloading of all entries. In the application of PsycGM, we panoramically depicted the intestinal microecological imbalance in depression. Additionally, we identified 9 microbial taxa consistently altered in patients with depression, with the most common dysregulations observed for Parabacteroides, Alistipes, and Faecalibacterium; in animal models of depression, consistent changes were observed in 21 microbial taxa, most frequently reported as Helicobacter, Lactobacillus, Roseburia, and the ratio of Firmicutes/Bacteroidetes. PsycGM is a comprehensive resource for future investigations on the role of gut microbiota in mental and brain health, and for therapeutic target innovations based on modifications of gut microbiota. PsycGM is freely accessed at http://psycgmomics.info .
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Brain and Intelligence, Chongqing, 400064, China
| | - Siwen Gui
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Brain and Intelligence, Chongqing, 400064, China
| | - Juncai Pu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Brain and Intelligence, Chongqing, 400064, China
| | - Li Yan
- School of Medical Information, Chongqing Medical University, Chongqing, 400042, China
| | - Zhuocan Li
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangkun Tao
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Yang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haipeng Zhou
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Cheng
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Ren
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tao
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, 400064, China.
| | - Peng Xie
- Department of Neurology, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, 400064, China.
| |
Collapse
|
6
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
7
|
Tian C, Zhang T, Zhuang D, Luo Y, Li T, Zhao F, Sang J, Tang Z, Jiang P, Zhang T, Liu P, Zhu L, Zhang Z. Industrialization drives the gut microbiome and resistome of the Chinese populations. mSystems 2025; 10:e0137224. [PMID: 39902937 PMCID: PMC11915869 DOI: 10.1128/msystems.01372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025] Open
Abstract
Industrialization has driven lifestyle changes in eastern and western Chinese populations, yet we have a poor understanding of the dynamic changes in their gut microbiome and resistome under industrialization, which is essential for the scientific management of public health. Here, this study employed metagenomics to analyze the gut microbiota of 1,382 healthy individuals from China, including 415 individuals from the eastern region of advanced industrialization and 967 individuals from the western region of developing industrialization. Compared with western populations, eastern populations show a significant increase in interindividual dissimilarity of microbial species composition and metabolic pathways but a significant decrease in intraindividual species and functional diversity. Furthermore, our results found significantly less abundance and richness of antibiotic resistance genes (ARGs) in the gut microbiota of eastern populations, alongside a lower prevalence of unique core ARG subtypes. For the 12 core ARG types shared between eastern and western populations, the mean relative abundance of two types was notably higher in the eastern populations, while eight core ARG types had significantly higher mean relative abundance in the western populations. Based on the reconstruction of metagenomic assembled genomes, we found that Escherichia coli genomes from western populations carried more virulence factor genes (VFGs) and mobile genetic elements (MGEs) compared to those from eastern populations. This large-scale study for the first time revealed industrialization potentially led to unexpected alterations of the gut microbiome and resistome between eastern and western populations that provide a vital implication for Chinese public health and may aid in the development of region-specific strategies for managing pathogenic infections. IMPORTANCE As China experiences rapid but uneven industrialization, understanding its effect on people's gut bacteria is critical for public health. This study reveals how industrialization may reshape the health risks related to gut bacteria and antibiotic resistance. This work provides crucial information to help create customized public health policies for different regions.
Collapse
Affiliation(s)
- Chen Tian
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Daohua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yu Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Teng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Fangfang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianan Sang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zecheng Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Peicheng Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Lanzhou, Gansu Province, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu, China
| | - Lei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
8
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Lu J, Yin L, Huang Y, Zhang Q, Zeng B. Letter to the Editor "Regarding Causal Associations Between Gut Microbiota and Cerebrovascular Diseases". World Neurosurg 2025; 197:123852. [PMID: 40054843 DOI: 10.1016/j.wneu.2025.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/03/2025]
Affiliation(s)
- JieTao Lu
- Department of General Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - LuQiang Yin
- Department of General Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Huang
- Department of General Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - QiuYuan Zhang
- Department of General Medicine, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Department of Clinical Nutrition, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Zheng T, Meng C, Lv Z, Wu C, Zhou X, Mao W. The Critical Role of Faecalibacterium prausnitzii in Cardiovascular Diseases. Rev Cardiovasc Med 2025; 26:26740. [PMID: 40160596 PMCID: PMC11951488 DOI: 10.31083/rcm26740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 04/02/2025] Open
Abstract
Due to the continued aging of the global population, cardiovascular diseases (CVDs) remain the main cause of death worldwide, with millions of fatalities from diseases, including stroke and coronary artery disease, reported annually. Thus, novel therapeutic approaches and targets are urgently required for diagnosing and treating CVDs. Recent studies emphasize the vital part of gut microbiota in both CVD prevention and management. Among these, Faecalibacterium prausnitzii (F. prausnitzii) has emerged as a promising probiotic capable of improving intestinal health. Although preliminary investigations demonstrate that F. prausnitzii positively enhances cardiovascular health, research specifically connecting this strain to CVD outcomes remains limited. Based on current research and assessment of possible clinical applications, this paper aimed to investigate the positive effects on cardiovascular health using F. prausnitzii and its metabolites. Targeting gut flora is expected to become a mainstay in CVD treatment as research develops.
