1
|
Hasani M, Khazdouz M, Sobhani S, Mardi P, Riahi S, Agh F, Mahdavi-Gorabi A, Mohammadipournami S, Gomnam F, Qorbani M. Association of heavy metals and bio-elements blood level with metabolic syndrome: a systematic review and meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:1719-1752. [PMID: 39610503 PMCID: PMC11599521 DOI: 10.1007/s40200-024-01500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024]
Abstract
Background and objectives The literature has reported heavy metals might alter the physiological and biochemical functions of body organs and cause several health problems. So, the present systematic review and meta-analysis aimed to investigate the association of blood levels of essential or non-essential metals with metabolic syndrome (MetS). Methods In this systematic review, some international databases including PubMed, Embase, Scopus, and Web of Science were searched up to February 2024. All observational studies which assessed the association of three heavy metals (cadmium, mercury, lead) and bio-elements (chromium, iron, manganese, and magnesium, copper) with the risk of MetS were included. There was no limitation in the time of publication and language. A random-effects meta-analysis was performed to estimate the pooled effect sizes. Possible sources of heterogeneity were explored by meta-regression analysis. Results Totally, 29 studies were eligible for meta-analysis. Our results showed that increased level of cadmium (pooled OR: 1.24, 95% CI: 1.05, 1.46) and mercury (pooled OR: 1.22, 95% CI: 1.08, 1.38) significantly increased the risk of MetS. In contrast, increased level of chromium significantly reduced the risk of developing MetS (pooled OR: 0.68, 95% CI: 0.56, 0.83). Moreover, association between lead, iron, copper, magnesium, and manganese with MetS was not statistically significant (P > 0.05). However, elevated lead levels in men increased the odds of MetS. Conclusion Our results show a significant association between blood levels of some heavy metals, including cadmium, mercury, and lead, with increased odds of MetS. On the other hand, chromium as a biometal decreased the odds of MetS. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01500-9.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Khazdouz
- Ali-Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Mardi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shirin Riahi
- Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Armita Mahdavi-Gorabi
- Molecular Medicine and Genetics Research Center for Advanced Technologies in Cardiovascular Medicine Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mohammadipournami
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Gomnam
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Environmental Health, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology and Biostatistics, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Li H, Zhang H, Wang T, Zhang L, Wang H, Lu H, Yang R, Ding Y. Grape Seed Proanthocyanidins Protect Pancreatic β Cells Against Ferroptosis via the Nrf2 Pathway in Type 2 Diabetes. Biol Trace Elem Res 2024; 202:5531-5544. [PMID: 38367173 PMCID: PMC11502604 DOI: 10.1007/s12011-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic β cell damage is the primary contributor to type 2 diabetes mellitus (T2DM); however, the underlying mechanism remains nebulous. This study explored the role of ferroptosis in pancreatic β cell damage and the protective effects of grape seed proanthocyanidin extract (GSPE). In T2DM model rats, the blood glucose, water intake, urine volume, HbA1c, and homeostasis model assessment-insulin resistance were significantly increased, while the body weight and the insulin level were significantly decreased, indicating the successful establishment of the T2DM model. MIN6 mouse insulinoma β cells were cultured in high glucose and sodium palmitate conditions to obtain a glycolipid damage model, which was administered with GSPE, ferrostatin-1 (Fer-1), or nuclear factor erythroid 2-related factor 2 (Nrf2) small interfering (si) RNA. GSPE and Fer-1 treatment significantly improved pancreatic β-cell dysfunction and protected against cell death. Both treatments increased the superoxide dismutase and glutathione activity, reduced the malondialdehyde and reactive oxygen species levels, and improved iron metabolism. Furthermore, the treatments reversed the expression of ferroptosis markers cysteine/glutamate transporter (XCT) and glutathione peroxidase 4 (GPX4) caused by glycolipid toxicity. GSPE treatments activated the expression of Nrf2 and related proteins. These effects were reversed when co-transfected with si-Nrf2. GSPE inhibits ferroptosis by activating the Nrf2 signaling pathway, thus reducing β-cell damage and dysfunction in T2DM. Therefore, GSPE is a potential treatment strategy against T2DM.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Haowei Zhang
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Tongling Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Liyuan Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Hao Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Heng Lu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Ruirui Yang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Yusong Ding
- Key Laboratory of Environmental Exposome, Xinjiang Medical University, No.393 Xinyi Road, Urumqi, 830011, China.
| |
Collapse
|
3
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Venn-Watson S. The Cellular Stability Hypothesis: Evidence of Ferroptosis and Accelerated Aging-Associated Diseases as Newly Identified Nutritional Pentadecanoic Acid (C15:0) Deficiency Syndrome. Metabolites 2024; 14:355. [PMID: 39057678 PMCID: PMC11279173 DOI: 10.3390/metabo14070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ferroptosis is a newly discovered form of cell death caused by the peroxidation of fragile fatty acids in cell membranes, which combines with iron to increase reactive oxygen species and disable mitochondria. Ferroptosis has been linked to aging-related conditions, including type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease (NAFLD). Pentadecanoic acid (C15:0), an odd-chain saturated fat, is an essential fatty acid with the primary roles of stabilizing cell membranes and repairing mitochondrial function. By doing so, C15:0 reverses the underpinnings of ferroptosis. Under the proposed "Cellular Stability Hypothesis", evidence is provided to show that cell membranes optimally need >0.4% to 0.64% C15:0 to support long-term health and longevity. A pathophysiology of a newly identified nutritional C15:0 deficiency syndrome ("Cellular Fragility Syndrome") is provided that demonstrates how C15:0 deficiencies (≤0.2% total circulating fatty acids) can increase susceptibilities to ferroptosis, dysmetabolic iron overload syndrome, type 2 diabetes, cardiovascular disease, and NAFLD. Further, evidence is provided that C15:0 supplementation can reverse the described C15:0 deficiency syndrome, including the key components of ferroptosis. Given the declining dietary intake of C15:0, especially among younger generations, there is a need for extensive studies to understand the potential breadth of Cellular Fragility Syndrome across populations.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Seraphina Therapeutics Inc., San Diego, CA 92106, USA;
- Epitracker Inc., San Diego, CA 92106, USA
| |
Collapse
|
5
|
