1
|
Gong H, Qi Y, Wu X, Wu L, Liu W, Chen H, Qiu J, Wen H, Shen Z, Wang Z, Zhang M, Xu Z, Xu Z, Sun B, Li X, Zhao Q. UCP1-inspired mitochondrial uncouplers: Design, synthesis and thermogenic activity studies. Bioorg Chem 2025; 161:108466. [PMID: 40319812 DOI: 10.1016/j.bioorg.2025.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Given that uncoupling protein 1 (UCP1) serves as the principal thermogenic effector in adipose tissue, and motivated by recent breakthroughs in its structural characterization, we tried to obtain the precursor compounds with optimal docking mode, tryptophan compounds, by virtual screening. Following the initial structural refinement of these derivatives, we synthesized a series of tryptophan-based compounds aimed at enhancing their functional properties. Notably, the tryptophan-derived compound ZGL-18 was found to effectively induce lipid consumption without causing toxicity in brown adipocytes at a concentration of 100 μmol/L. In addition, administration of ZGL-18 stimulates brown adipocytes, trigger a reduction in mitochondrial membrane potential. In vivo experiments showed that ZGL-18 at a dose of 100 mg/kg significantly enhanced thermogenesis and cold tolerance in mice with preserving core and skin temperature. ZGL-18 was found to efficiently enhance respiration as well as energy expenditure in cold environments, in addition to passing, and was non-toxic at a dose of 1000 mg/kg. Furthermore, we preliminarily confirmed the binding mode of ZGL-18 to UCP1 by molecular docking and molecular dynamics simulation. These results suggest that ZGL-18 might be a promising candidate for drug development targeting UCP1.
Collapse
Affiliation(s)
- Hao Gong
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Yiming Qi
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Xinyi Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Limeng Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Wenjie Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Huanhua Chen
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Jingsong Qiu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan 572025, People's Republic of China
| | - Han Wen
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Zixian Shen
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Zhiya Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Mingzuo Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Zonghe Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China
| | - Bohang Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China.
| |
Collapse
|
2
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
3
|
Huang G, Wang H, Zhao X, Wang C, Zhang J, Yao D, Li C. Design, synthesis and biological evaluation of new SIRT3 activators for the treatment of triple-negative breast cancer. Bioorg Med Chem 2025; 118:118040. [PMID: 39671732 DOI: 10.1016/j.bmc.2024.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Triple-negative breast cancer (TNBC) represents a highly malignant subtype of breast cancer with limited therapeutic options. In this study, we designed and synthesized a series of 1,4-DHP derivatives by structure-based strategy, 43 was documented to be a potent SIRT3 activator and exhibited profound anti-proliferative activity in BT-549 and MDA-MB-231 cells with low toxicity over normal cells. Additionally, 43 displayed the ability of direct binding to SIRT3 with a Kd value of 51.51 μM in BLI assay, and the potential bonding mode was elucidated through molecular docking. 43 could inhibit the proliferation, migration, and glycolysis, induced mitochondrial membrane potential decreased and apoptosis in BT-549 and MDA-MB-231 cells. Collectively, these results demonstrate that 43 is a potent SIRT3 activator with the potential to anti-TNBC through signaling pathways regulated by SIRT3.
