1
|
Bahn YJ, Wang Y, Dagur P, Scott N, Cero C, Long KT, Nguyen N, Cypess AM, Rane SG. TGF-β antagonism synergizes with PPARγ agonism to reduce fibrosis and enhance beige adipogenesis. Mol Metab 2024; 90:102054. [PMID: 39461664 PMCID: PMC11570741 DOI: 10.1016/j.molmet.2024.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES Adipose tissue depots vary markedly in their ability to store and metabolize triglycerides, undergo beige adipogenesis and susceptibility to metabolic disease. The molecular mechanisms that underlie such heterogeneity are not entirely clear. Previously, we showed that TGF-β signaling suppresses beige adipogenesis via repressing the recruitment of dedicated beige progenitors. Here, we find that TGF-β signals dynamically regulate the balance between adipose tissue fibrosis and beige adipogenesis. METHODS We investigated adipose tissue depot-specific differences in activation of TGF-β signaling in response to dietary challenge. RNA-seq and fluorescence activated cell sorting was performed to identify and characterize cells responding to changes in TGF-β signaling status. Mouse models, pharmacological strategies and human adipose tissue analyses were performed to further define the influence of TGF-β signaling on fibrosis and functional beige adipogenesis. RESULTS Elevated basal and high-fat diet inducible activation of TGF-β/Smad3 signaling was observed in the visceral adipose tissue depot. Activation of TGF-β/Smad3 signaling was associated with increased adipose tissue fibrosis. RNA-seq combined with fluorescence-activated cell sorting of stromal vascular fraction of epididymal white adipose tissue depot resulted in identification of TGF-β/Smad3 regulated ITGA5+ fibrogenic progenitors. TGF-β/Smad3 signal inhibition, genetically or pharmacologically, reduced fibrosis and increased functional beige adipogenesis. TGF-β/Smad3 antagonized the beneficial effects of PPARγ whereas TGF-β receptor 1 inhibition synergized with actions of rosiglitazone, a PPARγ agonist, to dampen fibrosis and promote beige adipogenesis. Positive correlation between TGF-β activation and ITGA5 was observed in human adipose tissue, with visceral adipose tissue depots exhibiting higher fibrosis potential than subcutaneous or brown adipose tissue depots. CONCLUSIONS Basal and high-fat diet inducible activation of TGF-β underlies the heterogeneity of adipose tissue depots. TGF-β/Smad3 activation promotes adipose tissue fibrosis and suppresses beige progenitors. Together, these dual mechanisms preclude functional beige adipogenesis. Controlled inhibition of TβRI signaling and concomitant PPARγ stimulation can suppress adipose tissue fibrosis and promote beige adipogenesis to improve metabolism.
Collapse
Affiliation(s)
- Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Yanling Wang
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Pradeep Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Nicholas Scott
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Cheryl Cero
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Kelly T Long
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Nhuquynh Nguyen
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sushil G Rane
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
3
|
Aboouf MA, Gorr TA, Hamdy NM, Gassmann M, Thiersch M. Myoglobin in Brown Adipose Tissue: A Multifaceted Player in Thermogenesis. Cells 2023; 12:2240. [PMID: 37759463 PMCID: PMC10526770 DOI: 10.3390/cells12182240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Brown adipose tissue (BAT) plays an important role in energy homeostasis by generating heat from chemical energy via uncoupled oxidative phosphorylation. Besides its high mitochondrial content and its exclusive expression of the uncoupling protein 1, another key feature of BAT is the high expression of myoglobin (MB), a heme-containing protein that typically binds oxygen, thereby facilitating the diffusion of the gas from cell membranes to mitochondria of muscle cells. In addition, MB also modulates nitric oxide (NO•) pools and can bind C16 and C18 fatty acids, which indicates a role in lipid metabolism. Recent studies in humans and mice implicated MB present in BAT in the regulation of lipid droplet morphology and fatty acid shuttling and composition, as well as mitochondrial oxidative metabolism. These functions suggest that MB plays an essential role in BAT energy metabolism and thermogenesis. In this review, we will discuss in detail the possible physiological roles played by MB in BAT thermogenesis along with the potential underlying molecular mechanisms and focus on the question of how BAT-MB expression is regulated and, in turn, how this globin regulates mitochondrial, lipid, and NO• metabolism. Finally, we present potential MB-mediated approaches to augment energy metabolism, which ultimately could help tackle different metabolic disorders.