Gensluckner S, Wernly B, Koutny F, Strebinger G, Zandanell S, Stechemesser L, Paulweber B, Iglseder B, Trinka E, Frey V, Langthaler P, Semmler G, Valenti L, Corradini E, Datz C, Aigner E. Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort. Biomedicines 2024; 12:207. [PMID: 38255312 PMCID: PMC10813305 DOI: 10.3390/biomedicines12010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Hyperferritinemia (HF) is a common finding and can be considered as metabolic HF (MHF) in combination with metabolic diseases. The definition of MHF was heterogenous until a consensus statement was published recently. Our aim was to apply the definition of MHF to provide data on the prevalence and characteristics of MHF in a Central-European cohort. METHODS This study was a retrospective analysis of the Paracelsus 10,000 study, a population-based cohort study from the region of Salzburg, Austria. We included 8408 participants, aged 40-77. Participants with HF were divided into three categories according to their level of HF and evaluated for metabolic co-morbidities defined by the proposed criteria for MHF. RESULTS HF was present in 13% (n = 1111) with a clear male preponderance (n = 771, 69% of HF). Within the HF group, 81% (n = 901) of subjects fulfilled the metabolic criteria and were defined as MHF, of which 75% (n = 674) were characterized by a major criterion. In the remaining HF cohort, 52% (n = 227 of 437) of subjects were classified as MHF after application of the minor criteria. CONCLUSION HF is a common finding in the general middle-aged population and the majority of cases are classified as MHF. The new classification provides useful criteria for defining MHF.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Paracelsusstraße 37, 5110 Oberndorf, Austria
| | - Florian Koutny
- Department of Internal Medicine 2, Gastroenterology and Hepatology and Rheumatology, University Hospital of St. Pölten, Karl Landsteiner University of Health Sciences, Dunant-Platz 1, Kremser Landstraße 40, 3100 St. Pölten, Austria
| | - Georg Strebinger
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Stephan Zandanell
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Lars Stechemesser
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian Doppler University Hospital, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated Member of the European Reference Network EpiCARE, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Vanessa Frey
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated Member of the European Reference Network EpiCARE, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Patrick Langthaler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Centre for Cognitive Neuroscience, Affiliated Member of the European Reference Network EpiCARE, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Georg Semmler
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Forza 35, 20122 Milan, Italy;
- Precision Medicine, Biological Resource Center Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milan, Italy
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena Policlinico, 41124 Modena, Italy
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, Paracelsusstraße 37, 5110 Oberndorf, Austria
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (S.G.)
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
8
|
Barbalho SM, Laurindo LF, Tofano RJ, Flato UAP, Mendes CG, de Alvares Goulart R, Briguezi AMGM, Bechara MD. Dysmetabolic Iron Overload Syndrome: Going beyond the Traditional Risk Factors Associated with Metabolic Syndrome. ENDOCRINES 2023; 4:18-37. [DOI: 10.3390/endocrines4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Dysmetabolic iron overload syndrome (DIOS) corresponds to the increase in iron stores associated with components of metabolic syndrome (MtS) and in the absence of an identifiable cause of iron excess. The objective of this work was to review the main aspects of DIOS. PUBMED and EMBASE were consulted, and PRISMA guidelines were followed. DIOS is usually asymptomatic and can be diagnosed by investigating MtS and steatosis. About 50% of the patients present altered hepatic biochemical tests (increased levels of γ-glutamyl transpeptidase itself or associated with increased levels of alanine aminotransferase). The liver may present parenchymal and mesenchymal iron overload, but the excess of iron is commonly mild. Steatosis or steatohepatitis is observed in half of the patients. Fibrosis is observed in about 15% of patients. Hyperferritinemia may damage the myocardium, liver, and several other tissues, increasing morbidity and mortality. Furthermore, DIOS is closely related to oxidative stress, which is closely associated with several pathological conditions such as inflammatory diseases, hypertension, diabetes, heart failure, and cancer. DIOS is becoming a relevant finding in the general population and can be associated with high morbidity/mortality. For these reasons, investigation of this condition could be an additional requirement for the early prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Cardiology, Associação Beneficente Hospital Universitário (ABHU), Rua Dr. Próspero Cecílio Coimbra, 80, Marília, São Paulo 17525-160, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
| | - Claudemir G. Mendes
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Ana Maria Gonçalves Milla Briguezi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| |
Collapse
|
9
|
Zhan X, He M, Pei J, Fan W, Mwangi CN, Zhang P, Chai X, Jiang M. Natural Phenylethanoid Supplementation Alleviates Metabolic Syndrome in Female Mice Induced by High-Fructose Diet. Front Pharmacol 2022; 13:850777. [PMID: 35928270 PMCID: PMC9343882 DOI: 10.3389/fphar.2022.850777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also powerful dietary antioxidants. This study aimed at evaluating the influence of three natural phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, respectively. Biochemical analysis showed that S, T, and H significantly improved glucose metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS), uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT). Histopathological observation of the liver confirmed the protective effects of S, T, and H against hepatic steatosis, which were demonstrated by the results of metabolomic analysis, such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism, and choline metabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H probably suppress lipid accumulation and have hepatoprotective effects and improve intestinal microflora disorders to attenuate metabolic syndromes.
Collapse
Affiliation(s)
- Xiujun Zhan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Mingshuai He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jierong Pei
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wenjing Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Charity Ngina Mwangi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xin Chai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- *Correspondence: Miaomiao Jiang,
| |
Collapse
|
10
|
Falzarano C, Lofton T, Osei-Ntansah A, Oliver T, Southward T, Stewart S, Andrisse S. Nonalcoholic Fatty Liver Disease in Women and Girls With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2022; 107:258-272. [PMID: 34491336 DOI: 10.1210/clinem/dgab658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver damage due to excessive hepatic lipid accumulation. Recent research has demonstrated a high prevalence of NAFLD in women with polycystic ovary syndrome (PCOS). RESULTS Strong associations independent of body mass index (BMI) have been found between high androgen levels characteristic of PCOS, as well as insulin resistance, and the presence of NAFLD in these women, suggesting that these factors contribute to liver injury more significantly than obesity. Current studies indicate the occurrence of NAFLD in normal weight women with PCOS in addition to the commonly researched women who are overweight and obese. While the majority of studies address NAFLD in adult, premenopausal women (ages 25-40 years), the occurrence of NAFLD in young and adolescent women has gone largely unaddressed. Research in this field lacks diversity; a majority of studies either focus on populations of White women or are missing demographic information entirely. CONCLUSIONS Future studies should include larger, more racially and ethnically inclusive populations and particular attention should be paid to how excess androgens and insulin resistance contribute to the increased risk of NAFLD seen in women with PCOS of varying weights, ages, and ethnicities. OBJECTIVE AND METHODS Here, we review NAFLD in women with PCOS with subsections focused on the impact of hyperandrogenism, BMI, insulin resistance and age. Most notably, we present the most up-to-date racially and ethnically diverse worldwide prevalence of NAFLD in women with PCOS compared with women without PCOS (51.56% vs 29.64%, P < .001, respectively).
