1
|
Wang Y, Zhang Y, Leung VH, Seradj SH, Sonmez U, Servin-Vences MR, Xiao S, Ren X, Wang L, Mishkanian SA, Kini SA, Long JZ, Lipomi DJ, Ye L, Patapoutian A. A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation. Cell Metab 2025; 37:1001-1011.e7. [PMID: 40054462 DOI: 10.1016/j.cmet.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/14/2024] [Accepted: 02/06/2025] [Indexed: 03/12/2025]
Abstract
Compared with the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work has revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons. PIEZO2 deletion in fat-innervating neurons induced transcriptional programs in adipose tissue resembling sympathetic activation, mirroring DRG ablation. Conversely, a gain-of-function PIEZO2 mutant shifted the adipose phenotypes in the opposite direction. These results indicate that PIEZO2 plays a major role in the sensory regulation of adipose tissues. This discovery opens new avenues for exploring mechanosensation in organs not traditionally considered mechanically active, such as adipose tissues, and therefore sheds light on the broader significance of mechanosensation in regulating organ function and homeostasis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Verina H Leung
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Saba Heydari Seradj
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utku Sonmez
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiangyu Ren
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leon Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sassan A Mishkanian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sejal A Kini
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Darren J Lipomi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Li Ye
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Wang Y, Zhang Y, Leung V, Seradj SH, Sonmez U, Servin-Vences R, Lipomi D, Ye L, Patapoutian A. A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624210. [PMID: 39605632 PMCID: PMC11601537 DOI: 10.1101/2024.11.18.624210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Compared to the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons. We found that selective PIEZO2 deletion in fat-innervating neurons phenocopied the molecular alternations in adipose tissue caused by DRG ablation. Conversely, a gain-of-function PIEZO2 mutant shifted the adipose phenotypes in the opposite direction. These results indicate that PIEZO2 plays a major role in the sensory regulation of adipose tissues. This discovery opens new avenues for exploring mechanosensation in organs not traditionally considered mechanically active, such as the adipose tissues, and therefore sheds light on the broader significance of mechanosensation in regulating organ function and homeostasis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Verina Leung
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Saba Heydari Seradj
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Utku Sonmez
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Jacobs School of Engineering, UCSD, San Diego, United States
| | - Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Darren Lipomi
- Jacobs School of Engineering, UCSD, San Diego, United States
| | - Li Ye
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
- Lead contact
| |
Collapse
|
3
|
Jarrah M, Tasabehji D, Fraer A, Mokadem M. Spinal afferent neurons: emerging regulators of energy balance and metabolism. Front Mol Neurosci 2024; 17:1479876. [PMID: 39582948 PMCID: PMC11583444 DOI: 10.3389/fnmol.2024.1479876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in neurophysiology have challenged the long-held paradigm that vagal afferents serve as the primary conduits for physiological signals governing food intake and energy expenditure. An expanding body of evidence now illuminates the critical role of spinal afferent neurons in these processes, necessitating a reevaluation of our understanding of energy homeostasis regulation. This comprehensive review synthesizes cutting-edge research elucidating the multifaceted functions of spinal afferent neurons in maintaining metabolic equilibrium. Once predominantly associated with nociception and pathological states, these neurons are now recognized as integral components in the intricate network regulating feeding behavior, nutrient sensing, and energy balance. We explore the role of spinal afferents in food intake and how these neurons contribute to satiation signaling and meal termination through complex gut-brain axis pathways. The review also delves into the developing evidence that spinal afferents play a crucial role in energy expenditure regulation. We explore the ability of these neuronal fibers to carry signals that can modulate feeding behavior as well as adaptive thermogenesis in adipose tissue influencing basal metabolic rate, and thereby contributing to overall energy balance. This comprehensive analysis not only challenges existing paradigms but also opens new avenues for therapeutic interventions suggesting potential targets for treating metabolic disorders. In conclusion, this review highlights the need for a shift in our understanding of energy homeostasis, positioning spinal afferent neurons as key players in the intricate web of metabolic regulation.
Collapse
Affiliation(s)
- Mohammad Jarrah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana Tasabehji
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aviva Fraer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohamad Mokadem
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Orders of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
4
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
5
|
Lu M, Yu Z, Yang X, An L, Jing X, Xu T, Yuan M, Xu B, Yu Z. Remodelling the inguinal adipose sensory system to switch on the furnace: Electroacupuncture stimulation induces brown adipose thermogenesis. Diabetes Obes Metab 2024; 26:1430-1442. [PMID: 38229447 DOI: 10.1111/dom.15444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024]
Abstract
Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, β3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.