Collapse
Affiliation(s)
- Guichan Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Hailing Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Xi Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Chen Wang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Zhang K, Wang Y, Sun Y, Xue L, Wang Y, Nie C, Fan M, Qian H, Ying H, Wang L, Li Y. Sirtuin 3 reinforces acylcarnitine metabolism and maintains thermogenesis in brown adipose tissue of aging mice. Aging Cell 2024; 23:e14332. [PMID: 39348266 PMCID: PMC11634729 DOI: 10.1111/acel.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 10/02/2024] Open
Abstract
Acylcarnitine (ACar) is a novel fuel source for activating thermogenesis in brown adipose tissue (BAT). However, whether ACar metabolism underlies BAT thermogenesis decline with aging remain unclear. Here, the L-carnitine-treated young and aging mice were used to investigate the effects of activation of ACar metabolism on BAT thermogenesis during aging. We showed that long term L-carnitine feeding, which results in an elevation in circulating ACar levels, failed to improve cold sensitivity of aging mice, which still displayed impaired thermogenesis and ACar metabolism in interscapular BAT (iBAT). The RNA-sequencing was used to identify the key regulator for the response of aging mice to LCar induced activation of ACar metabolism in BAT, and we identified Sirt3 as a key regulator for the response of aging mice to L-carnitine induced activation of ACar metabolism in iBAT. Then the adipose-specific Sirt3 knockout (Sirt3 AKO) mice were used to investigate the role of Sirt3 in ACar metabolism and thermogenesis of BAT and explore the underlying mechanism, and the results showed that Sirt3 AKO mice displayed defective ACar metabolism and thermogenesis in iBAT. Mechanically, Sirt3 regulated ACar metabolism via HIF1α-PPARα signaling pathway to promote iBAT thermogenesis, and knockdown or inhibition of HIF1α ameliorated impaired ACar metabolism and thermogenesis of iBAT in the absence of Sirt3. Collectively, we propose that Sirt3 regulated ACar metabolism is critical in maintaining thermogenesis in BAT of aging mice, which can promote the development of anti-aging intervention strategy.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | | | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
5
|
Viana FS, Pereira JA, Crespo TS, Reis Amaro LB, Rocha EF, Fereira AC, Lelis DDF, Baldo TDOF, Baldo MP, Santos SHS, Andrade JMO. Oral supplementation with resveratrol improves hormonal profile and increases expression of genes associated with thermogenesis in oophorectomy mice. Mol Cell Endocrinol 2024; 591:112268. [PMID: 38735622 DOI: 10.1016/j.mce.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Menopause causes important bodily and metabolic changes, which favor the increased occurrence of cardiovascular diseases, obesity, diabetes, and osteoporosis. Resveratrol exerts proven effects on body metabolism, improving glucose and lipid homeostasis and reducing inflammation and oxidative stress in various organs and tissues. Accordingly, this study evaluates the effects of resveratrol supplementation on the expression of markers associated with thermogenesis in brown adipose tissue, and on the body, metabolic and hormonal parameters of female mice submitted to bilateral oophorectomy. Eighteen female mice were randomized into three groups: G1: control (CONTROL), G2: oophorectomy (OOF), and G3: oophorectomy + resveratrol (OOF + RSV); the animals were kept under treatment for twelve weeks, being fed a standard diet and treated with resveratrol via gavage. Body, biochemical, hormonal, and histological parameters were measured; in addition to the expression of markers associated with thermogenesis in brown adipose tissue. The results showed that animals supplemented with resveratrol showed reduced body weight and visceral adiposity, in addition to glucose, total cholesterol, and triglyceride levels; decreased serum FSH levels and increased estrogen levels were observed compared to the OOF group and mRNA expression of PRDM16, UCP1, and SIRT3 in brown adipose tissue. The findings of this study suggest the important role of resveratrol in terms of improving body, metabolic, and hormonal parameters, as well as modulating markers associated with thermogenesis in brown adipose tissue of female mice submitted to oophorectomy.
Collapse
Affiliation(s)
- Fhelício Sampaio Viana
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Juliana Andrade Pereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Eliezer Francisco Rocha
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Alice Crespo Fereira
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | - Marcelo Perim Baldo
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil; Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil; Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
7
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
8
|
U-Din M, de Mello VD, Tuomainen M, Raiko J, Niemi T, Fromme T, Klåvus A, Gautier N, Haimilahti K, Lehtonen M, Kristiansen K, Newman JW, Pietiläinen KH, Pihlajamäki J, Amri EZ, Klingenspor M, Nuutila P, Pirinen E, Hanhineva K, Virtanen KA. Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans. Cell Rep 2023; 42:113131. [PMID: 37708023 DOI: 10.1016/j.celrep.2023.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
Collapse
Affiliation(s)
- Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Vanessa D de Mello
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjo Tuomainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Juho Raiko
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anton Klåvus
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Marko Lehtonen
- Department of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - John W Newman
- Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
9
|
Flori L, Piragine E, Spezzini J, Citi V, Calderone V, Martelli A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int J Mol Sci 2023; 24:ijms24119276. [PMID: 37298226 DOI: 10.3390/ijms24119276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Feng Z, Chen J, Chen C, Feng L, Wang R, Zhu J, Lou R, Liu J, Ye Y, Lin L. Bioactivity-based molecular networking-guided identification of guttiferone J from Garcinia cambogia as an anti-obesity candidate. Br J Pharmacol 2023; 180:589-608. [PMID: 36321884 DOI: 10.1111/bph.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological intervention to induce browning of white adipose tissue provides a promising anti-obesity therapy. The fruits of Garcinia cambogia (Clusiaceae) have been widely applied to manage body weight; however, the chemical principles remain unclear. The current study aims to discover browning inducers from the fruits of G. cambogia and investigate the underlying mechanisms. EXPERIMENTAL APPROACH The bioactivity-based molecular networking and Oil Red O staining on 3T3-L1 and C3H10T1/2 adipocytes were applied for guided isolation. High-fat diet-induced obese mice were recruited to evaluate the anti-obesity activity. KEY RESULTS The bioactivity-based molecular networking-guided isolation yielded several polycyclic polyprenylated acylphloroglucinols from the fruits of G. cambogia with lipid-lowering effect in adipocytes, including guttiferone J (GOJ), garcinol and 14-deoxygarcinol. As the most potent one, GOJ (10 μM) reduced lipid accumulation by 70% and 76% in 3T3-L1 and C3H10T1/2 adipocytes, respectively. Furthermore, GOJ (2.5-10 μM) increased the expression of the deacetylase sirtuin 3 (SIRT3) and activated it, which, in turn, reduced the acetylation level of PPARγ coactivator-1α to boost mitochondrial biogenesis and promoted uncoupling protein 1 expression to enhance thermogenesis, resulting in browning of adipocytes. In high-fat diet-induced-obese mice, GOJ (10 and 20 mg·kg-1 ·day-1 for 12 weeks) protected against adiposity, hyperlipidaemia, insulin resistance and liver lipotoxicity, through boosting SIRT3-mediated browning of inguinal adipose tissue. CONCLUSION AND IMPLICATIONS GOJ represents a new scaffold of thermogenic inducer, which is responsible for the anti-obesity property of G. cambogia and can be further developed as a candidate for treating obesity and its related disorders.
Collapse
Affiliation(s)
- Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Cheng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lu Feng
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianzhong Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jia Liu
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
11
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 PMCID: PMC11802959 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
- Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
12
|
Liu K, Liu X, Deng Y, Li Z, Tang A. CircRNA-mediated regulation of brown adipose tissue adipogenesis. Front Nutr 2022; 9:926024. [PMID: 35967789 PMCID: PMC9372764 DOI: 10.3389/fnut.2022.926024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.
Collapse
Affiliation(s)
- Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xin Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
13
|
Chiang CH, Cheng CY, Lien YT, Huang KC, Lin WW. P2X7 Activation Enhances Lipid Accumulation During Adipocytes Differentiation Through Suppressing the Expression of Sirtuin-3, Sirtuin-5, and Browning Genes. Front Pharmacol 2022; 13:852858. [PMID: 35462937 PMCID: PMC9019299 DOI: 10.3389/fphar.2022.852858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
P2X7 signaling has been explored in adipose tissue because of its potential to promote ATP-activated inflammatory cascades during obesogenic environments. However, limited literature has investigated the role of the P2X7 receptor in lipid metabolism during adipocyte differentiation. This study sought to explore the regulatory roles of P2X7 in adipocytes. This study utilized the in vitro 3T3-L1 differentiation model. Lipid accumulation, intracellular triglyceride, and extracellular glycerol were determined. The selective P2X7 agonist BzATP and antagonist A438079 were administered to investigate the functions of P2X7. We found that the expression of P2X7 and the lipid accumulation increased during adipocyte differentiation from D0 to D4. When administered at D0/D2, A438079 attenuated, while BzATP enhanced the degree of lipid accumulation during adipocyte differentiation. Neither did BzATP and A438079 administration affect the expression of PPARγ and C/EBPα genes that increased at D4. In addition, both intracellular triglyceride and extracellular glycerol levels at D4 were reduced by A438079 treatment and enhanced by BzATP administration. When administered at stage 2 of adipocyte differentiation, BzATP consistently enhanced lipid accumulation and intracellular triglyceride and extracellular glycerol levels without affecting mRNA and protein levels of PPARγ and C/EBPα that increased at D4. However, treating A438079 or BzATP at D4 did not affect intracellular triglyceride formation and extracellular glycerol release in differentiated adipocytes at D7. Notably, BzATP administration at stage 2 exerted a concentration-dependent inhibition on the enhanced expression of PRDM16, PGC-1α, and UCP-1 at D4. Furthermore, BzATP administration at D0/D2 inhibited the protein and mRNA levels of sirtuin-3/5 at D4. BzATP treatment at stage 2 also suppressed the mRNA levels of sirtuin-3/5 genes upregulated by insulin. In conclusion, this study demonstrated P2X7 enhances lipid accumulation during adipogenesis by suppressing the expression of sirtuin-3/5 and the browning genes.