Collapse
Affiliation(s)
- Claire Falzarano
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Taylor Lofton
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Adjoa Osei-Ntansah
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Trinitee Oliver
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Taylor Southward
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Salim Stewart
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| | - Stanley Andrisse
- Howard University College of Medicine, Physiology and Biophysics, Washington, DC, 20059, USA
| |
Collapse
|
11
|
Ding H, Zhang Q, Yu X, Chen L, Wang Z, Feng J. Lipidomics reveals perturbations in the liver lipid profile of iron-overloaded mice. Metallomics 2021; 13:6375437. [PMID: 34562083 DOI: 10.1093/mtomcs/mfab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Iron overload is an important contributor to disease. The liver, the major site of iron storage in the body, is a key organ impacted by iron overload. While several studies have reported perturbations in liver lipids in iron overload, it is not clear, on a global scale, how individual liver lipid ions are altered. Here, we used lipidomics to study the changes in hepatic lipid ions in iron-overloaded mice. Iron overload was induced by daily intraperitoneal injections of 100 mg/kg body weight iron dextran for 1 week. Iron overload was verified by serum markers of iron status, liver iron quantitation, and Perls stain. Compared with the control group, the serum of iron-overload mice exhibited low levels of urea nitrogen and high-density lipoprotein (HDL), and high concentrations of total bile acid, low-density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), suggestive of liver injury. Moreover, iron overload disrupted liver morphology, induced reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, caused lipid peroxidation, and led to DNA fragmentation. Iron overload altered the overall composition of lipid ions in the liver, with significant changes in over 100 unique lipid ions. Notably, iron overload selectively increased the overall abundance of glycerolipids and changed the composition of glycerophospholipids and sphingolipids. This study, one of the first to report iron-overload induced lipid alterations on a global lipidomics scale, provides early insight into lipid ions that may be involved in iron overload-induced pathology.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Qian Zhang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
12
|
Piras C, Noto A, Ibba L, Deidda M, Fanos V, Muntoni S, Leoni VP, Atzori L. Contribution of Metabolomics to the Understanding of NAFLD and NASH Syndromes: A Systematic Review. Metabolites 2021; 11:metabo11100694. [PMID: 34677409 PMCID: PMC8541039 DOI: 10.3390/metabo11100694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Several differential panels of metabolites have been associated with the presence of metabolic syndrome and its related conditions, namely non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). This study aimed to perform a systematic review to summarize the most recent finding in terms of circulating biomarkers following NAFLD/NASH syndromes. Hence, the research was focused on NAFLD/NASH studies analysed by metabolomics approaches. Following Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a systematic search was conducted on the PubMed database. The inclusion criteria were (i) publication date between 2010 and 2021, (ii) presence of the combination of terms: metabolomics and NAFLD/NASH, and (iii) published in a scholarly peer-reviewed journal. Studies were excluded from the review if they were (i) single-case studies, (ii) unpublished thesis and dissertation studies, and (iii) not published in a peer-reviewed journal. Following these procedures, 10 eligible studies among 93 were taken into consideration. The metabolisms of amino acids, fatty acid, and vitamins were significantly different in patients affected by NAFLD and NASH compared to healthy controls. These findings suggest that low weight metabolites are an important indicator for NAFLD/NASH syndrome and there is a strong overlap between NAFLD/NASH and the metabolic syndrome. These findings may lead to new perspectives in early diagnosis, identification of novel biomarkers, and providing novel targets for pharmacological interventions.
Collapse
Affiliation(s)
- Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Antonio Noto
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
- Correspondence:
| | - Luciano Ibba
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Sandro Muntoni
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Vera Piera Leoni
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (C.P.); (L.I.); (S.M.); (V.P.L.); (L.A.)
| |
Collapse
|
13
|
Ren D, Li Y, Xue Y, Tang X, Yong L, Li Y. A study using LC-MS/MS-based metabolomics to investigate the effects of iron oxide nanoparticles on rat liver. NANOIMPACT 2021; 24:100360. [PMID: 35559819 DOI: 10.1016/j.impact.2021.100360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/31/2021] [Accepted: 10/24/2021] [Indexed: 06/15/2023]
Abstract
Iron oxide nanoparticles (IONPs) are widely used in food additives, but their metabolic mechanism in the body is still unclear. In this study, male Sprague-Dawley rats were orally administered with IONPs for 28 days to investigate the adverse effect and metabolic mechanism on liver by the combination of traditional toxicology technology and liquid chromatography tandem-mass spectrometry (LC-MS/MS)-based metabolomics. The results showed that IONPs could increase the concentration of blood glucose and the metabolites in the liver of the control and IONPs-treated group were significantly changed. A total of 32 different metabolites were found, including choline, Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidylserine (PS), etc. Pathway analysis based on KEGG database demonstrated that the glycerophospholipid metabolism pathway would be affected. And the expression of the key enzymes of altered metabolomics pathway was further verified at the transcription level. In short, our study clarified oral exposure to IONPs would induce lipid metabolism disorders in the liver of rats, which provided useful information about their safety and potential risks.