Collapse
Affiliation(s)
- Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
7
|
Alex Thomas M, Cui X, Artinian LR, Cao Q, Jing J, Silva FC, Wang S, Zigman JM, Sun Y, Shi H, Xue B. Crosstalk between Gut Sensory Ghrelin Signaling and Adipose Tissue Sympathetic Outflow Regulates Metabolic Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568689. [PMID: 38076894 PMCID: PMC10705268 DOI: 10.1101/2023.11.25.568689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The stomach-derived orexigenic hormone ghrelin is a key regulator of energy homeostasis and metabolism in humans. The ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR), is widely expressed in the brain and gastrointestinal vagal sensory neurons, and neuronal GHSR knockout results in a profoundly beneficial metabolic profile and protects against diet-induced obesity (DIO) and insulin resistance. Here we show that in addition to the well characterized vagal GHSR, GHSR is robustly expressed in gastrointestinal sensory neurons emanating from spinal dorsal root ganglia. Remarkably, sensory neuron GHSR deletion attenuates DIO through increased energy expenditure and sympathetic outflow to adipose tissue independent of food intake. In addition, neuronal viral tract tracing reveals prominent crosstalk between gut non-vagal sensory afferents and adipose sympathetic outflow. Hence, these findings demonstrate a novel gut sensory ghrelin signaling pathway critical for maintaining energy homeostasis.
Collapse
Affiliation(s)
- M. Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA
| | - Felipe C. Silva
- Department of Biology, Georgia State University, Atlanta, GA
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
8
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|
9
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
McMillan DW, Bigford GE, Farkas GJ. The Physiology of Neurogenic Obesity: Lessons from Spinal Cord Injury Research. Obes Facts 2023; 16:313-325. [PMID: 37231872 PMCID: PMC10427964 DOI: 10.1159/000530888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND A spinal cord injury (SCI) from trauma or disease impairs sensorimotor pathways in somatic and autonomic divisions of the nervous system, affecting multiple body systems. Improved medical practices have increased survivability and life expectancy after SCI, allowing for the development of extensive metabolic comorbidities and profound changes in body composition that culminate in prevalent obesity. SUMMARY Obesity is the most common cardiometabolic component risk in people living with SCI, with a diagnostic body mass index cutoff of 22 kg/m2 to account for a phenotype of high adiposity and low lean mass. The metameric organization of specific divisions of the nervous system results in level-dependent pathology, with resulting sympathetic decentralization altering physiological functions such as lipolysis, hepatic lipoprotein metabolism, dietary fat absorption, and neuroendocrine signaling. In this manner, SCI provides a unique opportunity to study in vivo the "neurogenic" components of certain pathologies that otherwise are not readily observable in other populations. We discuss the unique physiology of neurogenic obesity after SCI, including the altered functions mentioned above as well as structural changes such as reduced skeletal muscle and bone mass and increased lipid deposition in the adipose tissue, skeletal muscle, bone marrow, and liver. KEY MESSAGE The study of neurogenic obesity after SCI gives us a unique neurological perspective on the physiology of obesity. The lessons learned from this field can guide future research and advancements to inform the study of obesity in persons with and without SCI.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for The Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Gregory E. Bigford
- Christine E. Lynn Rehabilitation Center for The Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Gary J. Farkas
- Christine E. Lynn Rehabilitation Center for The Miami Project to Cure Paralysis at UHealth/Jackson Memorial, Miami, FL, USA
- Department of Physical Medicine and Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Chen D, Qi Y, Zhang J, Yang Y. Deconstruction of a hypothalamic astrocyte-white adipocyte sympathetic axis that regulates lipolysis in mice. Nat Commun 2022; 13:7536. [PMID: 36477150 PMCID: PMC9729228 DOI: 10.1038/s41467-022-35258-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The role of non-neuronal glial cells in the regulation of adipose sympathetic nerve activity and adipocyte functions such as white adipose tissue lipid lipolysis is poorly understood. Here, we combine chemo/optogenetic manipulations of medio-basal hypothalamic astrocytes, real-time fiber photometry monitoring of white adipose tissue norepinephrine (NE) contents and nerve activities, electrophysiological recordings of local sympathetic inputs to inguinal white adipose tissue (iWAT), and adipose tissue lipid lipolytic assays to define the functional roles of hypothalamic astrocytes in the regulation of iWAT sympathetic outflow and lipolysis. Our results show that astrocyte stimulation elevates iWAT NE contents, excites sympathetic neural inputs and promotes lipolysis. Mechanistically, we find that sympathetic paravertebral ganglia (PG) partake in those astrocyte effects. We also find that astrocyte stimulation excites pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH), and chemogenetic inhibition of POMC neurons blunts the effects induced by astrocyte stimulation. While we cannot exclude potential roles played by other cell populations such as microglia, our findings in this study reveal a central astrocyte-peripheral adipocyte axis modulating sympathetic drive to adipose tissues and adipocyte functions, one that might serve as a target for therapeutic intervention in the treatment of obesity.