Collapse
Affiliation(s)
- Tiantian Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Chenchen Meng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Zhengtian Lv
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Chenxia Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, Zhejiang, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006 Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Cardiology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310030 Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, 310030 Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Liu Y, Shi A, Chen Y, Xu Z, Liu Y, Yao Y, Wang Y, Jia B. Beneficial microorganisms: Regulating growth and defense for plant welfare. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:986-998. [PMID: 39704146 PMCID: PMC11869181 DOI: 10.1111/pbi.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.
Collapse
Affiliation(s)
- Yan Liu
- Xianghu LaboratoryHangzhouChina
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | | | - Yue Chen
- Xianghu LaboratoryHangzhouChina
- Horticulture Research InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yanlai Yao
- Xianghu LaboratoryHangzhouChina
- Institute of Environment, Resource, Soil and FertiliserZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | | |
Collapse
|
12
|
Bashir B, Gulati M, Vishwas S, Gupta G, Dhanasekaran M, Paudel KR, Chellappan DK, Anand K, Negi P, Singh PK, Rajput A, Dua K, Singh SK. Bridging gap in the treatment of Alzheimer's disease via postbiotics: Current practices and future prospects. Ageing Res Rev 2025; 105:102689. [PMID: 39952328 DOI: 10.1016/j.arr.2025.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Aging is an extremely significant risk associated with neurodegeneration. The most prevalent neurodegenerative disorders (NDs), such as Alzheimer's disease (AD) are distinguished by the prevalence of proteinopathy, aberrant glial cell activation, oxidative stress, neuroinflammation, defective autophagy, cellular senescence, mitochondrial dysfunction, epigenetic changes, neurogenesis suppression, increased blood-brain barrier permeability, and intestinal dysbiosis that is excessive for the patient's age. Substantial body studies have documented a close relationship between gut microbiota and AD, and restoring a healthy gut microbiota may reduce or even ameliorate AD symptoms and progression. Thus, control of the microbiota in the gut has become an innovative model for clinical management of AD, and rising emphasis is focused on finding new techniques for preventing and/or managing the disease. The etiopathogenesis of gut microbiota in driving AD progression and supplementing postbiotics as a preventive and therapeutic treatment for AD is discussed. The review additionally discusses the use of postbiotics in AD prophylaxis and therapy, portraying them as substances that address senescence-triggered dysfunctions and are worthy of translating from bench to biopharmaceutical market in response to "silver consumers" needs. The current review examines and evaluates the impact of postbiotics as whole and specific metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides, and bacterial extracellular vesicles, on the aging-associated processes that reinforce AD. Moreover, it provides an overview of the most recent data from both clinical and preclinical research involving the use of postbiotics in AD.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | | | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Poonam Negi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
13
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
14
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Mafe AN, Büsselberg D. Modulation of the Neuro-Cancer Connection by Metabolites of Gut Microbiota. Biomolecules 2025; 15:270. [PMID: 40001573 PMCID: PMC11853082 DOI: 10.3390/biom15020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The gut-brain-cancer axis represents a novel and intricate connection between the gut microbiota, neurobiology, and cancer progression. Recent advances have accentuated the significant role of gut microbiota metabolites in modulating systemic processes that influence both brain health and tumorigenesis. This paper explores the emerging concept of metabolite-mediated modulation within the gut-brain-cancer connection, focusing on key metabolites such as short-chain fatty acids (SCFAs), tryptophan derivatives, secondary bile acids, and lipopolysaccharides (LPS). While the gut microbiota's impact on immune regulation, neuroinflammation, and tumor development is well established, gaps remain in grasping how specific metabolites contribute to neuro-cancer interactions. We discuss novel metabolites with potential implications for neurobiology and cancer, such as indoles and polyamines, which have yet to be extensively studied. Furthermore, we review preclinical and clinical evidence linking gut dysbiosis, altered metabolite profiles, and brain tumors, showcasing limitations and research gaps, particularly in human longitudinal studies. Case studies investigating microbiota-based interventions, including dietary changes, fecal microbiota transplantation, and probiotics, demonstrate promise but also indicate hurdles in translating these findings to clinical cancer therapies. This paper concludes with a call for standardized multi-omics approaches and bi-directional research frameworks integrating microbiome, neuroscience, and oncology to develop personalized therapeutic strategies for neuro-cancer patients.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
16
|
Barrett LR, Beasy P, Palacios Delgado YM, Boyce JD, Leder K, McCarthy DT, Henry R. Beyond borders: A systematic review and meta-analysis of human-specific faecal markers across geographical settings. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2025; 55:447-464. [PMID: 40329995 PMCID: PMC12051442 DOI: 10.1080/10643389.2025.2455031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Human fecal waste is a global health risk associated with diarrheal diseases, responsible for approximately 1.2 million deaths annually. Microbial Source Tracking (MST) is a molecular method that evaluates environmental sources of fecal contamination, aiding quantification of this contamination and associated health risks. However, reported variations in global human gut microbiomes and geographic performance of human-specific fecal markers suggest that current MST targets may not have broad applicability across populations. This systematic review quantified the performance of human-specific fecal markers to identify those suitable for use across various geographic regions. We evaluated data from primary research articles, published before 18th October 2023, identified through PubMed, Scopus, and Web of Science using PRISMA guidelines. 103 studies published between 1995 and 2023, spanning 34 countries, 6 continents, and 4 climate zones met inclusion criteria, with quantifiable performance metrics (sensitivity, specificity or accuracy) and a geographic testing location. Extracted data was analyzed to establish marker performance across geographic locations, climate zones, and development status. Over 80% were conducted in High-Income Countries (HICs) and >50% in temperate zones, primarily in the USA (43%), Australia (24%), and Spain (19%). Bacteroides HF183 was the most commonly tested (n = 45 studies). However, no target consistently demonstrated sensitivity, specificity, and/or accuracy >80% across different settings. Consequently, a decision tree is presented supporting selection of appropriate human-specific markers for regional-specific baseline studies. This provides critical information to support new MST research, particularly in Low- and Middle-Income Countries (LMICs), assisting with informed decision and method selection for assessing risks of faecal derived pathogens.