Collapse
Affiliation(s)
- Chien-Hsieh Chiang
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Ching-Yuan Cheng
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Lien
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Bugga P, Alam MJ, Kumar R, Pal S, Chattopadyay N, Banerjee SK. Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast. Cell Signal 2022; 94:110309. [PMID: 35304284 DOI: 10.1016/j.cellsig.2022.110309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
Sirtuins are the endogenously present anti-aging protein deacetylases that regulate the mitochondrial biogenesis and function. Especially Sirt3, a mitochondrial sirtuin, is well known for maintaining mitochondrial function and health. In the present study, we have explored the novel role of Sirt3 in mitochondrial biogenesis and shown the role of Sirt3 in mito-nuclear communication through AMPK-α in Sirt3 knockdown and Sirt3 overexpressed H9c2 cells. The study found that impaired mitochondrial function in Sirt3-knockdown H9c2 cells was associated with decreased expression of mitochondrial DNA encoded genes, reduced SOD2 expression and activity. The study also revealed that Sirt3 knockdown affects mitochondrial biogenesis and dynamics. To further confirm the role of Sirt3 on mitochondrial biogenesis and health, we did Sirt3 overexpression in H9c2 cells. Sirt3 overexpression enhanced the expression of mitochondrial DNA encoded genes, increased SOD2 activity and altered mitochondrial dynamics. Sirt3 overexpression also caused an increase in mitochondrial biogenesis gene and protein (PGC-1α and TFAM) expression. All these changes were confirmed with mitochondrial functional parameters like basal respiration, maximal respiratory capacity, spare respiratory capacity and ATP production. We found decreased mitochondrial function in Sirt3-knockdown H9c2 cells when compared to control H9c2 cells. Together our data conclude that Sirt3 regulates cardiac mitochondrial health and function through the Sirt3-AMPKα-PGC-1α axis.
Collapse
Affiliation(s)
- Paramesha Bugga
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA
| | - Md Jahangir Alam
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Roshan Kumar
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA.
| | - Subhashis Pal
- Endocrinology Department, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naibedya Chattopadyay
- Endocrinology Department, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Sanjay Kumar Banerjee
- Non-Communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, 121001, Haryana, INDIA; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
15
|
Mukherjee S, Yun JW. β-Carotene stimulates browning of 3T3-L1 white adipocytes by enhancing thermogenesis via the β3-AR/p38 MAPK/SIRT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153857. [PMID: 34840022 DOI: 10.1016/j.phymed.2021.153857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural compounds with medicinal properties are part of a strategic trend in the treatment of obesity. The vitamin A agent, β-carotene, is a well-known carotenoid, and its numerous functions in metabolism have been widely studied. The activation of thermogenesis by stimulating white fat browning (beiging) has been identified as a treatment for obese individuals. PURPOSE The current study was undertaken to unveil the browning activity of β-carotene in 3T3-L1 white adipocytes. METHODS The effects of β-carotene were evaluated in 3T3-L1 white adipocytes, and gene/protein expressions were determined by performing quantitative real-time PCR, immunoblot analysis, immunofluorescence assessment, and molecular docking techniques. RESULTS β-carotene strikingly increased the expression levels of brown-fat-specific marker proteins (UCP1, PRDM16, and PGC-1α) and beige-fat-specific genes (Cd137, Cidea, Cited1, andTbx1) in 3T3-L1 cells. Exposure to β-carotene also elevated the expressions of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes but decreased the expressions of lipogenic marker proteins ACC and FAS. Moreover, lipolysis and fat oxidation were regulated by β-carotene via upregulation of ATGL, pHSL, ACOX, and CPT1. In addition, molecular docking studies revealed β-carotene activation of the adenosine A2A receptor and β3-AR. β-Carotene increased the expressions of mitochondrial biogenic markers, stimulated the β3-AR and p38 MAPK signaling pathways and its downstream signaling molecules (SIRTs and ATF2), thereby inducing browning. CONCLUSIONS Taken together, our results indicate the potential of β-carotene as a natural-source therapeutic anti-obesity agent.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
16
|
Cheng H, Sebaa R, Malholtra N, Lacoste B, El Hankouri Z, Kirby A, Bennett NC, van Jaarsveld B, Hart DW, Tattersall GJ, Harper ME, Pamenter ME. Naked mole-rat brown fat thermogenesis is diminished during hypoxia through a rapid decrease in UCP1. Nat Commun 2021; 12:6801. [PMID: 34815412 PMCID: PMC8610999 DOI: 10.1038/s41467-021-27170-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Naked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1-3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.