Collapse
Affiliation(s)
- Dan Chen
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jia Zhang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Brain-to-BAT - and Back?: Crosstalk between the Central Nervous System and Thermogenic Adipose Tissue in Development and Therapy of Obesity. Brain Sci 2022; 12:brainsci12121646. [PMID: 36552107 PMCID: PMC9775239 DOI: 10.3390/brainsci12121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The body of mammals harbors two distinct types of adipose tissue: while cells within the white adipose tissue (WAT) store surplus energy as lipids, brown adipose tissue (BAT) is nowadays recognized as the main tissue for transforming chemical energy into heat. This process, referred to as 'non-shivering thermogenesis', is facilitated by the uncoupling of the electron transport across mitochondrial membranes from ATP production. BAT-dependent thermogenesis acts as a safeguarding mechanism under reduced ambient temperature but also plays a critical role in metabolic and energy homeostasis in health and disease. In this review, we summarize the evolutionary structure, function and regulation of the BAT organ under neuronal and hormonal control and discuss its mutual interaction with the central nervous system. We conclude by conceptualizing how better understanding the multifaceted communicative links between the brain and BAT opens avenues for novel therapeutic approaches to treat obesity and related metabolic disorders.
Collapse
|
17
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
18
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
19
|
Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022; 10:979251. [PMID: 36200038 PMCID: PMC9529070 DOI: 10.3389/fcell.2022.979251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, various dietary and social factors led to the development of increased brain sizes alongside large adipose tissue stores. Complex reciprocal signaling mechanisms allow for a fine-tuned interaction between the two organs to regulate energy homeostasis of the organism. As an endocrine organ, adipose tissue secretes various hormones, cytokines, and metabolites that signal energy availability to the central nervous system (CNS). Vice versa, the CNS is a critical regulator of adipose tissue function through neural networks that integrate information from the periphery and regulate sympathetic nerve outflow. This review discusses the various reciprocal signaling mechanisms in the CNS and adipose tissue to maintain organismal energy homeostasis. We are focusing on the integration of afferent signals from the periphery in neuronal populations of the mediobasal hypothalamus as well as the efferent signals from the CNS to adipose tissue and its implications for adipose tissue function. Furthermore, we are discussing central mechanisms that fine-tune the immune system in adipose tissue depots and contribute to organ homeostasis. Elucidating this complex signaling network that integrates peripheral signals to generate physiological outputs to maintain the optimal energy balance of the organism is crucial for understanding the pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
Collapse
|
20
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Frei IC, Weissenberger D, Ritz D, Heusermann W, Colombi M, Shimobayashi M, Hall MN. Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis. Mol Metab 2022; 65:101580. [PMID: 36028121 PMCID: PMC9472075 DOI: 10.1016/j.molmet.2022.101580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Adipose tissue, via sympathetic and possibly sensory neurons, communicates with the central nervous system (CNS) to mediate energy homeostasis. In contrast to the sympathetic nervous system, the morphology, role and regulation of the sensory nervous system in adipose tissue are poorly characterized. METHODS AND RESULTS Taking advantage of recent progress in whole-mount three-dimensional imaging, we identified a network of calcitonin gene-related protein (CGRP)-positive sensory neurons in murine white adipose tissue (WAT). We found that adipose mammalian target of rapamycin complex 2 (mTORC2), a major component of the insulin signaling pathway, is required for arborization of sensory neurons, but not of sympathetic neurons. Time course experiments revealed that adipose mTORC2 is required for maintenance of sensory neurons. Furthermore, loss of sensory innervation in WAT coincided with systemic insulin resistance. Finally, we established that neuronal protein growth-associated protein 43 (GAP43) is a marker for sensory neurons in adipose tissue. CONCLUSION Our findings indicate that adipose mTORC2 is necessary for sensory innervation in WAT. In addition, our results suggest that WAT may affect whole-body energy homeostasis via sensory neurons.