Collapse
Affiliation(s)
- Mostafa A. Aboouf
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Nadia M. Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Guilherme A, Rowland LA, Wang H, Czech MP. The adipocyte supersystem of insulin and cAMP signaling. Trends Cell Biol 2023; 33:340-354. [PMID: 35989245 PMCID: PMC10339226 DOI: 10.1016/j.tcb.2022.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Adipose tissue signals to brain, liver, and muscles to control whole body metabolism through secreted lipid and protein factors as well as neurotransmission, but the mechanisms involved are incompletely understood. Adipocytes sequester triglyceride (TG) in fed conditions stimulated by insulin, while in fasting catecholamines trigger TG hydrolysis, releasing glycerol and fatty acids (FAs). These antagonistic hormone actions result in part from insulin's ability to inhibit cAMP levels generated through such G-protein-coupled receptors as catecholamine-activated β-adrenergic receptors. Consistent with these antagonistic signaling modes, acute actions of catecholamines cause insulin resistance. Yet, paradoxically, chronically activating adipocytes by catecholamines cause increased glucose tolerance, as does insulin. Recent results have helped to unravel this conundrum by revealing enhanced complexities of these hormones' signaling networks, including identification of unexpected common signaling nodes between these canonically antagonistic hormones.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Liu L, Zhou X, Zhang Q, Li L, Shang Y, Wang Z, Zhong M, Chen Y, Zhang W, Tang M. Activin receptor-like kinase 7 silencing alleviates cardiomyocyte apoptosis, cardiac fibrosis, and dysfunction in diabetic rats. Exp Biol Med (Maywood) 2022; 247:1397-1409. [PMID: 35666032 PMCID: PMC9493760 DOI: 10.1177/15353702221095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activin receptor-like kinase 7 (ALK7) is associated with lipometabolism and insulin sensitivity. Our previous study demonstrated that ALK7 participated in high glucose-induced cardiomyocyte apoptosis. The aim of our study was to investigate whether ALK7 plays an important role in modulating diabetic cardiomyopathy (DCM) and the mechanisms involved. The model of diabetes was induced in male Sprague-Dawley rats (120-140 g) by high-fat diet and intraperitoneal injections of low-dose streptozotocin (30 mg/kg). Animals were separated into four groups: control, DCM, DCM with ALK7 silencing, and DCM with vehicle control. The cardiac function was assessed by catheterization. Histopathologic analyses of collagen content and apoptosis rate, and protein analyses of ALK7, Smad2/3, Akt, Caspase3, and Bax/Bcl2 were performed. This study showed a rat model of DCM with hyperglycemia, severe insulin resistance, left ventricular dysfunction, and structural remodeling. With ALK7 silencing, the apoptotic cell death (apoptosis rate assessed by TUNEL, ratio of Bax/Bcl2 and expression of cleaved Caspase3), fibrosis areas, and Collagen I-to-III ratio decreased significantly. The insulin resistance and diastolic dysfunction were also ameliorated by ALK7 silencing. Furthermore, the depressed phosphorylation of Akt was restored while elevated phosphorylation of Smad2/3 decreased after the silencing of ALK7. The results suggest ALK7 silencing plays a protective role in DCM and may serve as a potential target for the treatment of human DCM.
Collapse
Affiliation(s)
- Lin Liu
- Department of Geriatric Medicine, Qilu
Hospital of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji’nan
250012, China
| | - Xin Zhou
- Department of Emergency Medicine, Qilu
Hospital of Shandong University, Ji’nan 250012, China,Key Laboratory of Emergency and
Critical Care Medicine of Shandong Province, Key Laboratory of
Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital
of Shandong University, Ji’nan 250012, China
| | - Qiyu Zhang
- Department of Cardiology, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry
of Health, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Li Li
- Department of Cardiology, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry
of Health, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Yuanyuan Shang
- Department of Cardiology, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry
of Health, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Zhihao Wang
- Department of Geriatric Medicine, Qilu
Hospital of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Proteomics of Shandong Province, Qilu Hospital of Shandong University, Ji’nan
250012, China
| | - Ming Zhong
- Department of Cardiology, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry
of Health, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu
Hospital of Shandong University, Ji’nan 250012, China,Key Laboratory of Emergency and
Critical Care Medicine of Shandong Province, Key Laboratory of
Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital
of Shandong University, Ji’nan 250012, China
| | - Wei Zhang
- Department of Cardiology, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Key Laboratory of Cardiovascular
Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry
of Health, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Mengxiong Tang
- Department of Emergency Medicine, Qilu
Hospital of Shandong University, Ji’nan 250012, China,Key Laboratory of Emergency and
Critical Care Medicine of Shandong Province, Key Laboratory of
Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital
of Shandong University, Ji’nan 250012, China,Mengxiong Tang.