Collapse
Affiliation(s)
- Dongxia Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yulin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xue
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Xiaoyue Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yun Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
14
|
Ge X, Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Yu P, Gao G, Zhou C, Chang Y, Shi Z. A new mechanism of POCD caused by sevoflurane in mice: cognitive impairment induced by cross-dysfunction of iron and glucose metabolism. Aging (Albany NY) 2021; 13:22375-22389. [PMID: 34547719 PMCID: PMC8507282 DOI: 10.18632/aging.203544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Sevoflurane (Sev) is a commonly used anesthetic in hospitals that can cause neurotoxicity. Postoperative cognitive dysfunction (POCD) is a common clinical problem induced by some anesthetics. However, the exact mechanism of neurotoxicity induced by Sev is unclear. Here we studied a new mechanism of POCD induced by Sev. We treated 15-month-old mice with 2% Sev for 6 hours, and we had found that Sev causes POCD. Using isobaric tags for relative and absolute quantitation (iTRAQ), we found that the transporter and the metabolism of carbohydrates and inorganic ions were involved in the cognitive impairment induced by Sev. Using synchrotron radiation micro-X-ray fluorescence (μ-XRF), we showed that Sev caused the iron overload in the brain of 15-month-old mice. Subsequently, excessive iron led to oxidative stress and impaired mitochondrial function that further led to glucose metabolism disorder and reduced ATP production by regulating the expression of key enzyme genes or proteins including G6Pase, Pck1, and Cs. Meanwhile, Sev also inhibited the oxygen consumption rate and glucose absorption by downregulating the expression of glucose transporter 1 in cerebral vascular endothelial cells. The cross-dysfunction of iron and glucose metabolism caused the apoptosis in the cortex and hippocampus through Bcl2/Bax pathway. In conclusion, the data here showed a new mechanism that Sev caused apoptosis by cross-dysregulation of iron and glucose metabolism and induced energy stress in mice. Maintaining iron and glucose metabolism homeostasis may play an important role in cognitive impairment induced by Sev.
Collapse
Affiliation(s)
- Xing Ge
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Yong Zuo
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Jinhong Xie
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Xincheng Li
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Yan Li
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Changhao Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| |
Collapse
|
15
|
Iron Overload Protects from Obesity by Ferroptosis. Foods 2021; 10:foods10081787. [PMID: 34441564 PMCID: PMC8391659 DOI: 10.3390/foods10081787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Dysregulation in iron metabolism is associated with obesity, type 2 diabetes, and other metabolic diseases, whereas the underlying mechanisms of imbalanced glycolipid metabolism are still obscure. Here, we demonstrated that iron overload protected mice from obesity both with normal diets (ND) or high-fat diets (HFD). In iron-overload mice, the body fat was significantly decreased, especially when fed with HFD, excessive iron mice gained 15% less weight than those without iron supplements. Moreover, glucose tolerance and insulin sensitivity were all significantly reduced, and hepatic steatosis was prevented. Furthermore, these mice show a considerable decrease in lipogenesis and lipidoses of the liver. Compared with control groups, iron treated groups showed a 79% decrease in the protein level of Perilipin-2 (PLIN2), a protein marker for lipid droplets. These results were consistent with their substantial decrease in adiposity. RNA-seq and signaling pathway analyses showed that iron overload caused ferroptosis in the liver of mice with a decrease in GPX4 expression and an increase in Ptgs2 expression, resulting in a high level of lipid peroxidation. Overall, this study reveals the protective function of iron overload in obesity by triggering the imbalance of glucolipid metabolism in the liver and highlights the crucial role of ferroptosis in regulating lipid accumulation.
Collapse
|
16
|
Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome. Eat Weight Disord 2021; 26:1581-1593. [PMID: 32772321 DOI: 10.1007/s40519-020-00980-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE There is a relationship between polycystic ovary syndrome (PCOS) and adipose tissue dysfunction (ADD), but this relationship is not clear. It has been recently shown that iron accumulation in adipose tissue is among the causes of adipose tissue dysfunction. Data on adipose tissue dysfunction in women with PCOS are insufficient. In this study, we aimed to evaluate the relationship between serum ferritin levels (iron accumulation biomarker) and visceral adiposity index (an indicator of adipose tissue dysfunction). METHODS The study is a case-control study. Women with diagnosed PCOS with 2003 Rotterdam Diagnostic Criteria (n = 40) were compared with non-PCOS group (n = 40). In this study, the cholesterol ratios, the homeostatic model evaluation index for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity control index were calculated using biochemical parameters, and the visceral adiposity index (VAI) and the lipid accumulation product (LAP) were calculated using both anthropometric and biochemical parameters. In this study, insulin resistance was evaluated by HOMA-IR and adipose tissue dysfunction was evaluated by VAI index. RESULTS According to the results of this study, women with PCOS have a worse metabolic status than women without PCOS. However, this has been shown only in overweight and obese women, not in women with normal weight. CONCLUSION As a result, the presence of obesity in women with PCOS exacerbates metabolic status. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
17
|
Mayneris-Perxachs J, Cardellini M, Hoyles L, Latorre J, Davato F, Moreno-Navarrete JM, Arnoriaga-Rodríguez M, Serino M, Abbott J, Barton RH, Puig J, Fernández-Real X, Ricart W, Tomlinson C, Woodbridge M, Gentileschi P, Butcher SA, Holmes E, Nicholson JK, Pérez-Brocal V, Moya A, Clain DM, Burcelin R, Dumas ME, Federici M, Fernández-Real JM. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. MICROBIOME 2021; 9:104. [PMID: 33962692 PMCID: PMC8106161 DOI: 10.1186/s40168-021-01052-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/18/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. RESULTS Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation through transplantation of faecal microbiota into recipient's mice. In line with the results in humans, transplantation from 'high ferritin donors' resulted in alterations in several genes related to iron metabolism and fatty acid accumulation in recipient's mice. CONCLUSIONS Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is revealed, with potential significance for target therapies. Video abstract.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Lesley Hoyles
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jèssica Latorre
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | - Francesca Davato
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - José Maria Moreno-Navarrete
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', 31432, Toulouse Cedex 4, France
| | - James Abbott
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Richard H Barton
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Josep Puig
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | | | - Wifredo Ricart
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain
| | - Christopher Tomlinson
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Mark Woodbridge
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | - Sarah A Butcher
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Jeremy K Nicholson
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Vicente Pérez-Brocal
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) and Instituto de Biología Integrativa de Sistemas, Universitat de València and Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) and Instituto de Biología Integrativa de Sistemas, Universitat de València and Consejo Superior de Investigaciones Científicas (CSIC), València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Donald Mc Clain
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
- The W. G. Hefner Veterans Affairs Medical Center, Salisbury, NC, 28144, USA
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', 31432, Toulouse Cedex 4, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045, Lille, France
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montréal, QC, H3A 0G1, Canada
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Girona, Spain.
- Departament de Ciències Mèdiques, University of Girona, Girona and Biomedical Research Institute of Girona (IdibGi), Girona, Spain.
- CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Girona, Spain.
| |
Collapse
|
18
|
Fillebeen C, Lam NH, Chow S, Botta A, Sweeney G, Pantopoulos K. Regulatory Connections between Iron and Glucose Metabolism. Int J Mol Sci 2020; 21:ijms21207773. [PMID: 33096618 PMCID: PMC7589414 DOI: 10.3390/ijms21207773] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for energy metabolism, and states of iron deficiency or excess are detrimental for organisms and cells. Therefore, iron and carbohydrate metabolism are tightly regulated. Serum iron and glucose levels are subjected to hormonal regulation by hepcidin and insulin, respectively. Hepcidin is a liver-derived peptide hormone that inactivates the iron exporter ferroportin in target cells, thereby limiting iron efflux to the bloodstream. Insulin is a protein hormone secreted from pancreatic β-cells that stimulates glucose uptake and metabolism via insulin receptor signaling. There is increasing evidence that systemic, but also cellular iron and glucose metabolic pathways are interconnected. This review article presents relevant data derived primarily from mouse models and biochemical studies. In addition, it discusses iron and glucose metabolism in the context of human disease.
Collapse
Affiliation(s)
- Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
- Correspondence: ; Tel.: +1-514-340-8260 (ext. 25293)
| |
Collapse
|
19
|
Seeßle J, Gan-Schreier H, Kirchner M, Stremmel W, Chamulitrat W, Merle U. Plasma Lipidome, PNPLA3 polymorphism and hepatic steatosis in hereditary hemochromatosis. BMC Gastroenterol 2020; 20:230. [PMID: 32680469 PMCID: PMC7368730 DOI: 10.1186/s12876-020-01282-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Hereditary hemochromatosis (HH) is an autosomal recessive genetic disorder with increased intestinal iron absorption and therefore iron Overload. iron overload leads to increased levels of toxic non-transferrin bound iron which results in oxidative stress and lipid peroxidation. The impact of iron on lipid metabolism is so far not fully understood. The aim of this study was to investigate lipid metabolism including lipoproteins (HDL, LDL), neutral (triglycerides, cholesterol) and polar lipids (sphingo- and phospholipids), and PNPLA3 polymorphism (rs738409/I148M) in HH. Methods We conducted a cohort study of 54 subjects with HH and 20 healthy subjects. Patients were analyzed for their iron status including iron, ferritin, transferrin and transferrin saturation and serum lipid profile on a routine follow-up examination. Results HH group showed significantly lower serum phosphatidylcholine (PC) and significantly higher phosphatidylethanolamine (PE) compared to healthy control group. The ratio of PC/PE was clearly lower in HH group indicating a shift from PC to PE. Triglycerides were significantly higher in HH group. No differences were seen for HDL, LDL and cholesterol. Hepatic steatosis was significantly more frequent in HH. PNPLA3 polymorphism (CC vs. CG/GG) did not reveal any significant correlation with iron and lipid parameters including neutral and polar lipids, grade of steatosis and fibrosis. Conclusion Our study strengthens the hypothesis of altered lipid metabolism in HH and susceptibility to nonalcoholic fatty liver disease. Disturbed phospholipid metabolism may represent an important factor in pathogenesis of hepatic steatosis in HH.
Collapse
Affiliation(s)
- Jessica Seeßle
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Zhou Y. The Protective Effects of Cryptochlorogenic Acid on β-Cells Function in Diabetes in vivo and vitro via Inhibition of Ferroptosis. Diabetes Metab Syndr Obes 2020; 13:1921-1931. [PMID: 32606852 PMCID: PMC7294720 DOI: 10.2147/dmso.s249382] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Mulberry leaf extract has exerted better antidiabetic activities, while the effects of major active components in mulberry leaf extract are still unclear. Cryptochlorogenic acid (CCA) as the major active component in mulberry leaf extracts was investigated herein. MATERIALS AND METHODS Rats were treated with 50mg/kg streptozotocin for the establishment of diabetic model in vivo, and cells were treated with 33.3 mM glucose for the establishment of cell model in vitro. HE staining assay was performed for observation of pancreatic pathology and aldehyde fuchsin staining assay for examining islet cell numbers. The iron content was detected via Perls staining assay with iron assay kit (ab83366). The malondialdehyde (MDA), glutathione (GSH) and oxidized glutathione (GSSG) were detected by corresponding kits. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for assessment of gene level and Western blot for measurement of protein expression level. The cell survival was detected via CCK-8 assay. RESULTS The blood glucose level, iron content, accumulation of lipid peroxides and islet injury in diabetic model were all improved by CCA via a concentration-dependent manner. CCA functions via inhibition of ferroptosis by activation of cystine/glutamate transporter system (XC-)/glutathione peroxidase 4(GPX4)/Nrf2 and inhibition of nuclear receptor coactivator 4 (NCOA4) in diabetes. CONCLUSION CCA exerted excellent antidiabetic effects via inhibition of ferroptosis, so it may be a promising agent for diabetes therapy, providing a new avenue for diabetes treatment.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Endocrinology, Xiamen Hospital, Beijing University of Traditional Chinese Medicine (Xiamen Hospital of Traditional Chinese Medicine), Xiamen, Fujian361008, People’s Republic of China
- Correspondence: Yi Zhou Department of Endocrinology, Xiamen Hospital, Beijing University of Traditional Chinese Medicine (Xiamen Hospital of Traditional Chinese Medicine), 1739, Xianyue Road, Huli District, Xiamen City, Fujian Province, People’s Republic of China Email
| |
Collapse
|
21
|
Kellon EM, Gustafson KM. Possible dysmetabolic hyperferritinemia in hyperinsulinemic horses. Open Vet J 2020; 9:287-293. [PMID: 32042647 PMCID: PMC6971364 DOI: 10.4314/ovj.v9i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023] Open
Abstract
Background Hyperinsulinemia associated with equine metabolic syndrome and pituitary pars intermedia dysfunction is a risk factor for laminitis. Research in other species has shown elevated body iron levels as both a predictor and consequence of insulin resistance. In humans, this is known as dysmetabolic hyperferritinemia. Aim To explore the relationship between equine hyperinsulinemia and body iron levels. Methods We reviewed case histories and laboratory results from an open access database maintained by the Equine Cushing's and Insulin Resistance Group Inc. (ECIR). We identified 33 horses with confirmed hyperinsulinemia and laboratory results for serum iron, total iron binding capacity, and ferritin. Pearson correlation was used to test the relationship between insulin and iron indices. Additionally, we performed a secondary analysis of a previously reported controlled trial that was originally designed to test the correlation between iron status and the insulin response in horses. Here, we used a t-test to compare the mean values of insulin and ferritin between horses we categorized as normal or hyperinsulinemic based on their response to an oral challenge. Results Serum ferritin exceeded published reference range in 100% of the horses identified from the ECIR database. There were no statistically significant associations between insulin indices (RISQI, log insulin) and iron indices (log serum iron, log TSI%, log ferritin). There were trends for a negative association between RISQI and log iron [r(31) = -0.33, p = 0.058] and a positive association between age and ferritin [r(30) = 0.34, p = 0.054]. From the secondary data analysis of published data, we found significantly elevated ferritin (p = 0.05) in horses considered hyperinsulinemic by dynamic insulin testing compared to horses with a normal response. Conclusion These results suggest the potential for iron overload in hyperinsulinemic horses, a feature documented in other species and should stimulate further study into the relationship between insulin and iron dysregulation in the horse.