Collapse
|
22
|
Zhang XY, Wang DH. Gut Microbial Community and Host Thermoregulation in Small Mammals. Front Physiol 2022; 13:888324. [PMID: 35480035 PMCID: PMC9035535 DOI: 10.3389/fphys.2022.888324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The endotherms, particularly the small mammals living in the polar region and temperate zone, are faced with extreme challenges for maintaining stable core body temperatures in harsh cold winter. The non-hibernating small mammals increase metabolic rate including obligatory thermogenesis (basal/resting metabolic rate, BMR/RMR) and regulatory thermogenesis (mainly nonshivering thermogenesis, NST, in brown adipose tissue and skeletal muscle) to maintain thermal homeostasis in cold conditions. A substantial amount of evidence indicates that the symbiotic gut microbiota are sensitive to air temperature, and play an important function in cold-induced thermoregulation, via bacterial metabolites and byproducts such as short-chain fatty acids and secondary bile acids. Cold signal is sensed by specific thermosensitive transient receptor potential channels (thermo-TRPs), and then norepinephrine (NE) is released from sympathetic nervous system (SNS) and thyroid hormones also increase to induce NST. Meanwhile, these neurotransmitters and hormones can regulate the diversity and compositions of the gut microbiota. Therefore, cold-induced NST is controlled by both Thermo-TRPs—SNS—gut microbiota axis and thyroid—gut microbiota axis. Besides physiological thermoregulation, small mammals also rely on behavioral regulation, such as huddling and coprophagy, to maintain energy and thermal homeostasis, and the gut microbial community is involved in these processes. The present review summarized the recent progress in the gut microbiota and host physiological and behavioral thermoregulation in small mammals for better understanding the evolution and adaption of holobionts (host and symbiotic microorganism). The coevolution of host-microorganism symbionts promotes individual survival, population maintenance, and species coexistence in the ecosystems with complicated, variable environments.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong University, Qingdao, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: De-Hua Wang,
| |
Collapse
|
23
|
Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:3339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
Affiliation(s)
- Eirini Martinou
- Department of Upper Gastrointestinal Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Evangelia Iosif
- Department of General Surgery, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Camell CD. Adipose tissue microenvironments during aging: Effects on stimulated lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159118. [PMID: 35131468 PMCID: PMC8986088 DOI: 10.1016/j.bbalip.2022.159118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a critical organ for nutrient sensing, energy storage and maintaining metabolic health. The failure of adipose tissue homeostasis leads to metabolic disease that is seen during obesity or aging. Local metabolic processes are coordinated by interacting microenvironments that make up the complexity and heterogeneity of the adipose tissue. Catecholamine-induced lipolysis, a critical pathway in adipocytes that drives the release of stored triglyceride as free fatty acid after stimulation, is impaired during aging. The impairment of this pathway is associated with a failure to maintain a healthy body weight, core body-temperature during cold stress or mount an immune response. Along with impairments in aged adipocytes, aging is associated with an accumulation of inflammation, immune cell activation, and increased dysfunction in the nervous and lymphatic systems within the adipose tissue. Together these microenvironments support the initiation of stimulated lipolysis and the transport of free fatty acid under conditions of metabolic homeostasis. However, during aging, the defects in these cellular systems result in a reduction in ability to stimulate lipolysis. This review will focus on how the immune, nervous and lymphatic systems interact during tissue homeostasis, review areas that are impaired with aging and discuss areas of research that are currently unclear.
Collapse
Affiliation(s)
- Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
25
|
Wang Y, Leung VH, Zhang Y, Nudell VS, Loud M, Servin-Vences MR, Yang D, Wang K, Moya-Garzon MD, Li VL, Long JZ, Patapoutian A, Ye L. The role of somatosensory innervation of adipose tissues. Nature 2022; 609:569-574. [PMID: 36045288 PMCID: PMC9477745 DOI: 10.1038/s41586-022-05137-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/22/2022] [Indexed: 12/28/2022]
Abstract
Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.
Collapse
Affiliation(s)
- Yu Wang
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Verina H. Leung
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA
| | - Yunxiao Zhang
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Victoria S. Nudell
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA
| | - Meaghan Loud
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - M. Rocio Servin-Vences
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Dong Yang
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA
| | - Kristina Wang
- grid.214007.00000000122199231Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA USA
| | - Maria Dolores Moya-Garzon
- grid.168010.e0000000419368956Department of Pathology, Stanford School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA USA
| | - Veronica L. Li
- grid.168010.e0000000419368956Department of Pathology, Stanford School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA USA
| | - Jonathan Z. Long
- grid.168010.e0000000419368956Department of Pathology, Stanford School of Medicine, Sarafan ChEM-H, Stanford University, Stanford, CA USA
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Li Ye
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA.