Collapse
Affiliation(s)
- Hang Cheng
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Rajaa Sebaa
- grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada ,grid.449644.f0000 0004 0441 5692Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Nikita Malholtra
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Baptiste Lacoste
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Brain and Mind Research Institute, Ottawa, ON Canada ,grid.412687.e0000 0000 9606 5108Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Ziyad El Hankouri
- grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| | - Alexia Kirby
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Nigel C. Bennett
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Barry van Jaarsveld
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Daniel W. Hart
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Glenn J. Tattersall
- grid.411793.90000 0004 1936 9318Department of Biological Sciences, Brock University, St. Catharines, ON Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Matthew E. Pamenter
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Brain and Mind Research Institute, Ottawa, ON Canada
| |
Collapse
|
17
|
Snyder MM, Yue F, Zhang L, Shang R, Qiu J, Chen J, Kim KH, Peng Y, Oprescu SN, Donkin SS, Bi P, Kuang S. LETMD1 is required for mitochondrial structure and thermogenic function of brown adipocytes. FASEB J 2021; 35:e21965. [PMID: 34669999 DOI: 10.1096/fj.202100597r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/15/2023]
Abstract
Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.
Collapse
Affiliation(s)
- Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lijia Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Li Y, Zhang K, Liu J, Liu S, Nie C, Yan Y, Guan Y, Fan M, Qian H, Ying H, Wang L. Geniposide suppresses thermogenesis via regulating PKA catalytic subunit in adipocytes. Toxicology 2021; 464:153014. [PMID: 34718029 DOI: 10.1016/j.tox.2021.153014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Geniposide has been widely found to ameliorate many metabolic diseases. The recruitment and activation of brown/beige adipocytes are effective and promising methods for counteracting obesity and related diseases. However, the effect of geniposide on thermogenesis of adipocytes and its underlying mechanism have not yet been investigated. Here, we demonstrate that geniposide (25 mg/kg) reduces body temperature and cold tolerance of mice via suppressing thermogenic genes in interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT). Consistently, geniposide (20 mg/mL) suppresses thermogenic capacity of adipocytes (brown adipocytes and 3T3L1 preadipocyte cells) in vitro. Mechanistically, geniposide reduces the level of protein kinase A (PKA) catalytic subunit and further suppresses transcription activity and protein stability of uncoupling protein 1 (UCP1), leading to reduction of thermogenic capacity in adipocytes. Moreover, pharmacological PKA activation reverses geniposide-induced UCP1 inhibition, which indicated that geniposide suppresses thermogenesis of adipocytes via regulating PKA signaling. Together, our findings suggest that geniposide is an inhibitor of fat thermogenesis, establishing a novel function characteristic of geniposide.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengnan Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing 100015, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Benzi A, Grozio A, Spinelli S, Sturla L, Guse AH, De Flora A, Zocchi E, Heeren J, Bruzzone S. Role of CD38 in Adipose Tissue: Tuning Coenzyme Availability? Nutrients 2021; 13:nu13113734. [PMID: 34835990 PMCID: PMC8624254 DOI: 10.3390/nu13113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a fundamental molecule in the regulation of energy metabolism, representing both a coenzyme and a substrate for different NAD+ degrading enzymes. Among these enzymes, CD38 can be seen under two perspectives: as the enzyme synthesizing Ca2+-mobilizing second messenger, starting from NAD+, and as the major NAD+-consumer, to be inhibited to increase NAD+ levels. Indeed, the regulation of NAD+ availability is a key event during different processes. In this review, we examine the recent studies related to the modulation of CD38 expression and activity, and the consequent changes in NAD(P)(H), in adipose tissue, during inflammation and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Andrea Benzi
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Alessia Grozio
- Buck Institute for Research on Aging, Novato, CA 94945, USA;
| | - Sonia Spinelli
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Laura Sturla
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.H.G.); (J.H.)
| | - Antonio De Flora
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Elena Zocchi
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.H.G.); (J.H.)
| | - Santina Bruzzone
- DIMES-Section of Biochemistry, University of Genova, 16132 Genova, Italy; (A.B.); (S.S.); (L.S.); (A.D.F.); (E.Z.)
