1
|
Yaku K, Palikhe S, Iqbal T, Hayat F, Watanabe Y, Fujisaka S, Izumi H, Yoshida T, Karim M, Uchida H, Nawaz A, Tobe K, Mori H, Migaud ME, Nakagawa T. Nicotinamide riboside and nicotinamide mononucleotide facilitate NAD + synthesis via enterohepatic circulation. SCIENCE ADVANCES 2025; 11:eadr1538. [PMID: 40117359 PMCID: PMC11927621 DOI: 10.1126/sciadv.adr1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
Decreased nicotinamide adenine dinucleotide (oxidized form) (NAD+) levels are reportedly associated with several aging-related disorders. Thus, supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), exhibits beneficial effects against these disorders. However, the in vivo metabolic pathways of NMN and NR remain to be elucidated. In this study, we comprehensively analyzed the fate of orally and intravenously administered NMN and NR in mice using NAD+ metabolomics. We found that only a small portion of orally administered NMN and NR was directly absorbed from the small intestine and that most of them underwent gut microbiota-mediated deamidation and conversion to nicotinic acid (NA). Moreover, intravenously administered NMN and NR were rapidly degraded into nicotinamide and secreted to bile followed by deamidation to NA by gut microbiota. Thus, enterohepatic circulated NA is preferentially used in the liver. These findings showed that NMN and NR are indirectly converted to NAD+ via unexpected metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Mariam Karim
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hitoshi Uchida
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Marie E. Migaud
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Madawala R, Banks JL, Hancock SE, Quek LE, Turner N, Wu LE. CD38 mediates nicotinamide mononucleotide base exchange to yield nicotinic acid mononucleotide. J Biol Chem 2025; 301:108248. [PMID: 39894219 PMCID: PMC11903787 DOI: 10.1016/j.jbc.2025.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Nicotinamide mononucleotide (NMN) is a widely investigated metabolic precursor to the prominent enzyme cofactor NAD+, where it is assumed that delivery of this compound results in its direct incorporation into NAD+via the canonical salvage/recycling pathway. Surprisingly, treatment with this salvage pathway intermediate leads to increases in nicotinic acid mononucleotide (NaMN) and nicotinic acid adenine dinucleotide, two members of the Preiss-Handler/de novo pathways. In mammals, these pathways are not known to intersect prior to the production of NAD+. Here, we show that the cell surface enzyme CD38 can mediate a base-exchange reaction on NMN, whereby the nicotinamide ring is exchanged with a free nicotinic acid to yield the Preiss-Handler/de novo pathway intermediate NaMN, with in vivo small molecule inhibition of CD38 abolishing the NMN-induced increase in NaMN and nicotinic acid adenine dinucleotide. Together, these data demonstrate a new mechanism by which the salvage pathway and Preiss-Handler/de novo pathways can exchange intermediates in mammalian NAD+ biosynthesis.
Collapse
Affiliation(s)
- Romanthi Madawala
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Jasmine L Banks
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Sarah E Hancock
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Nigel Turner
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
3
|
Wang D, Zeng X, Wang X, Wen W, Wang P, Xu S. Tartary Buckwheat Bran and Fructus Aurantii Combination (TBB-FA): A Promising Therapeutic Approach for Functional Dyspepsia via Modulation of Gut Microbiota, Short-Chain Fatty Acids and Purine Signaling Pathway. Food Sci Nutr 2025; 13:e4695. [PMID: 39803263 PMCID: PMC11725054 DOI: 10.1002/fsn3.4695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
This study evaluates the therapeutic impact of Fructus aurantii (FA) stir-baked with tartary buckwheat bran (TBB) on functional dyspepsia (FD), employing a reserpine at the dose of 5 mg/kg to rats. FA, a traditional Chinese herbal medicine, is processed with TBB to enhance its gastrointestinal motility benefits. The study's objectives were to assess the impact of this preparation on intestinal flora, SCFA levels, and metabolomic profiles in FD. Rats were divided into groups receiving different treatments, with the TBB-FA group showing a 7.15-33.2 times increase in fecal SCFA levels, specifically propionate and butyrate, compared to the Fructus aurantii (FA) stir-baked with wheat bran (WB) group (WB-FA) (p < 0.05). Metabolomics identified 23 serum and 11 intestinal mucosal biomarkers associated with FD, predominantly linked to the purine metabolic pathway. Results indicated a significant positive correlation (r ≥ 0.7) between the abundance of Bacteroides and the expression of propionate and isobutyrate in fecal samples post-TBB-FA treatment. This suggests that TBB-FA may enhance beneficial gut bacteria and SCFA production, potentially modulating the purinergic signaling pathway, which is implicated in gastrointestinal motility. In conclusion, the study demonstrates that TBB-FA could be a promising therapeutic approach for FD by improving gut microbiota and SCFA levels and highlights the purinergic signaling pathway as a novel target for treatment. The findings pave the way for further research into the integration of traditional Chinese medicine and modern therapeutic strategies for FD.