| |
Collapse
|
6
|
Balazova L, Balaz M, Horvath C, Horváth Á, Moser C, Kovanicova Z, Ghosh A, Ghoshdastider U, Efthymiou V, Kiehlmann E, Sun W, Dong H, Ding L, Amri EZ, Nuutila P, Virtanen KA, Niemi T, Ukropcova B, Ukropec J, Pelczar P, Lamla T, Hamilton B, Neubauer H, Wolfrum C. GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1. Nat Commun 2021; 12:7144. [PMID: 34880217 PMCID: PMC8655035 DOI: 10.1038/s41467-021-27442-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFβ signalling pathway and regulates the activity of the TGFβ receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGFβ signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.
Collapse
Affiliation(s)
- Lucia Balazova
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 84505, Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| | - Carla Horvath
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Áron Horváth
- Biomechanics Laboratory, University Hospital Balgrist, University of Zurich, 8008, Zurich, Switzerland
- Institute of Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Caroline Moser
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Zuzana Kovanicova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
- Functional Genomics Centre Zurich, ETH Zurich/ University of Zurich, 8057, Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Vissarion Efthymiou
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Elke Kiehlmann
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Lianggong Ding
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Ez-Zoubir Amri
- Université Côte d'Azur, French National Centre for Scientific Research, Inserm, iBV, 06107, Nice, France
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520, Turku, Finland
| | | | - Tarja Niemi
- Department of Surgery, Turku University Hospital, 20520, Turku, Finland
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 84505, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, 3350, Basel, Switzerland
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Bradford Hamilton
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, 88397, Biberach an der Riss, Germany
| | - Heike Neubauer
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, 88397, Biberach an der Riss, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
7
|
Blackburn ML, Wankhade UD, Ono-Moore KD, Chintapalli SV, Fox R, Rutkowsky JM, Willis BJ, Tolentino T, Lloyd KCK, Adams SH. On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E47-E62. [PMID: 33969705 PMCID: PMC8321818 DOI: 10.1152/ajpendo.00662.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Renee Fox
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
8
|
Ibáñez CF. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7. FEBS J 2021; 289:5776-5797. [PMID: 34173336 DOI: 10.1111/febs.16090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
ALK7 (Activin receptor-like kinase 7) is a member of the TGF-β receptor superfamily predominantly expressed by cells and tissues involved in endocrine functions, such as neurons of the hypothalamus and pituitary, pancreatic β-cells and adipocytes. Recent studies have begun to delineate the processes regulated by ALK7 in these tissues and how these become integrated with the homeostatic regulation of mammalian metabolism. The picture emerging indicates that ALK7's primary function in metabolic regulation is to limit catabolic activities and preserve energy. Aside of the hypothalamic arcuate nucleus, the function of ALK7 elsewhere in the brain, particularly in the cerebellum, where it is abundantly expressed, remains to be elucidated. Although our understanding of the basic molecular events underlying ALK7 signaling has benefited from the vast knowledge available on TGF-β receptor mechanisms, how these connect to the physiological functions regulated by ALK7 in different cell types is still incompletely understood. Findings of missense and nonsense variants in the Acvr1c gene, encoding ALK7, of some mouse strains and human subjects indicate a tolerance to ALK7 loss of function. Recent discoveries suggest that specific inhibitors of ALK7 may have therapeutic applications in obesity and metabolic syndrome without overt adverse effects.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China.,Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
9
|
Cheng WL, Zhang Q, Cao JL, Chen XL, Li W, Zhang L, Chao SP, Zhao F. ALK7 Acts as a Positive Regulator of Macrophage Activation through Down-Regulation of PPARγ Expression. J Atheroscler Thromb 2020; 28:375-384. [PMID: 32641645 PMCID: PMC8147563 DOI: 10.5551/jat.54445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Activin receptor-like kinase 7 (ALK7) acts as a key receptor for TGF-β family members, which play important roles in regulating cardiovascular activity. However, ALK7's potential role, and underlying mechanism, in the macrophage activation involved in atherogenesis remain unexplored. Methods: ALK7 expression in macrophages was tested by RT-PCR, western blot, and immunofluorescence co-staining. The loss-of-function strategy using AdshALK7 was performed for functional study. Oil Red O staining was used to observe the foam cell