- Correspondence: ; Tel.: +39-0103538150
| |
Collapse
|
20
|
Daussin FN, Cuillerier A, Touron J, Bensaid S, Melo B, Al Rewashdy A, Vasam G, Menzies KJ, Harper ME, Heyman E, Burelle Y. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients 2021; 13:nu13103466. [PMID: 34684467 PMCID: PMC8538722 DOI: 10.3390/nu13103466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is widely reported in various diseases and contributes to their pathogenesis. We assessed the effect of cocoa flavanols supplementation on mitochondrial function and whole metabolism, and we explored whether the mitochondrial deacetylase sirtuin-3 (Sirt3) is involved or not. We explored the effects of 15 days of CF supplementation in wild type and Sirt3-/- mice. Whole-body metabolism was assessed by indirect calorimetry, and an oral glucose tolerance test was performed to assess glucose metabolism. Mitochondrial respiratory function was assessed in permeabilised fibres and the pyridine nucleotides content (NAD+ and NADH) were quantified. In the wild type, CF supplementation significantly modified whole-body metabolism by promoting carbohydrate use and improved glucose tolerance. CF supplementation induced a significant increase of mitochondrial mass, while significant qualitative adaptation occurred to maintain H2O2 production and cellular oxidative stress. CF supplementation induced a significant increase in NAD+ and NADH content. All the effects mentioned above were blunted in Sirt3-/- mice. Collectively, CF supplementation boosted the NAD metabolism that stimulates sirtuins metabolism and improved mitochondrial function, which likely contributed to the observed whole-body metabolism adaptation, with a greater ability to use carbohydrates, at least partially through Sirt3.
Collapse
Affiliation(s)
- Frédéric Nicolas Daussin
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
- Correspondence: ; Tel.: +33-(0)3-20-00-73-69
| | - Alexane Cuillerier
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Julianne Touron
- INRAE, UMR1019, Unité de Nutrition Humaine (UNH), Équipe ASMS, Université Clermont Auvergne, 63001 Clermont-Ferrand, France;
| | - Samir Bensaid
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Bruno Melo
- Department of Physical Education, Exercise Physiology Laboratory, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ali Al Rewashdy
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Mary-Ellen Harper
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Elsa Heyman
- ULR 7369—URePSSS—Unité de Recherche Pluridisciplinaire Sport Santé Société, University Lille, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (S.B.); (E.H.)
| | - Yan Burelle
- Interdisciplinary School of Health Sciences and Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.C.); (A.A.R.); (G.V.); (K.J.M.); (Y.B.)
| |
Collapse
|
21
|
Park WY, Park J, Ahn KS, Kwak HJ, Um JY. Ellagic acid induces beige remodeling of white adipose tissue by controlling mitochondrial dynamics and SIRT3. FASEB J 2021; 35:e21548. [PMID: 33956354 DOI: 10.1096/fj.202002491r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
To determine whether ellagic acid (EA) induces the "beige remodeling" of white adipose tissue (WAT), we treated cold-exposed mice and mouse stromal vascular fraction (SVF) cells with EA, a phytochemical abundant in fruits and vegetables, in particular berries. We then investigated the mechanism of EA in beige remodeling with a particular focus on DRP1-mediated mitochondrial fission and SIRT3. EA induced the trans-differentiation of white adipocytes to beige adipocytes by promoting the expression of UCP1 and other brown and beige adipocytes/fat factors (PRDM16, UCP1, PGC1α, CD137, and TBX1) and mitochondrial dynamics-related factors (SIRT3, NRF1, CPT1β, DRP1, and FIS1) in 3T3-L1/SVF cells, and these were confirmed in the inguinal WAT of a cold-exposed mouse model. The browning effect of EA was abolished by a potent DRP1 inhibitor Mdivi-1 or SIRT3 knockdown, suggesting that EA induces beige remodeling of WAT by regulating the mitochondrial dynamics and SIRT3.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Molinari F, Feraco A, Mirabilii S, Saladini S, Sansone L, Vernucci E, Tomaselli G, Marzolla V, Rotili D, Russo MA, Ricciardi MR, Tafuri A, Mai A, Caprio M, Tafani M, Armani A. SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes. Cells 2021; 10:cells10051126. [PMID: 34066961 PMCID: PMC8148511 DOI: 10.3390/cells10051126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity.
Collapse
Affiliation(s)
- Francesca Molinari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Simone Mirabilii
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Serena Saladini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Luigi Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Enza Vernucci
- Department of Cardiovascular, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giada Tomaselli
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Matteo A. Russo
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele, 00166 Rome, Italy; (L.S.); (G.T.); (M.A.R.)
- MEBIC Consortium, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (S.M.); (M.R.R.); (A.T.)