Collapse
Affiliation(s)
- Leah R. Barrett
- Department of Civil Engineering, Monash
University, Melbourne, Victoria,
Australia
| | - Paris Beasy
- Department of Civil Engineering, Monash
University, Melbourne, Victoria,
Australia
| | | | - John D. Boyce
- Biomedicine Discovery Institute, Department of
Microbiology, Melbourne, Victoria,
Australia
| | - Karin Leder
- School of Public Health and Preventive
Medicine, Monash University, Melbourne,
Victoria, Australia
- Victorian Infectious Disease Service, Royal
Melbourne Hospital, Melbourne, Victoria,
Australia
| | - David T. McCarthy
- Department of Civil Engineering, Monash
University, Melbourne, Victoria,
Australia
- School of Environmental Sciences, University
of Guelph, Guelph, Ontario,
Canada
| | - Rebekah Henry
- Department of Civil Engineering, Monash
University, Melbourne, Victoria,
Australia
- School of Public Health and Preventive
Medicine, Monash University, Melbourne,
Victoria, Australia
| |
Collapse
|
17
|
Zheng Y, Hou J, Guo S, Song J. The association between the dietary index for gut microbiota and metabolic dysfunction-associated fatty liver disease: a cross-sectional study. Diabetol Metab Syndr 2025; 17:17. [PMID: 39825360 PMCID: PMC11740478 DOI: 10.1186/s13098-025-01589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The relationship between the gut microbiome and metabolic dysfunction-associated fatty liver disease (MAFLD) has garnered increasing attention. However, the association between the dietary index for gut microbiota (DI-GM), a measure of microbiome diversity, and MAFLD has yet to be fully explored. METHODS Data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) were analyzed, including 7243 participants. The association between DI-GM and MAFLD was investigated using weighted logistic regression, restricted cubic spline (RCS), and subgroup analyses. RESULTS A notable inverse association was identified between DI-GM and the prevalence of MAFLD, with each 1-point increase in DI-GM corresponding to a 6.1% reduction in MAFLD prevalence (OR = 0.939, 95% CI: 0.901-0.980). Individuals with a DI-GM score of 6 or higher had an adjusted OR of 0.794 (95% CI: 0.665-0.947) compared to those with a DI-GM score of 0-3. RCS analysis further revealed a linear relationship between DI-GM and MAFLD risk. Additionally, subgroup analyses suggested that race may modify the association between DI-GM and MAFLD (P for interaction < 0.05). CONCLUSIONS DI-GM is inversely associated with MAFLD prevalence, and race appears to be a significant modifier of this relationship.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinhui Hou
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shiqi Guo
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Department of General Surgery, Beijing Hospital, NO. 1 Da Hua Road, Dong Dan, Beijing, 100730, P.R. China.
| |
Collapse
|
18
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
19
|
Meng S, Ni T, Du Q, Liu M, Ge P, Geng J, Wang B. Pre-procedural TMAO as a predictor for recurrence of atrial fibrillation after catheter ablation. BMC Cardiovasc Disord 2024; 24:750. [PMID: 39732662 DOI: 10.1186/s12872-024-04170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significance of trimethylamine-N-oxide (TMAO) in the progression of atrial fibrillation (AF). However, the association between TMAO and AF recurrence (RAF) post-catheter ablation is not yet fully understood. This study aims to elucidate the predictive capability of pre-procedural TMAO levels in determining RAF following catheter ablation (CA). METHODS This study was conducted as a prospective, single-center observational study. Between June 2021 and June 2022, 152 patients from the Department of Cardiology at The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University were enrolled. Baseline characteristics and serum TMAO levels were assessed for all participants. Patients with AF who underwent CA were monitored for recurrences of AF using electrocardiography (ECG) or 24-hour Holter monitoring during the follow-up period. RESULTS The study found that serum TMAO levels were significantly higher in persistent AF (PeAF) patients compared to those in sinus rhythm (SR) and paroxysmal AF (PaAF) patients (3.96 ± 1.69 vs. 1.81 ± 0.59, 3.02 ± 1.50 µM, P < 0.001 and P < 0.01, respectively). After a one-year follow-up, 29 (21.2%) AF patients experienced recurrence after CA. Multivariate Cox proportional hazards regression analysis revealed that pre-procedural serum TMAO was an independent predictor of recurrent AF (HR = 1.78, 95% CI = 1.43-2.21, P < 0.001). The receiver operating characteristic (ROC) curve analysis identified a cut-off value of 4.3µM for serum TMAO levels in predicting recurrent AF (area under the curve: 0.835, P < 0.001). The Kaplan-Meier plot demonstrated that patients with TMAO levels greater than 4.3µM had a significantly higher rate of recurrent AF (HR = 13.53, 95% CI = 6.19-29.56, P < 0.001). CONCLUSION Patients with AF exhibited elevated levels of circulating TMAO compared to patients with SR. The findings suggest a potential role of TMAO in the development of AF, with pre-procedural serum TMAO levels serving as a reliable predictor of recurrence of AF CA.