| |
Collapse
|
26
|
Willows JW, Blaszkiewicz M, Lamore A, Borer S, Dubois AL, Garner E, Breeding WP, Tilbury KB, Khalil A, Townsend KL. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 2021; 24:103127. [PMID: 34622172 PMCID: PMC8479257 DOI: 10.1016/j.isci.2021.103127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue’s diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections. Whole depot adipose tissue innervation was imaged and quantified by a novel method Numerous aspects of adipose nerve heterogeneity were observed by microscopy We have identified a nerve terminal in adipose, the neuro-adipose nexus
Collapse
Affiliation(s)
- Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Amy Lamore
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Samuel Borer
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Amanda L Dubois
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Emma Garner
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - William P Breeding
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Karissa B Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Andre Khalil
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,CompuMAINE Laboratory, University of Maine, Orono, ME, USA
| | - Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| |
Collapse
|
27
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
28
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
29
|
Abboud FM. Four evolving concepts in molecular and clinical autonomic research. Clin Auton Res 2021; 31:467-471. [PMID: 34191210 DOI: 10.1007/s10286-021-00816-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Affiliation(s)
- François M Abboud
- Department of Internal Medicine, Edith King Pearson Chair of Cardiovascular Research, Abboud Cardiovascular Research Center, University of Iowa, 110 College of Medicine Administration Building (CMAB), Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
Zekri Y, Flamant F, Gauthier K. Central vs. Peripheral Action of Thyroid Hormone in Adaptive Thermogenesis: A Burning Topic. Cells 2021; 10:1327. [PMID: 34071979 PMCID: PMC8229489 DOI: 10.3390/cells10061327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (TH) contribute to the control of adaptive thermogenesis, which is associated with both higher energy expenditure and lower body mass index. While it was clearly established that TH act directly in the target tissues to fulfill its metabolic activities, some studies have rather suggested that TH act in the hypothalamus to control these processes. This paradigm shift has subjected the topic to intense debates. This review aims to recapitulate how TH control adaptive thermogenesis and to what extent the brain is involved in this process. This is of crucial importance for the design of new pharmacological agents that would take advantage of the TH metabolic properties.
Collapse
Affiliation(s)
- Yanis Zekri
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, INRAE USC 1370 École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, 69007 Lyon, France; (F.F.); (K.G.)
| | | | | |
Collapse
|
31
|
Henriques F, Bedard AH, Guilherme A, Kelly M, Chi J, Zhang P, Lifshitz LM, Bellvé K, Rowland LA, Yenilmez B, Kumar S, Wang Y, Luban J, Weinstein LS, Lin JD, Cohen P, Czech MP. Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Rep 2021; 32:107998. [PMID: 32755590 PMCID: PMC7433376 DOI: 10.1016/j.celrep.2020.107998] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
Adipocytes deficient in fatty acid synthase (iAdFASNKO) emit signals that mimic cold exposure to enhance the appearance of thermogenic beige adipocytes in mouse inguinal white adipose tissues (iWATs). Both cold exposure and iAdFASNKO upregulate the sympathetic nerve fiber (SNF) modulator Neuregulin 4 (Nrg4), activate SNFs, and require adipocyte cyclic AMP/protein kinase A (cAMP/PKA) signaling for beige adipocyte appearance, as it is blocked by adipocyte Gsα deficiency. Surprisingly, however, in contrast to cold-exposed mice, neither iWAT denervation nor Nrg4 loss attenuated adipocyte browning in iAdFASNKO mice. Single-cell transcriptomic analysis of iWAT stromal cells revealed increased macrophages displaying gene expression signatures of the alternately activated type in iAdFASNKO mice, and their depletion abrogated iWAT beiging. Altogether, these findings reveal that divergent cellular pathways are sufficient to cause adipocyte browning. Importantly, adipocyte signaling to enhance alternatively activated macrophages in iAdFASNKO mice is associated with enhanced adipose thermogenesis independent of the sympathetic neuron involvement this process requires in the cold. Henriques et al. show an alternative pathway to enhance thermogenesis through an adipocyte cAMP/PKA axis in denervated iWAT. Signals emanating from this pathway generate M2-type macrophages associated with iWAT browning.
Collapse
Affiliation(s)
- Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shreya Kumar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
33
|
Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci 2020; 44:189-202. [PMID: 33229051 DOI: 10.1016/j.tins.2020.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in animal models of obesity and diabetes. Together, these studies highlight the importance of peripheral nerves as a new therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
34
|
Abstract
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.