- Hematology, “Sant’ Andrea” University Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (S.S.); (M.T.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (A.F.); (V.M.); (M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
23
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
24
|
Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Shi M, Huang XY, Ren XY, Wei XY, Ma Y, Lin ZZ, Liu DT, Song L, Zhao TJ, Li G, Yao L, Zhu M, Zhang C, Xie C, Wu Y, Wu HM, Fan LP, Ou J, Zhan YH, Lin SY, Lin SC. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol 2021; 23:268-277. [PMID: 33664495 DOI: 10.1038/s41556-021-00642-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yue Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Han-Ming Wu
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Centre of the Third Affiliated Hospital, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China
| | - Yi-Hong Zhan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
26
|
Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, Chen TT, Chen Y, Meng GL. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin 2021; 42:230-241. [PMID: 32770173 DOI: 10.1038/s41401-020-0490-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
Sirtuin 3 (SIRT3) is a potential therapeutic target for cardiovascular, metabolic, and other aging-related diseases. In this study, we investigated the role of SIRT3 in diabetic cardiomyopathy (DCM). Mice were injected with streptozotocin (STZ, 60 mg/kg, ip) to induce diabetes mellitus. Our proteomics analysis revealed that SIRT3 expression in the myocardium of diabetic mice was lower than that of control mice, as subsequently confirmed by real-time PCR and Western blotting. To explore the role of SIRT3 in DCM, SIRT3-knockout mice and 129S1/SvImJ wild-type mice were injected with STZ. We found that diabetic mice with SIRT3 deficiency exhibited aggravated cardiac dysfunction, increased lactate dehydrogenase (LDH) level in the serum, decreased adenosine triphosphate (ATP) level in the myocardium, exacerbated myocardial injury, and promoted myocardial reactive oxygen species (ROS) accumulation. Neonatal rat cardiomyocytes were transfected with SIRT3 siRNA, then exposed to high glucose (HG, 25.5 mM). We found that downregulation of SIRT3 further increased LDH release, decreased ATP level, suppressed the mitochondrial membrane potential, and elevated oxidative stress in HG-treated cardiomyocytes. SIRT3 deficiency further raised expression of necroptosis-related proteins including receptor-interacting protein kinase 1 (RIPK1), RIPK3, and cleaved caspase 3, and upregulated the expression of inflammation-related proteins including NLR family pyrin domain-containing protein 3 (NLRP3), caspase 1 p20, and interleukin-1β both in vitro and in vivo. Collectively, SIRT3 deficiency aggravated hyperglycemia-induced mitochondrial damage, increased ROS accumulation, promoted necroptosis, possibly activated the NLRP3 inflammasome, and ultimately exacerbated DCM in the mice. These results suggest that SIRT3 can be a molecular intervention target for the prevention and treatment of DCM.
Collapse
|
27
|
Boardman NT, Migally B, Pileggi C, Parmar GS, Xuan JY, Menzies K, Harper ME. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165982. [PMID: 33002579 DOI: 10.1016/j.bbadis.2020.165982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.
Collapse
Affiliation(s)
- Neoma T Boardman
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Baher Migally
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir S Parmar
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir Menzies
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
28
|
Song G, Kim HL, Jung Y, Park J, Lee JH, Ahn KS, Kwak HJ, Um JY. Fruit of Hovenia dulcis Thunb. Induces Nonshivering Thermogenesis through Mitochondrial Biogenesis and Activation by SIRT1 in High-Fat Diet-Fed Obese Mice and Primary Cultured Brown Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6715-6725. [PMID: 32450691 DOI: 10.1021/acs.jafc.0c01117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brown adipocytes, which contain abundant mitochondria, use stored energy as fuel during a process named nonshivering thermogenesis. Thus, the pharmacological activation of thermogenesis in brown adipose tissue (BAT) has become a promising target for treating obesity. We investigated the effect of fruit of Hovenial dulcis Thunb. (FHD), a frequently used herbal treatment for liver diseases, on thermogenesis and its mechanism using primary cultured brown adipocytes and BAT of high-fat-diet (HFD)-induced obese mice. Thermogenesis-related factors including UCP1 and PGC1α increased with FHD treatment. FHD also increased mitochondrial biogenesis and activation factors such as nuclear respiratory factor (NRF)1 and oxidative phosphorylation (OXPHOS) complex. Furthermore, FHD increased the intercellular nicotinamide adenine dinucleotide (NAD+) level and sirtuin 1 (SIRT1) activity, which may be responsible for the activation of the thermogenic reaction. Overall, our results suggest that FHD can be a novel option for obesity treatment due to its thermogenic action through mitochondrial biogenesis and activation.
Collapse
Affiliation(s)
- Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunu Jung
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun Hee Lee
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
29
|
Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun Biol 2020; 3:237. [PMID: 32409640 PMCID: PMC7224208 DOI: 10.1038/s42003-020-0965-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.