Collapse
Affiliation(s)
- Siyu Meng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Tianyi Ni
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Qiuyao Du
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Mengjie Liu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Peibing Ge
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Jin Geng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Bingjian Wang
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
20
|
Xie S, Liu M, Li W. Impact of Radiotherapy on Endocrine Function and Gut Microbiota in Cervical Cancer Patients Undergoing Ovarian Transposition. Int J Womens Health 2024; 16:2319-2331. [PMID: 39742347 PMCID: PMC11687098 DOI: 10.2147/ijwh.s494268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025] Open
Abstract
Objective This study aims to investigate the effects of radiotherapy on ovarian function, endocrine function, and gut microbiota in cervical cancer patients who underwent ovarian transposition, compared to those who did not. Methods This study included 100 cervical cancer patients treated from January to June 2024, divided into a control group (50 cases, radical surgery and radiotherapy) and an observation group (50 cases, ovarian transposition surgery plus radiotherapy). Radiotherapy protocols included conventional, intensity-modulated, or conformal radiotherapy, with 6MVX rays delivering 100-200 cGy per session, 5 sessions per week for 6 weeks. In the observation group, the ovarian region was shielded with a lead plate. Outcomes measured included ovarian and endocrine function, quality of life, adverse reactions, and gut microbiota composition. DNA was extracted from fecal samples for 16S rRNA sequencing and bioinformatics analysis, including α- and β-diversity, taxonomic composition, and LEfSe analysis. Results Before radiotherapy, no significant differences in serum sex hormone levels were observed between the groups. After radiotherapy, the control group showed greater increases in FSH and LH and a more pronounced decrease in estradiol (E2) levels. Ovarian function preservation was significantly higher in the observation group (28.00% vs 0.00%). The observation group also had a higher Kupperman score 6 months post-surgery (28.01±10.22 vs 21.91±7.38). Adverse reaction rates were comparable. Gut microbiota analysis revealed differences in taxonomic composition, with higher Firmicutes (66.5% vs 65.56%) and Faecalibacterium (7.0% vs 2.7%) in the observation group, while Proteobacteria (4.1% vs 13.9%) and Shigella (2.7% vs 8.5%) were more abundant in the control group. LEfSe analysis identified notable species differences, including higher Peptoniphilus and Actinomyces in the observation group. Conclusion Ovarian transposition surgery effectively preserves ovarian function in cervical cancer patients. Changes in gut microbiota during radiotherapy may influence endocrine outcomes, warranting further research.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, People’s Republic of China
| | - Miaomiao Liu
- Hengshui Maternal and Child Health Hospital Internal Medicine, Hengshui, People’s Republic of China
| | - Wei Li
- Emergency Room, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
21
|
Ciernikova S, Sevcikova A, Novisedlakova M, Mego M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers (Basel) 2024; 16:4271. [PMID: 39766170 PMCID: PMC11674129 DOI: 10.3390/cancers16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors represents a revolutionary approach to the treatment of solid tumors, including malignant melanoma, lung cancer, and gastrointestinal malignancies. Anti-CTLA-4 and anti-PD-1/PDL-1 therapies provide prolonged survival for cancer patients, but their efficacy and safety are highly variable. This review focuses on the crucial role of the gut microbiome in modulating the efficacy and toxicity of immune checkpoint blockade. Studies suggest that the composition of the gut microbiome may influence the response to immunotherapy, with specific bacterial strains able to promote an anti-tumor immune response. On the other hand, dysbiosis may increase the risk of adverse effects, such as immune-mediated colitis. Interventions aimed at modulating the microbiome, including the use of probiotics, prebiotics, fecal microbial transplantation, or dietary modifications, represent promising strategies to increase treatment efficacy and reduce toxicity. The combination of immunotherapy with the microbiome-based strategy opens up new possibilities for personalized treatment. In addition, factors such as physical activity and nutritional supplementation may indirectly influence the gut ecosystem and consequently improve treatment outcomes in refractory patients, leading to enhanced patient responses and prolonged survival.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Maria Novisedlakova
- Department of Oncology, Hospital Bory, Ivana Bukovčana 6118, 841 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| |
Collapse
|
22
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
23
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
24
|
Chen S, Wang C, Zou X, Li H, Yang G, Su X, Mo Z. Multi-omics insights implicate the remodeling of the intestinal structure and microbiome in aging. Front Genet 2024; 15:1450064. [PMID: 39600316 PMCID: PMC11588687 DOI: 10.3389/fgene.2024.1450064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Aging can impair the ability of elderly individuals to fight infections and trigger persistent systemic inflammation, a condition known as inflammaging. However, the mechanisms underlying the development of inflammaging remain unknown. Methods We conducted 16S rRNA sequencing of intestinal contents from young and old C57BL/6J mice to elucidate changes in gut microbiota diversity and microbial community composition after aging. Aging-related differential bacterial taxa were then identified, and their abundance trends were validated in human samples. The variances in intestinal barrier function and circulating endotoxin between groups were also assessed. Furthermore, widely targeted metabolomics was conducted to characterize metabolic profiles after aging and to investigate the key metabolic pathways enriched by the differential metabolites. Results Our findings demonstrated an increase in relative proportion of pathogenic bacteria with age, a trend also revealed in healthy populations of different age groups. Additionally, aging individuals exhibited reduced intestinal barrier function and increased circulating endotoxin levels. Widely targeted metabolomics revealed a significant increase in various secondary bile acid metabolites after aging, positively correlated with the relative abundance of several aging-related bacterial taxa. Furthermore, old group had lower levels of various anti-inflammatory or beneficial metabolites. Enrichment analysis identified the starch and sucrose metabolism pathway as potentially the most significantly impacted signaling pathway during aging. Conclusion This study aimed to provide insights into the complex interactions involved in organismal inflammaging through microbial multi-omics. These findings lay a solid foundation for future research aimed at identifying novel biomarkers for the clinical diagnosis of aging-related diseases or potential therapeutic targets.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiong Zou
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Hanwen Li
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaotao Su
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Xiang Z, Wu J. Concerns regarding the AtTEnd trial in advanced endometrial carcinoma. Lancet Oncol 2024; 25:e535. [PMID: 39481405 DOI: 10.1016/s1470-2045(24)00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024]
Affiliation(s)
- Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China.