Collapse
Affiliation(s)
- Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
35
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
36
|
Cao Q, Liu L, Hu Y, Jiang N, Wang Y, Chen J, Zhou Q, Guo R. Irradiation of carotid baroreceptor with low-intensity pulsed ultrasound exerts different metabolic protection in perirenal, epididymal white adipose tissue and interscapular brown adipose tissue of obese rats. FASEB J 2020; 34:15431-15447. [PMID: 32954572 DOI: 10.1096/fj.202001550r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
This study was designed to clarify whether the irradiation of carotid baroreceptor (CB) with low-intensity pulsed ultrasound (LIPUS) protects against obesity by rebalancing the autonomic nervous system (ANS). Obesity was induced using a high-fat diet (HFD) for 8 weeks in Sprague-Dawley rats. Irradiation with LIPUS was daily (20 minutes a day) applied to the right CB. In our study, LIPUS significantly ameliorated metabolic disorders in obese rats. LIPUS partly restored norepinephrine (NE) and acetylcholine (ACH) levels in the perirenal white adipose tissue (PWAT), epididymal white adipose tissue (EWAT), interscapular brown adipose tissue (IBAT), and plasma of obese rats. LIPUS partially rectified the dysregulated AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor (PPAR) α/ɣ pathway in the PWAT, EWAT, and IBAT of obese rats. PPARγ and PPARγ target genes respond more sensitively to HFD and LIPUS in PWAT and EWAT than in IBAT. NE, ACH, uncoupling protein-1, phosphorylated AMPK, PPARα, and PPARα target genes respond more sensitively to HFD and LIPUS in IBAT than in PWAT and EWAT. Conclusion: LIPUS irradiation of CB exerts different metabolic protection in PWAT, EWAT, and IBAT by rebalancing the ANS and rectifying the AMPK/PPARα/ɣ pathway in obese rats.
Collapse
Affiliation(s)
- Quan Cao
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yugang Hu
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Jiang
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijia Wang
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinling Chen
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiqiang Guo
- Echo lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.,3D-Printing & AI Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Holland J, Sorrell J, Yates E, Smith K, Arbabi S, Arnold M, Rivir M, Morano R, Chen J, Zhang X, Dimarchi R, Woods SC, Sanchez-Gurmaches J, Wohleb E, Perez-Tilve D. A Brain-Melanocortin-Vagus Axis Mediates Adipose Tissue Expansion Independently of Energy Intake. Cell Rep 2020; 27:2399-2410.e6. [PMID: 31116984 PMCID: PMC6550338 DOI: 10.1016/j.celrep.2019.04.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The melanocortin system is a brain circuit that influences energy balance by regulating energy intake and expenditure. In addition, the brain-melanocortin system controls adipose tissue metabolism to optimize fuel mobilization and storage. Specifically, increased brain-melanocortin signaling or negative energy balance promotes lipid mobilization by increasing sympathetic nervous system input to adipose tissue. In contrast, calorie-independent mechanisms favoring energy storage are less understood. Here, we demonstrate that reduction of brain-melanocortin signaling actively promotes fat mass gain by activating the lipogenic program and adipocyte and endothelial cell proliferation in white fat depots independently of caloric intake via efferent nerve fibers conveyed by the common hepatic branch of the vagus nerve. Those vagally regulated obesogenic signals also contribute to the fat mass gain following chronic high-fat diet feeding. These data reveal a physiological mechanism whereby the brain controls energy stores that may contribute to increased susceptibility to obesity. Brain-melanocortin signaling controls fat mass indirectly by regulating energy balance and by direct control of lipid mobilization from adipose tissue via sympathetic nervous system activity. Holland et al. show that reduced brain-melanocortin signaling promotes white adipose tissue expansion via signals conveyed by efferent innervation of the vagus nerve.