Collapse
|
30
|
Li J, Li J, Zhao WG, Sun HD, Guo ZG, Liu XY, Tang XY, She ZF, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive proteomics and functional annotation of mouse brown adipose tissue. PLoS One 2020; 15:e0232084. [PMID: 32374735 PMCID: PMC7202602 DOI: 10.1371/journal.pone.0232084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| | - Hai-Dan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zheng-Guang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhu-Fang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| |
Collapse
|
31
|
Hussain MF, Roesler A, Kazak L. Regulation of adipocyte thermogenesis: mechanisms controlling obesity. FEBS J 2020; 287:3370-3385. [PMID: 32301220 DOI: 10.1111/febs.15331] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Adipocyte biology has been intensely researched in recent years due to the emergence of obesity as a serious global health concern and because of the realization that adipose tissue is more than simply a cell type that stores and releases lipids. The plasticity of adipose tissues, to rapidly adapt to altered physiological states of energy demand, is under neuronal and endocrine control. The capacity for white adipocytes to store chemical energy in lipid droplets is key for protecting other organs from the toxic effects of ectopic lipid deposition. In contrast, thermogenic (brown and beige) adipocytes combust macronutrients to generate heat. The thermogenic activity of adipocytes allows them to protect themselves and other tissues from lipid overaccumulation. Advances in brown fat biology have uncovered key molecular players involved in adipocyte determination, differentiation, and thermogenic activation. It is now, well appreciated that three distinct adipocyte types exist: white, beige, and brown. Moreover, functional differences are present within adipocyte subtypes located in anatomically distinct locations. Adding to this complexity is the recent realization from single-cell sequencing studies that adipocyte progenitors are also heterogeneous. Understanding the molecular details of how to increase the number of thermogenic fat cells and their activation may delineate some of the pathophysiological basis of obesity and obesity-related diseases. Here, we review recent advances that have extended our understanding of the central role that adipose tissue plays in energy balance and the mechanisms that control their amount and function.
Collapse
Affiliation(s)
- Mohammed Faiz Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Braz GRF, da Silva AI, Silva SCA, Pedroza AAS, de Lemos MDT, de Lima FAS, Silva TLA, Lagranha CJ. Chronic serotonin reuptake inhibition uncouples brown fat mitochondria and induces beiging/browning process of white fat in overfed rats. Life Sci 2020; 245:117307. [DOI: 10.1016/j.lfs.2020.117307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
|
33
|
Alpha-Linolenic Acid-Enriched Butter Promotes Fatty Acid Remodeling and Thermogenic Activation in the Brown Adipose Tissue. Nutrients 2020; 12:nu12010136. [PMID: 31947716 PMCID: PMC7019653 DOI: 10.3390/nu12010136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 01/12/2023] Open
Abstract
Supplementation with n-3 long-chain (LC) polyunsaturated fatty acids (PUFA) is known to promote thermogenesis via the activation of brown adipose tissue (BAT). Agricultural products that are biofortified with α-linolenic acid (ALA), the precursor of n-3 LC PUFA, have been launched to the market, but their impact on BAT function is unknown. This study aimed to evaluate the effects of ALA-biofortified butter on lipid metabolism and thermogenic functions in the BAT. C57BL/6 mice were fed a high-fat diet containing ALA-biofortified butter (n3Bu, 45% calorie from fat) for ten weeks in comparison with the isocaloric high-fat diets prepared from conventional butter or margarine. The intake of n3Bu significantly reduced the whitening of BAT and increased the thermogenesis in response to acute-cold treatment. Also, n3Bu supplementation is linked with the remodeling of BAT by promoting bioconversion into n-3 LC PUFA, FA elongation and desaturation, and mitochondrial biogenesis. Taken together, our results support that ALA-biofortified butter is a novel source of n-3 PUFA, which potentiates the BAT thermogenic function.
Collapse
|
34
|
Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter Orange (Citrus aurantium Linné) Improves Obesity by Regulating Adipogenesis and Thermogenesis through AMPK Activation. Nutrients 2019; 11:nu11091988. [PMID: 31443565 PMCID: PMC6770725 DOI: 10.3390/nu11091988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.
Collapse
Affiliation(s)
- Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yunu Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Hyun Jeong Kwak
- Life science major, Division of Bio-convergence, College of convergence and integrate science, Kyonggi University, Suwon 16227, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Basic Research Laboratory for Comorbidity Regulation, Comorbidity Research Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|