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu 215008, China
| |
Collapse
|
26
|
Matsuyama K, Yamada S, Sato H, Zhan J, Shoda T. Advances in omics data for eosinophilic esophagitis: moving towards multi-omics analyses. J Gastroenterol 2024; 59:963-978. [PMID: 39297956 PMCID: PMC11496339 DOI: 10.1007/s00535-024-02151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergic inflammatory disease of the esophagus characterized by eosinophil accumulation and has a growing global prevalence. EoE significantly impairs quality of life and poses a substantial burden on healthcare resources. Currently, only two FDA-approved medications exist for EoE, highlighting the need for broader research into its management and prevention. Recent advancements in omics technologies, such as genomics, epigenetics, transcriptomics, proteomics, and others, offer new insights into the genetic and immunologic mechanisms underlying EoE. Genomic studies have identified genetic loci and mutations associated with EoE, revealing predispositions that vary by ancestry and indicating EoE's complex genetic basis. Epigenetic studies have uncovered changes in DNA methylation and chromatin structure that affect gene expression, influencing EoE pathology. Transcriptomic analyses have revealed a distinct gene expression profile in EoE, dominated by genes involved in activated type 2 immunity and epithelial barrier function. Proteomic approaches have furthered the understanding of EoE mechanisms, identifying potential new biomarkers and therapeutic targets. However, challenges in integrating diverse omics data persist, largely due to their complexity and the need for advanced computational methods. Machine learning is emerging as a valuable tool for analyzing extensive and intricate datasets, potentially revealing new aspects of EoE pathogenesis. The integration of multi-omics data through sophisticated computational approaches promises significant advancements in our understanding of EoE, improving diagnostics, and enhancing treatment effectiveness. This review synthesizes current omics research and explores future directions for comprehensively understanding the disease mechanisms in EoE.
Collapse
Affiliation(s)
- Kazuhiro Matsuyama
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Shingo Yamada
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
| | - Hironori Sato
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Justin Zhan
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA.
| |
Collapse
|
27
|
de Oliveira DP, Todorov SD, Fabi JP. Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation. Nutrients 2024; 16:3689. [PMID: 39519522 PMCID: PMC11547739 DOI: 10.3390/nu16213689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can be produced. When this reflects the health benefits for the host, these substrates can be categorized as prebiotics. Given that most prebiotic candidates must have a low molecular weight to be further metabolized by the microbiota, the role in the preliminary biological pretreatment is crucial. To provide proper substrates to the intestinal microbiota, a strategy could be to decrease the complexity of polysaccharides and reduce the levels of polymerization to low molecular weight for the target molecules, driving better solubilization and the consequent metabolic use by intestinal bacteria. When high molecular weight pectin is degraded (partially depolymerized), its solubility increases, thereby improving its utilization by gut microbiota. With regards to application, prebiotics have well-documented advantages when applied as food additives, as they improve gut health and can enhance drug effects, all shown by in vitro, in vivo, and clinical trials. In this review, we aim to provide systematic evidence for the mechanisms of action and the modulation of gut microbiota by the pectin-derived oligosaccharides produced by decreasing overall molecular weight after physical and/or chemical treatments and to compare with other types of prebiotics.