Collapse
Affiliation(s)
- Jenna Holland
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joyce Sorrell
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emily Yates
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathleen Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shahriar Arbabi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Marita Rivir
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rachel Morano
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jenny Chen
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Dimarchi
- Novo Nordisk Research Center Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology and Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
38
|
McCabe KM, Hsieh J, Thomas DG, Molusky MM, Tascau L, Feranil JB, Qiang L, Ferrante AW, Tall AR. Antisense oligonucleotide treatment produces a type I interferon response that protects against diet-induced obesity. Mol Metab 2020; 34:146-156. [PMID: 32180554 PMCID: PMC7036698 DOI: 10.1016/j.molmet.2020.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE In mouse models, deficiency of TTC39B (T39) decreases hepatic lipogenic gene expression and protects against diet-induced steatohepatitis. While assessing the therapeutic potential of antisense oligonucleotides (ASOs) targeting T39, we discovered an unexpected weight loss phenotype. The objective of this study was to determine the mechanism of the resistance to diet-induced obesity. METHODS To assess therapeutic potential, we used antisense oligonucleotides (ASO) to knock down T39 expression in a Western or high-fat, high-cholesterol, high-sucrose-diet-fed Ldlr-/- or wild-type mice. RESULTS T39 ASO treatment led to decreased hepatic lipogenic gene expression and decreased hepatic triglycerides. Unexpectedly, T39 ASO treatment protected against diet-induced obesity. The reduced weight gain was seen with two different ASOs that decreased T39 mRNA in adipose tissue macrophages (ATMs), but not with a liver-targeted GalNac-ASO. Mice treated with the T39 ASO displayed increased browning of gonadal white adipose tissue (gWAT) and evidence of increased lipolysis. However, T39 knockout mice displayed a similar weight loss response when treated with T39 ASO, indicating an off-target effect. RNA-seq analysis of gWAT showed a widespread increase in type I interferon (IFN)-responsive genes, and knockout of the IFN receptor abolished the weight loss phenotype induced by the T39 ASO. Some human T39 ASOs and ASOs with different modifications targeting LDLR also induced a type I IFN response in THP1 macrophages. CONCLUSION Our data suggest that extrahepatic targeting of T39 by ASOs in ATMs produced an off-target type 1 IFN response, leading to activation of lipolysis, browning of WAT, and weight loss. While our findings suggest that ASOs may induce off-target type 1 IFN response more commonly than previously thought, they also suggest that therapeutic induction of type 1 IFN selectively in ATMs could potentially represent a novel approach to the treatment of obesity.
Collapse
Affiliation(s)
- Kristin M McCabe
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Joanne Hsieh
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - David G Thomas
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Matthew M Molusky
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Liana Tascau
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Jun B Feranil
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Li Qiang
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Anthony W Ferrante
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Scheele C, Wolfrum C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocr Rev 2020; 41:bnz007. [PMID: 31638161 PMCID: PMC7006230 DOI: 10.1210/endrev/bnz007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, Schwerzenbach, Switzerland
| |
Collapse
|
40
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
41
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
42
|
Castillo‐Armengol J, Fajas L, Lopez‐Mejia IC. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 2019; 20:e47903. [PMID: 31423716 PMCID: PMC6726901 DOI: 10.15252/embr.201947903] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Multidirectional interactions between metabolic organs in the periphery and the central nervous system have evolved concomitantly with multicellular organisms to maintain whole-body energy homeostasis and ensure the organism's adaptation to external cues. These interactions are altered in pathological conditions such as obesity and type 2 diabetes. Bioactive peptides and proteins, such as hormones and cytokines, produced by both peripheral organs and the central nervous system, are key messengers in this inter-organ communication. Despite the early discovery of the first hormones more than 100 years ago, recent studies taking advantage of novel technologies have shed light on the multiple ways used by cells in the body to communicate and maintain energy balance. This review briefly summarizes well-established concepts and focuses on recent advances describing how specific proteins and peptides mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to maintain energy homeostasis. Additionally, this review outlines how the improved knowledge about these inter-organ networks is helping us to redefine therapeutic strategies in an effort to promote healthy living and fight metabolic disorders and other diseases.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | |
Collapse
|
43
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
44
|
Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20:E2707. [PMID: 31159462 PMCID: PMC6600468 DOI: 10.3390/ijms20112707] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.