formation, while inflammatory mediators and genes related to cholesterol efflux and influx were determined by RT-PCR and western blot. A PPARγ inhibitor (G3335) was used to reveal whether PPARγ was required for ALK7 to affect macrophage activation. Results: The results exhibited upregulated ALK7 expression in oxidized low-density lipoprotein (Ox-LDL) induced bone marrow derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs), isolated from ApoE-deficient mice, while ALK7's strong immunoreactivity in BMDMs was observed. ALK7 knockdown significantly attenuated pro-inflammatory, but promoted anti-inflammatory, macrophage markers expression. Additionally, ALK7 silencing decreased foam cell formation, accompanied by the up-regulation of ABCA1 and ABCG1 involved in cholesterol efflux but the down-regulation of CD36 and SR-A implicated in cholesterol influx. Mechanistically, ALK7 knockdown upregulated PPARγ expression, which was required for the ameliorated effect of ALK7 silencing macrophage activation. Conclusions: Our study demonstrated that ALK7 was a positive regulator for macrophage activation, partially through down-regulation of PPARγ expression, which suggested that neutralizing ALK7 might be promising therapeutic strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Quan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Xi-Lu Chen
- Department of Pediatric Surgery, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Wenyan Li
- Department of Pharmacy, The First Hospital of Nanchang
| | - Lin Zhang
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Sheng-Ping Chao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Fang Zhao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| |
Collapse
|
10
|
ALK7 Promotes Vascular Smooth Muscle Cells Phenotypic Modulation by Negative Regulating PPARγ Expression. J Cardiovasc Pharmacol 2020; 76:237-245. [PMID: 32467530 DOI: 10.1097/fjc.0000000000000857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As a receptor for transforming growth factor-β, nodal and activin, activin receptor-like kinase 7 (ALK7) previously acts as a suppressor of tumorigenesis and metastasis, which has emerged to play a key role in cardiovascular diseases. However, the potential effect and molecular mechanism of ALK7 on vascular smooth muscle cells' (VSMCs) phenotypic modulation have not been investigated. Using cultured mouse VSMCs with platelet-derived growth factor-BB administration, we observed that ALK7 showed a significantly increased expression in VSMCs accompanied by decreased VSMCs differentiation marker genes. Loss-of-function study demonstrated that ALK7 knockdown inhibited platelet-derived growth factor-BB-induced VSMCs phenotypic modulation characterized by increased VSMCs differentiation markers, reduced proliferation, and migration of VSMCs. Such above effects were reversed by ALK7 overexpression. Notably, we noticed that ALK7 silencing dramatically enhanced PPARγ expression, which was required for the attenuated effect of ALK7 knockdown on VSMCs phenotypic modulation. Collected, we identified that ALK7 acted as a novel and positive regulator for VSMCs phenotypic modulation partially through inactivation of PPARγ, which suggested that neutralization of ALK7 might act as a promising therapeutic strategy of intimal hyperplasia.
Collapse
|
11
|
Marmol P, Krapacher F, Ibáñez CF. Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. eLife 2020; 9:54721. [PMID: 32366358 PMCID: PMC7200161 DOI: 10.7554/elife.54721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Adaptation to nutrient availability is crucial for survival. Upon nutritional stress, such as during prolonged fasting or cold exposure, organisms need to balance the feeding of tissues and the maintenance of body temperature. The mechanisms that regulate the adaptation of brown adipose tissue (BAT), a key organ for non-shivering thermogenesis, to variations in nutritional state are not known. Here we report that specific deletion of the activin receptor ALK7 in BAT resulted in fasting-induced hypothermia due to exaggerated catabolic activity in brown adipocytes. After overnight fasting, BAT lacking ALK7 showed increased expression of genes responsive to nutrient stress, including the upstream regulator KLF15, aminoacid catabolizing enzymes, notably proline dehydrogenase (POX), and adipose triglyceride lipase (ATGL), as well as markedly reduced lipid droplet size. In agreement with this, ligand stimulation of ALK7 suppressed POX and KLF15 expression in both mouse and human brown adipocytes. Treatment of mutant mice with the glucocorticoid receptor antagonist RU486 restored KLF15 and POX expression levels in mutant BAT, suggesting that loss of BAT ALK7 results in excessive activation of glucocorticoid signaling upon fasting. These results reveal a novel signaling pathway downstream of ALK7 which regulates the adaptation of BAT to nutrient availability by limiting nutrient stress-induced overactivation of catabolic responses in brown adipocytes.
Collapse
Affiliation(s)
- Patricia Marmol
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Favio Krapacher
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|