Collapse
Affiliation(s)
- Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
- ProBacLab, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| |
Collapse
|
28
|
Zhang T, Zhao C, Li N, He Q, Gao G, Sun Z. Longitudinal and Multi-Kingdom Gut Microbiome Alterations in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11472. [PMID: 39519025 PMCID: PMC11546883 DOI: 10.3390/ijms252111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Gut microbial dysbiosis, especially bacteriome, has been implicated in Alzheimer's disease (AD). However, nonbacterial members of the gut microbiome in AD, such as the mycobiome, archaeome, and virome, are unexplored. Here, we perform higher-resolution shotgun metagenomic sequencing on fecal samples collected longitudinally from a mouse model of AD to investigate longitudinal and multi-kingdom gut microbiome profiling. Shotgun metagenomic sequencing of fecal samples from AD mice and healthy mice returns 41,222 bacterial, 414 fungal, 1836 archaeal, and 1916 viral species across all time points. The ecological network pattern of the gut microbiome in AD mice is characterized by more complex bacterial-bacterial interactions and fungal-fungal interactions, as well as simpler archaeal-archaeal interactions and viral-viral interactions. The development of AD is accompanied by multi-kingdom shifts in the gut microbiome composition, as evidenced by the identification of 1177 differential bacterial, 84 differential fungal, 59 differential archaeal, and 10 differential viral species between healthy and AD mice across all time points. In addition, the functional potential of the gut microbiome is partially altered in the development of AD. Collectively, our findings uncover longitudinal and multi-kingdom gut microbiome alterations in AD and provide a motivation for considering microbiome-based therapeutics during the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chunyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.Z.); (C.Z.); (N.L.); (Q.H.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
29
|
Tannock GW. The human gut metacommunity as a conceptual aid in the development of precision medicine. Front Microbiol 2024; 15:1469543. [PMID: 39464395 PMCID: PMC11503762 DOI: 10.3389/fmicb.2024.1469543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Human gut microbiomes (microbiotas) are highly individualistic in taxonomic composition but nevertheless are functionally similar. Thus, collectively, they comprise a "metacommunity." In ecological terminology, the assembly of human gut microbiomes is influenced by four processes: selection, speciation, drift, and dispersal. As a result of fortuitous events associated with these processes, individual microbiomes are taxonomically "tailor-made" for each host. However, functionally they are "off-the-shelf" because of similar functional outputs resulting from metabolic redundancy developed in host-microbe symbiosis. Because of this, future microbiological and molecular studies of microbiomes should emphasize the metabolic interplay that drives the human gut metacommunity and that results in these similar functional outputs. This knowledge will support the development of remedies for specific functional dysbioses and hence provide practical examples of precision medicine.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Zhang Y, Wang X, Lin J, Liu J, Wang K, Nie Q, Ye C, Sun L, Ma Y, Qu R, Mao Y, Zhang X, Lu H, Xia P, Zhao D, Wang G, Zhang Z, Fu W, Jiang C, Pang Y. A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH. Cell Metab 2024; 36:1823-1838.e6. [PMID: 39079531 DOI: 10.1016/j.cmet.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of Ruminococcus torques (R. torques). Mechanistically, R. torques suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify rtMor as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in R. torques. Finally, we show that either the colonization of R. torques or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify R. torques and HMP as potential TRF mimetics for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China; Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China; State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanpeng Ma
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| | - Yuejian Mao
- Mengniu Institute of Nutrition Science, Shanghai, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Shanghai, China; Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Hua Lu
- National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongyu Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Capital Medical University Chaoyang Hospital, Beijing, China.
| | - Zhipeng Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
| | - Wei Fu
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China; Department of Immunology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Peking University, Beijing, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Preservation, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
31
|
Schweitzer M, Wlasak M, Wassermann B, Marcher F, Poglitsch C, Pirker J, Berg G. 'Tiny Biome Tales': A gamified review about the influence of lifestyle choices on the human microbiome. Microb Biotechnol 2024; 17:e14544. [PMID: 39119866 PMCID: PMC11310763 DOI: 10.1111/1751-7915.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
In the last two decades, new discoveries from microbiome research have changed our understanding of human health. It became evident that daily habits and lifestyle choices shape the human microbiome and ultimately determine health or disease. Therefore, we developed 'Tiny Biome Tales' (https://microbiome.gamelabgraz.at/), a science pedagogy video game designed like a scientific review based exclusively on peer-reviewed articles, to teach about the influence of lifestyle choices on the human microbiome during pregnancy, early and adult life, and related health consequences. Despite the scientific character, it can be played by a broad audience. Here, we also present a scientific assessment and showed that playing the game significantly contributed to knowledge gain. The innovative style of the 'gamified review' represents an ideal platform to disseminate future findings from microbiome research by updating existing and adding new scenes to the game.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Maximilian Wlasak
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Birgit Wassermann
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Florian Marcher
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Christian Poglitsch
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
| | - Johanna Pirker
- Institute of Interactive Systems and Data ScienceGraz University of TechnologyGrazAustria
- Institut für InformatikLudwig‐Maximilians‐UniversitätMunichGermany
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
32
|
Ramsteijn AS, Louis P. Dietary fibre optimisation in support of global health. Microb Biotechnol 2024; 17:e14542. [PMID: 39096198 PMCID: PMC11297433 DOI: 10.1111/1751-7915.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The human gut microbiota influences its host via multiple molecular pathways, including immune system interactions, the provision of nutrients and regulation of host physiology. Dietary fibre plays a crucial role in maintaining a healthy microbiota as its primary nutrient and energy source. Industrialisation has led to a massive decrease of habitual fibre intake in recent times, and fibre intakes across the world are below the national recommendations. This goes hand in hand with other factors in industrialised societies that may negatively affect the gut microbiota, such as medication and increased hygiene. Non-communicable diseases are on the rise in urbanised societies and the optimisation of dietary fibre intake can help to improve global health and prevent disease. Early life interventions shape the developing microbiota to counteract malnutrition, both in the context of industrialised nations with an overabundance of cheap, highly processed foods, as well as in Low- and Middle-Income Countries (LMICs). Adequate fibre intake should, however, be maintained across the life course to promote health. Here we will discuss the current state of dietary fibre research in the global context and consider different intervention approaches.