Collapse
Affiliation(s)
- Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
45
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL. The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. BIOLOGY 2019; 8:E10. [PMID: 30759876 PMCID: PMC6466238 DOI: 10.3390/biology8010010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
Abstract
Brown and white adipose tissues are essential for maintenance of proper energy balance and metabolic health. In order to function efficiently, these tissues require both endocrine and neural communication with the brain. Brown adipose tissue (BAT), as well as the inducible brown adipocytes that appear in white adipose tissue (WAT) after simulation, are thermogenic and energy expending. This uncoupling protein 1 (UCP1)-mediated process requires input from sympathetic nerves releasing norepinephrine. In addition to sympathetic noradrenergic signaling, adipose tissue contains sensory nerves that may be important for relaying fuel status to the brain. Chemical and surgical denervation studies of both WAT and BAT have clearly demonstrated the role of peripheral nerves in browning, thermogenesis, lipolysis, and adipogenesis. However, much is still unknown about which subtypes of nerves are present in BAT versus WAT, what nerve products are released from adipose nerves and how they act to mediate metabolic homeostasis, as well as which cell types in adipose are receiving synaptic input. Recent advances in whole-depot imaging and quantification of adipose nerve fibers, as well as other new research findings, have reinvigorated this field of research. This review summarizes the history of research into adipose innervation and brain⁻adipose communication, and also covers landmark and recent research on this topic to outline what we currently know and do not know about adipose tissue nerve supply and communication with the brain.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | - Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Cory P Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
47
|
Guilherme A, Pedersen DJ, Henriques F, Bedard AH, Henchey E, Kelly M, Morgan DA, Rahmouni K, Czech MP. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol Metab 2018; 16:116-125. [PMID: 30005879 PMCID: PMC6157614 DOI: 10.1016/j.molmet.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Crosstalk between adipocytes and local neurons may be an important regulatory mechanism to control energy homeostasis. We previously reported that perturbation of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) expands sympathetic neurons within white adipose tissue (WAT) and stimulates the appearance of "beige" adipocytes. Here we tested whether WAT DNL activity can also influence neuronal regulation and thermogenesis in brown adipose tissue (BAT). METHODS AND RESULTS Induced deletion of FASN in all adipocytes in mature mice (iAdFASNKO) enhanced sympathetic innervation and neuronal activity as well as UCP1 expression in both WAT and BAT. This increased sympathetic innervation could be observed at both 22 °C and 30 °C, indicating it is not a response to heat loss but rather adipocyte signaling. In contrast, selective ablation of FASN in brown adipocytes of mice (iUCP1FASNKO) failed to modulate sympathetic innervation and the thermogenic program in BAT. Surprisingly, DNL in brown adipocytes was also dispensable in maintaining euthermia when UCP1FASNKO mice were cold-exposed. CONCLUSION These results indicate that DNL in white adipocytes influences long distance signaling to BAT, which can modify BAT sympathetic innervation and expression of genes involved in thermogenesis.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Elizabeth Henchey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
48
|
Wollina U, Brzezinski P. Aesthetic dermatology: What's new, what's true? Dermatol Ther 2018; 32:e12623. [PMID: 30182495 DOI: 10.1111/dth.12623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/08/2018] [Indexed: 01/21/2023]
Abstract
Aesthetic dermatology (AD) is a rapidly growing subspecialty of dermatology. The acceptance of AD in scientific community and the society is associated with its competence, efficiency, and seriousness. This review highlights some recent developments toward new tools, techniques, and understanding in the field of AD. Analyzing the specific needs of patients and assessing the effect by objective measurements is important for further progress. For long time ignored, white adipose tissue has gained increasing interest in biology and rejuvenation. Characterization of dermal and subcutaneous white adipose tissue has made progress. The interaction of hyaluronic acid and calcium hydroxyl apatite (CaHA) fillers with adipocytes could be responsible for clinical efficacy. New developments of oral collagen treatment and highly diluted CaHA to contour the body outside the face will be discussed. Submental contouring using purified desoxycholic acid is another new development.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden, Dresden, Germany
| | - Piotr Brzezinski
- Faculty of Mathematics and Natural Sciences, Institute of Biology and Environmental Protection, Pomeranian Academy, Slupsk, Poland.,Department of Dermatology, 6th Military Support Unit, Ustka, Poland
| |
Collapse
|
49
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW This article explores how the interplay between lipid metabolism and thermogenic adipose tissues enables proper physiological adaptation to cold environments in rodents and humans. RECENT FINDINGS Cold exposure triggers systemic changes in lipid metabolism, which increases fatty acid delivery to brown adipose tissue (BAT) by various routes. Next to fatty acids generated intracellularly by de-novo lipogenesis or by lipolysis at lipid droplets, brown adipocytes utilize fatty acids released by white adipose tissue (WAT) for adaptive thermogenesis. WAT-derived fatty acids are internalized directly by BAT, or indirectly after hepatic conversion to very low-density lipoproteins and acylcarnitines. In the postprandial state, chylomicrons hydrolyzed by lipoprotein lipase - activated specifically in thermogenic adipocytes - are the predominant fatty acid source. Cholesterol-enriched chylomicron remnants and HDL generated by intravascular lipolysis in BAT are cleared more rapidly by the liver, explaining the antiatherogenic effects of BAT activation. Notably, increased cholesterol flux and elevated hepatic synthesis of bile acids under cold exposure further promote BAT-dependent thermogenesis. SUMMARY Although pathways providing fatty acids for activated BAT have been identified, more research is needed to understand the integration of lipid metabolism in BAT, WAT and liver, and to determine the relevance of BAT for human energy metabolism.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|