Collapse
Affiliation(s)
- Eleanor M. Kellon
- Equine Cushing’s and Insulin Resistance Group, Inc, 2307 Rural Road, Tempe, AZ 85282, USA
| | - Kathleen M. Gustafson
- Equine Cushing’s and Insulin Resistance Group, Inc, 2307 Rural Road, Tempe, AZ 85282, USA
| |
Collapse
|
22
|
New molecular biomarkers in precise diagnosis and therapy of Type 2 diabetes. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, Costa Pereira TM, García-Caballero T, Rodríguez-Segade S, Rodríguez J, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, González-Juanatey JR, Lago F. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol 2019; 170:113677. [PMID: 31647926 DOI: 10.1016/j.bcp.2019.113677] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in patients with Type 2 Diabetes Mellitus (T2DM)) trial made evident the potentiality of pharmacological sodium-glucose cotransporter 2 (SGLT2) inhibition for treating patients with diabetes and cardiovascular disease. Since the effect of empagliflozin or other SGLT2 inhibitors on the whole cardiac metabolic profile was never analysed before, and with the purpose to contribute to elucidate the benefits at cardiac level of the use of empagliflozin, we explored the effect of the treatment with empagliflozin for six weeks on the cardiac metabolomic profile of Zucker diabetic fatty rats, a model of early stage T2DM, using untargeted metabolomics approach. Empagliflozin reduced significantly the cardiac content of sphingolipids (ceramides and sphingomyelins) and glycerophospholipids (major bioactive contributing factors linking insulin resistance to cardiac damage) and decreased the cardiac content of the fatty acid transporter cluster of differentiation 36 (CD36); induced significant decreases of the cardiac levels of essential glycolysis intermediaries 2,3-bisphosphoglycerate and phosphoenolpyruvate, and regulated the abundance of several amino acids of relevance as tricarboxylic acid suppliers and/or in the metabolic control of the cardiac function as glutamic acid, gamma-aminobutyric acid and sarcosine. Empagliflozin treatment activated the cardioprotective master regulator of cellular energyhomeostasis AMP-activatedproteinkinase (AMPK) and enhanced autophagy at cardiac level, while it decreased significantly the cardiac mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6), chemerin, TNF-α and MCP-1, reinforcing the hypothesis of a direct role for empagliflozin in attenuating cardiac inflammation. Our results provide an advancement on the knowledge of the mechanisms linking the therapy with empagliflozin with protective effects on the development of cardiometabolic diseases whose course is associated with remarkable cardiac bioenergetics dysregulation and disarrangement in cardiac metabolome and lipidome.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain.
| | - Manuel Otero Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luis Barral
- Group of Polymers, Department of Physics and Earth Sciences, University of La Coruña, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - José Gil-Longo
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - Thiago M Costa Pereira
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain; Pharmaceutical Sciences Graduate Program, Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Santiago Rodríguez-Segade
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Javier Rodríguez
- Clinical Biochemistry Laboratory, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| |
Collapse
|
24
|
Kumar V, A AK, Sanawar R, Jaleel A, Santhosh Kumar TR, Kartha CC. Chronic Pressure Overload Results in Deficiency of Mitochondrial Membrane Transporter ABCB7 Which Contributes to Iron Overload, Mitochondrial Dysfunction, Metabolic Shift and Worsens Cardiac Function. Sci Rep 2019; 9:13170. [PMID: 31511561 PMCID: PMC6739357 DOI: 10.1038/s41598-019-49666-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
We examined the hitherto unexplored role of mitochondrial transporters and iron metabolism in advancing metabolic and mitochondrial dysfunction in the heart during long term pressure overload. We also investigated the link between mitochondrial dysfunction and fluctuation in mitochondrial transporters associated with pressure overload cardiac hypertrophy. Left ventricular hypertrophy (LVH) was induced in 3-month-old male Wistar rats by constriction of the aorta using titanium clips. After sacrifice at the end of 6 and 15 months after constriction, tissues from the left ventricle (LV) from all animals were collected for histology, biochemical studies, proteomic and metabolic profiling, and gene and protein expression studies. LV tissues from rats with LVH had a significant decrease in the expression of ABCB7 and mitochondrial oxidative phosphorylation (mt-OXPHOS) enzymes, an increased level of lipid metabolites, decrease in the level of intermediate metabolites of pentose phosphate pathway and elevated levels of cytoplasmic and mitochondrial iron, reactive oxygen species (ROS) and autophagy-related proteins. Knockdown of ABCB7 in H9C2 cells and stimulation with angiotensin II resulted in increased ROS levels, ferritin, and transferrin receptor expression and iron overload in both mitochondria and cytoplasm. A decrease in mRNA and protein levels of mt-OXPHOS specific enzymes, mt-dynamics and autophagy clearance and activation of IGF-1 signaling were also seen in these cells. ABCB7 overexpression rescued all these changes. ABCB7 was found to interact with mitochondrial complexes IV and V. We conclude that in chronic pressure overload, ABCB7 deficiency results in iron overload and mitochondrial dysfunction, contributing to heart failure.