Collapse
Affiliation(s)
| | - Petra Louis
- Rowett Institute, University of AberdeenAberdeenUK
| |
Collapse
|
33
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
34
|
Marzinelli EM, Thomas T, Vadillo Gonzalez S, Egan S, Steinberg PD. Seaweeds as holobionts: Current state, challenges, and potential applications. JOURNAL OF PHYCOLOGY 2024; 60:785-796. [PMID: 39047050 DOI: 10.1111/jpy.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.
Collapse
Affiliation(s)
- Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Vadillo Gonzalez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Li Y, Peters BA, Yu B, Perreira KM, Daviglus M, Chan Q, Knight R, Boerwinkle E, Isasi CR, Burk R, Kaplan R, Wang T, Qi Q. Blood metabolomic shift links diet and gut microbiota to multiple health outcomes among Hispanic/Latino immigrants in the U.S. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.19.24310722. [PMID: 39072018 PMCID: PMC11275661 DOI: 10.1101/2024.07.19.24310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Immigrants from less industrialized countries who are living in the U.S. often bear an elevated risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable information on environmental exposure and the pathogenesis of chronic diseases, offering insights into the link between environmental factors and disease burden. Analyzing 634 serum metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood metabolic shift during acculturation. Machine learning highlighted the prominent role of non-genetic factors, especially food and gut microbiota, in these changes. Immigration-related metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born Hispanics, and with meat-based or processed food and unfavorable gut bacteria for U.S.-born Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-related metabolic changes, which were also linked to increased risk of diabetes, severe obesity, chronic kidney disease, and asthma. Graphical abstract Highlights A substantial proportion of identified blood metabolites differ between U.S.-born and foreign-born Hispanics/Latinos in the U.S.Food and gut microbiota are the major modifiable contributors to blood metabolomic difference between U.S.-born and foreign-born Hispanics/Latinos.U.S. nativity related metabolites collectively correlate with a spectrum of clinical traits and chronic diseases.
Collapse
|
36
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
37
|
Alverdy JC, Polcari A, Benjamin A. Social determinants of health, the microbiome, and surgical injury. J Trauma Acute Care Surg 2024; 97:158-163. [PMID: 38441071 PMCID: PMC11199116 DOI: 10.1097/ta.0000000000004298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
ABSTRACT Postinjury infection continues to plague trauma and emergency surgery patients fortunate enough to survive the initial injury. Rapid response systems, massive transfusion protocols, and the development of level 1 trauma centers, among others, have improved the outcome for millions of patients worldwide. Nonetheless, despite this excellent initial care, patients still remain vulnerable to postinjury infections that can result in organ failure, prolonged critical illness, and even death. While risk factors have been identified (degree of injury, blood loss, time to definitive care, immunocompromise, etc.), they remain probabilistic, not deterministic, and do not explain outcome variability at the individual case level. Here, we assert that analysis of the social determinants of health, as reflected in the patient's microbiome composition (i.e., community structure, membership) and function (metabolomic output), may offer a "window" with which to define individual variability following traumatic injury. Given emerging knowledge in the field, a more comprehensive evaluation of biomarkers within the patient's microbiome, from stool-based microbial metabolites to those in plasma and those present in exhaled breath, when coupled with clinical metadata and machine learning, could lead to a more deterministic assessment of an individual's risk for a poor outcome and those factors that are modifiable. The aim of this piece is to examine how measurable elements of the social determinants of health and the life history of the patient may be buried within the ecologic memory of the gut microbiome. Here we posit that interrogation of the gut microbiome in this manner may be used to inform novel approaches to drive recovery following a surgical injury.
Collapse
Affiliation(s)
- John C Alverdy
- From the Department of Surgery, University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
38
|
Sprague KL, Rajakaruna S, Bandow B, Burchat N, Bottomley M, Sampath H, Paliy O. Gut Microbiota Fermentation of Digested Almond-Psyllium-Flax Seed-Based Artisan Bread Promotes Mediterranean Diet-Resembling Microbial Community. Microorganisms 2024; 12:1189. [PMID: 38930571 PMCID: PMC11205402 DOI: 10.3390/microorganisms12061189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Different modifications of the standard bread recipe have been proposed to improve its nutritional and health benefits. Here, we utilized the in vitro Human Gut Simulator (HGS) to assess the fermentation of one such artisan bread by human gut microbiota. Dried and milled bread, composed of almond flour, psyllium husks, and flax seeds as its three main ingredients, was first subjected to an in vitro protocol designed to mimic human oro-gastro-intestinal digestion. The bread digest was then supplied to complex human gut microbial communities, replacing the typical Western diet-based medium (WM) of the GHS system. Switching the medium from WM to bread digest resulted in statistically significant alterations in the community structure, encoded functions, produced short-chain fatty acids, and available antioxidants. The abundances of dietary fiber degraders Enterocloster, Mitsuokella, and Prevotella increased; levels of Gemmiger, Faecalibacterium, and Blautia decreased. These community alterations resembled the previously revealed differences in the distal gut microbiota of healthy human subjects consuming typical Mediterranean vs. Western-pattern diets. Therefore, the consumption of bread high in dietary fiber and unsaturated fatty acids might recapitulate the beneficial effects of the Mediterranean diet on the gut microbiota.