Collapse
Affiliation(s)
- Vikas Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Aneesh Kumar A
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Rahul Sanawar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Abdul Jaleel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T R Santhosh Kumar
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India. .,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India. .,Graduate studies, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| | - C C Kartha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.
| |
Collapse
|
25
|
Behboudi-Gandevani S, Abtahi H, Saadat N, Tohidi M, Ramezani Tehrani F. Effect of phlebotomy versus oral contraceptives containing cyproterone acetate on the clinical and biochemical parameters in women with polycystic ovary syndrome: a randomized controlled trial. J Ovarian Res 2019; 12:78. [PMID: 31470879 PMCID: PMC6716867 DOI: 10.1186/s13048-019-0554-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reduction of the body iron stores can improve hyperandrogenemia and insulin resistance. This study aimed to compare clinical and para-clinical responses to the treatment of phlebotomy using oral contraceptive pills (OCs) containing cyproterone acetate in women with PCOS. METHODS In this randomized clinical trial, 64 patients with PCOS were randomly assigned to the phlebotomy and OCs groups (n = 32 in each group). The intervention group, using a single treatment procedure, underwent venesection of 450 mL of whole blood at the early follicular phase of the spontaneous or progesterone-induced menstrual cycle. The control group received OCs pills for 3 months from the 1th day of spontaneous or progesterone-induced menstrual cycle onwards for 3 weeks, followed by a pill-free interval of 7 days. The women were evaluated after the 3-month intervention. The primary outcome measure was a change in the HOMA-IR and free androgen index (FAI). Secondary outcomes were changes in the Ferriman-Gallwey (FG) score and other clinical, biochemical and hormonal changes from the baseline (pre-treatment) to week 12. RESULTS In the phlebotomy group, 27 (84.3%) and in the OCs group 30 (93.7%) of the women completed the 3-month follow-up. The median HOMA-IR significantly decreased from 3.5 to 2.7 in the phlebotomy, and from 3.1 to 2.8 in the OCs group, and the changes were comparable between the groups. Median changes in the FAI significantly decreased in both groups, but the differences were not statistically significant between the groups (P = 0.061). With regard to secondary outcomes, mean FG scores in both groups significantly decreased [from 16.8 (6) to 13.3 (7.4), P < 0.028] in the phlebotomy group and [from 14.3 (7) to 9.8 (7.6) in the OCs group, P = 0.001] after 3 months of treatment, but such changes had no statistically significant differences between the groups. During treatment, menstrual cycles became regular in all women in the OCs group and in 12.27 (44.4%) of the women in the phlebotomy group, and the difference was statistically significant (P = 0.001). Despite no statistically significant differences in lipid profiles between the groups at the baseline, triglycerides were significantly higher in the OCs group compared to the phlebotomy at end of follow up (p = 0.019). CONCLUSION Both treatment modalities had similar beneficial effects on insulin resistance and on androgenic profiles. However, OCs was reported more effective in treating menstrual irregularities and phlebotomy had less adverse effects on triglyceride concentrations. TRIAL REGISTRATION Code: IRCT2013080514277N1 .
Collapse
Affiliation(s)
- Samira Behboudi-Gandevani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, P.O.Box: 19395-4763, Tehran, Iran
| | - Hayedeh Abtahi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, P.O.Box: 19395-4763, Tehran, Iran
| | - Navid Saadat
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, P.O.Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
26
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
27
|
Król E, Bogdański P, Suliburska J, Krejpcio Z. The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biol Trace Elem Res 2019; 189:34-44. [PMID: 30091069 PMCID: PMC6443611 DOI: 10.1007/s12011-018-1470-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to assess the levels of Zn, Fe and Cu in the serum and hair, and dietary intake of type 2 diabetic patients and their association with glucose and lipid indices. The study was conducted on 62 people aged 40-78 years (31 diabetic patients and 31 healthy subjects, who were the control group). The content of trace elements in the hair and serum was analysed with the AAS method. The serum insulin, HbA1c, glucose, total cholesterol and triacylglycerol concentrations were measured by means of RIA, HPLC and colorimetric methods, respectively. The diabetic patients were found to have significantly higher dietary iron intake, higher hair Fe and lower serum Zn concentrations than the non-diabetic subjects, while the hair Zn and Cu contents were comparable in both groups. The serum Zn and Cu levels of the diabetic subjects were negatively correlated with the serum glucose, the serum Zn and Cu/Zn ratio was inversely correlated with the serum total cholesterol and the serum insulin level was positively associated with the hair Cu/Zn ratio. The results of this study indicate that the trace element status (Zn, Fe, Cu), as reflected in the blood serum and hair, may be disturbed due to metabolic derangement occurring in diabetes.
Collapse
Affiliation(s)
- Ewelina Król
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, 31 Wojska Polskiego, 60-624, Poznan, Poland.
| | - Paweł Bogdański
- Department of Internal Medicine, Metabolic Disorders and Hypertension, Poznan University of Medical Sciences, 84 Szamarzewskiego, 60-569, Poznan, Poland
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, 31 Wojska Polskiego, 60-624, Poznan, Poland
| | - Zbigniew Krejpcio
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, 31 Wojska Polskiego, 60-624, Poznan, Poland
| |
Collapse
|
28
|
Ma W, Feng Y, Jia L, Li S, Li J, Wang Z, Chen X, Du H. Dietary Iron Modulates Glucose and Lipid Homeostasis in Diabetic Mice. Biol Trace Elem Res 2019; 189:194-200. [PMID: 30027366 DOI: 10.1007/s12011-018-1446-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Imbalance of iron homeostasis has been involved in clinical courses of metabolic diseases such as type 2 diabetes mellitus, obesity, and nonalcoholic fatty liver, through mechanisms not yet fully elucidated. Herein, we evaluated the effect of dietary iron on the development of diabetic syndromes in genetically obese db/db mice. Mice (aged 7 weeks) were fed with high-iron (HI) diets (1000 mg/kg chow) or low-iron (LI) diets (12 mg/kg) for 9 weeks. HI diets increased hepatic iron threefold and led to fourfold higher mRNA levels of hepcidin. HI also induced a 60% increase in fasting glucose due to insulin resistance, as confirmed by decreased hepatic glycogen deposition eightfold and a 21% decrease of serum adiponectin level. HI-fed mice had lower visceral adipose tissue mass estimated by epididymal and inguinal fat pad, associated with iron accumulation and smaller size of adipocytes. Gene expression analysis of liver showed that HI diet upregulated gluconeogenesis and downregulated lipogenesis. These results suggested that excess dietary iron leads to reduced mass, increased fasting glucose, decreased adiponectin level, and enhancement of insulin resistance, which indicated a multifactorial role of excess iron in the development of diabetes in the setting of obesity.