Collapse
Affiliation(s)
- Kourtney L. Sprague
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Sumudu Rajakaruna
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Brant Bandow
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Natalie Burchat
- New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael Bottomley
- Statistical Consulting Center, Wright State University, Dayton, OH 45435, USA
| | - Harini Sampath
- New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
39
|
Bourqqia-Ramzi M, Mansilla-Guardiola J, Muñoz-Rodriguez D, Quarta E, Lombardo-Hernandez J, Murciano-Cespedosa A, Conejero-Meca FJ, Mateos González Á, Geuna S, Garcia-Esteban MT, Herrera-Rincon C. From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis. Int J Mol Sci 2024; 25:6233. [PMID: 38892419 PMCID: PMC11172653 DOI: 10.3390/ijms25116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus Escherichia coli (E. coli), and a Firmicutes Gram-positive coccus Enterococcus faecalis (E. faecalis). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.
Collapse
Affiliation(s)
- Marwane Bourqqia-Ramzi
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Jesús Mansilla-Guardiola
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Muñoz-Rodriguez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Elisa Quarta
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Turin, Italy
| | - Juan Lombardo-Hernandez
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Antonio Murciano-Cespedosa
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- Neuro-Computing and Neuro-Robotics Research Group, Neural Plasticity Research Group Instituto Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco José Conejero-Meca
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| | - Álvaro Mateos González
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy
| | - María Teresa Garcia-Esteban
- Unit of Microbiology, Department of Genetic, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Celia Herrera-Rincon
- Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-R.); (J.M.-G.)
| |
Collapse
|
40
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
41
|
Zhou Y, Zeng Y, Wang R, Pang J, Wang X, Pan Z, Jin Y, Chen Y, Yang Y, Ling W. Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients 2024; 16:1086. [PMID: 38613119 PMCID: PMC11013445 DOI: 10.3390/nu16071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Resveratrol (RES) has been reported to prevent hyperuricemia (HUA); however, its effect on intestinal uric acid metabolism remains unclear. This study evaluated the impact of RES on intestinal uric acid metabolism in mice with HUA induced by a high-fat diet (HFD). Moreover, we revealed the underlying mechanism through metagenomics, fecal microbiota transplantation (FMT), and 16S ribosomal RNA analysis. We demonstrated that RES reduced the serum uric acid, creatinine, urea nitrogen, and urinary protein levels, and improved the glomerular atrophy, unclear renal tubule structure, fibrosis, and renal inflammation. The results also showed that RES increased intestinal uric acid degradation. RES significantly changed the intestinal flora composition of HFD-fed mice by enriching the beneficial bacteria that degrade uric acid, reducing harmful bacteria that promote inflammation, and improving microbial function via the upregulation of purine metabolism. The FMT results further showed that the intestinal microbiota is essential for the effect of RES on HUA, and that Lactobacillus may play a key role in this process. The present study demonstrated that RES alleviates HFD-induced HUA and renal injury by regulating the gut microbiota composition and the metabolism of uric acid.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Ruijie Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (Y.Z.); (J.P.); (X.W.); (Z.P.); (Y.J.); (Y.C.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China;
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
42
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
43
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Zong Y, Meng J, Mao T, Han Q, Zhang P, Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review. Front Pharmacol 2023; 14:1273407. [PMID: 37942490 PMCID: PMC10628444 DOI: 10.3389/fphar.2023.1273407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Damage to the intestinal mucosal barrier play an important role in the pathogenesis of ulcerative colitis (UC). Discovering the key regulators and repairing the disturbed barrier are crucial for preventing and treating UC. Traditional Chinese medicine (TCM) has been proved to be effective on treating UC and has exhibited its role in repairing the intestinal mucosal barrier. We summarized the evidence of TCM against UC by protecting and repairing the physical barrier, chemical barrier, immune barrier, and biological barrier. Mechanisms of increasing intestinal epithelial cells, tight junction proteins, and mucins, promoting intestinal stem cell proliferation, restoring the abundance of the intestinal microbiota, and modulating the innate and adaptive immunity in gut, were all involved in. Some upstream proteins and signaling pathways have been elucidated. Based on the existing problems, we suggested future studies paying attention to patients' samples and animal models of UC and TCM syndromes, conducting rescue experiments, exploring more upstream regulators, and adopting new technical methods. We hope this review can provide a theoretical basis and novel ideas for clarifying the mechanisms of TCM against UC via repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Yichen Zong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Qiang Han
- Department of Traditional Chinese Medicine, Health Service Center of Beiyuan Community, Beijing, China
| | - Peng Zhang
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Lei Shi
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| |
Collapse
|
45
|
Rossetto Marcelino V. The value of connections. eLife 2023; 12:e92319. [PMID: 37725094 PMCID: PMC10508881 DOI: 10.7554/elife.92319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
High proportions of gut bacteria that produce their own food can be an indicator for poor gut health.
Collapse
Affiliation(s)
- Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of Biosciences and Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| |
Collapse
|
46
|
Orozco-Mosqueda MDC, Kumar A, Babalola OO, Santoyo G. Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:3226. [PMID: 37765390 PMCID: PMC10535606 DOI: 10.3390/plants12183226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| |
Collapse
|
47
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|