Collapse
Affiliation(s)
- Wan Ma
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunfei Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Li Jia
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shuhui Li
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiahui Li
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhenjie Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoyun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China.
- College of Animal Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Volani C, Paglia G, Smarason SV, Pramstaller PP, Demetz E, Pfeifhofer-Obermair C, Weiss G. Metabolic Signature of Dietary Iron Overload in a Mouse Model. Cells 2018; 7:cells7120264. [PMID: 30544931 PMCID: PMC6315421 DOI: 10.3390/cells7120264] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
Iron is an essential co-factor for several metabolic processes, including the Krebs cycle and mitochondrial oxidative phosphorylation. Therefore, maintaining an appropriate iron balance is essential to ensure sufficient energy production and to avoid excessive reactive oxygen species formation. Iron overload impairs mitochondrial fitness; however, little is known about the associated metabolic changes. Here we aimed to characterize the metabolic signature triggered by dietary iron overload over time in a mouse model, where mice received either a standard or a high-iron diet. Metabolic profiling was assessed in blood, plasma and liver tissue. Peripheral blood was collected by means of volumetric absorptive microsampling (VAMS). Extracted blood and tissue metabolites were analyzed by liquid chromatography combined to high resolution mass spectrometry. Upon dietary iron loading we found increased glucose, aspartic acid and 2-/3-hydroxybutyric acid levels but low lactate and malate levels in peripheral blood and plasma, pointing to a re-programming of glucose homeostasis and the Krebs cycle. Further, iron loading resulted in the stimulation of the urea cycle in the liver. In addition, oxidative stress was enhanced in circulation and coincided with increased liver glutathione and systemic cysteine synthesis. Overall, iron supplementation affected several central metabolic circuits over time. Hence, in vivo investigation of metabolic signatures represents a novel and useful tool for getting deeper insights into iron-dependent regulatory circuits and for monitoring of patients with primary and secondary iron overload, and those ones receiving iron supplementation therapy.
Collapse
Affiliation(s)
- Chiara Volani
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Giuseppe Paglia
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Sigurdur V Smarason
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
30
|
Molecular Fingerprints of Iron Parameters among a Population-Based Sample. Nutrients 2018; 10:nu10111800. [PMID: 30463274 PMCID: PMC6266982 DOI: 10.3390/nu10111800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Iron deficiency is the most frequent deficiency disease and parameters of iron metabolism appear to be linked to major metabolic and cardiovascular diseases. We screened a large set of small molecules in plasma for associations with iron status among apparently healthy subjects to elucidate subclinical profiles which may provide a link between iron status and onset of diseases. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined 613 plasma metabolites and lipoprotein subfractions among 820 apparently healthy individuals. Associations between ferritin, transferrin, haemoglobin and myoglobin and metabolite levels were tested by sex-specific linear regression analyses controlling for common confounders. Far more significant associations in women (82 out of 102) compared to men became obvious. The majority of the metabolites associated with serum ferritin and haemoglobin in women comprising fatty acid species, branched-chain amino acid catabolites and catabolites of heme. The latter was also obvious among men. Positive associations between serum transferrin and VLDL and IDL particle measures seen in women were observed in men with respect to serum ferritin. We observed a sexual-dimorphic fingerprint of surrogates of iron metabolism which may provide a link for the associations between those parameters and major metabolic and cardiovascular disease.
Collapse
|
31
|
Meyer A, Montastier E, Hager J, Saris WHM, Astrup A, Viguerie N, Valsesia A. Plasma metabolites and lipids predict insulin sensitivity improvement in obese, nondiabetic individuals after a 2-phase dietary intervention. Am J Clin Nutr 2018; 108:13-23. [PMID: 29878058 PMCID: PMC6600064 DOI: 10.1093/ajcn/nqy087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Weight loss in obese individuals aims to reduce the risk of type 2 diabetes by improving glycemic control. Yet, significant intersubject variability is observed and the outcomes remain poorly predictable. Objective The aim of the study was to predict whether an individual will show improvements in insulin sensitivity above or below the median population change at 6 mo after a low-calorie-diet (LCD) intervention. Design With the use of plasma lipidomics and metabolomics for 433 subjects from the Diet, Obesity, and Genes (DiOGenes) Study, we attempted to predict good or poor Matsuda index improvements 6 mo after an 8-wk LCD intervention (800 kcal/d). Three independent analysis groups were defined: "training" (n = 119) for model construction, "testing" (n = 162) for model comparison, and "validation" (n = 152) to validate the final model. Results Initial modeling with baseline clinical variables (body mass index, Matsuda index, total lipid concentrations, sex, age) showed limited performance [area under the curve (AUC) on the "testing dataset" = 0.69; 95% CI: 0.61, 0.77]. Significantly better performance was achieved with an omics model based on 27 variables (AUC = 0.77; 95% CI: 0.70, 0.85; P = 0.0297). This model could be greatly simplified while keeping the same performance. The simplified model relied on baseline Matsuda index, proline, and phosphatidylcholine 0-34:1. It successfully replicated on the validation set (AUC = 0.75; 95% CI: 0.67, 0.83) with the following characteristics: specificity = 0.73, sensitivity = 0.68, negative predictive value = 0.60, and positive predictive value = 0.80. Marginally lower performance was obtained when replacing the Matsuda index with homeostasis model assessment of insulin resistance (AUC = 0.72; 95% CI: 0.64, 0.80; P = 0.08). Conclusions Our study proposes a model to predict insulin sensitivity improvements, 6 mo after LCD completion in a large population of overweight or obese nondiabetic subjects. It relies on baseline information from 3 variables, accessible from blood samples. This model may help clinicians assessing the large variability in dietary interventions and predict outcomes before an intervention. This trial was registered at www.clinicaltrials.gov as NCT00390637.
Collapse
Affiliation(s)
- Antonin Meyer
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Emilie Montastier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Toulouse, France,Department of Clinical Biochemistry and Nutrition, Toulouse University Hospital, Toulouse, France
| | - Jörg Hager
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Wim H M Saris
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Toulouse, France
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, Lausanne, Switzerland,Address correspondence to AV (e-mail: )
| |
Collapse
|