Collapse
Affiliation(s)
- Di Wang
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaobo Zeng
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xinge Wang
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wen Wen
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Wang
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Shijun Xu
- Southwest State Key Laboratory of Traditional Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
4
|
Islam F, Basilone N, Yoo V, Ball E, Shilton B. Evolutionary analysis of Quinone Reductases 1 and 2 suggests that NQO2 evolved to function as a pseudoenzyme. Protein Sci 2024; 33:e5234. [PMID: 39584664 PMCID: PMC11586865 DOI: 10.1002/pro.5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Quinone reductases 1 and 2 (NQO1 and NQO2) are paralogous FAD-linked enzymes found in all amniotes. NQO1 and NQO2 have similar structures, and both catalyze the reduction of quinones and other electrophiles; however, the two enzymes differ in their cosubstrate preference. While NQO1 can use both redox couples NADH and NADPH, NQO2 is almost inactive with these cosubstrates and instead must use dihydronicotinamide riboside (NRH) and small synthetic cosubstrates such as N-benzyl-dihydronicotinamide (BNAH) for efficient catalysis. We used ancestral sequence reconstruction to investigate the catalytic properties of a predicted common ancestor and two additional ancestors from each of the evolutionary pathways to extant NQO1 and NQO2. In all cases, the small nicotinamide cosubstrates NRH and BNAH were good cosubstrates for the common ancestor and the enzymes along both the NQO1 and NQO2 lineages. In contrast, with NADH as cosubstrate, extant NQO1 evolved to a catalytic efficiency 100 times higher than the common ancestor, while NQO2 has evolved to a catalytic efficiency 3000 times lower than the common ancestor. The evolutionary analysis combined with site-directed mutagenesis revealed a potential site of interaction for the ADP portion of NAD(P)H in NQO1 that is altered in charge and structure in NQO2. The results indicate that while NQO1 evolved to have greater efficiency with NAD(P)H, befitting an enzymatic function in cells, NQO2 was under selective pressure to acquire extremely low catalytic efficiency with NAD(P)H. These divergent trajectories have implications for the functions of both enzymes.
Collapse
Affiliation(s)
- Faiza Islam
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Nicoletta Basilone
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Vania Yoo
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Eric Ball
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| | - Brian Shilton
- Department of BiochemistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
5
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
6
|
Migaud ME, Ziegler M, Baur JA. Regulation of and challenges in targeting NAD + metabolism. Nat Rev Mol Cell Biol 2024; 25:822-840. [PMID: 39026037 DOI: 10.1038/s41580-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Nicotinamide adenine dinucleotide, in its oxidized (NAD+) and reduced (NADH) forms, is a reduction-oxidation (redox) co-factor and substrate for signalling enzymes that have essential roles in metabolism. The recognition that NAD+ levels fall in response to stress and can be readily replenished through supplementation has fostered great interest in the potential benefits of increasing or restoring NAD+ levels in humans to prevent or delay diseases and degenerative processes. However, much about the biology of NAD+ and related molecules remains poorly understood. In this Review, we discuss the current knowledge of NAD+ metabolism, including limitations of, assumptions about and unappreciated factors that might influence the success or contribute to risks of NAD+ supplementation. We highlight several ongoing controversies in the field, and discuss the role of the microbiome in modulating the availability of NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), the presence of multiple cellular compartments that have distinct pools of NAD+ and NADH, and non-canonical NAD+ and NADH degradation pathways. We conclude that a substantial investment in understanding the fundamental biology of NAD+, its detection and its metabolites in specific cells and cellular compartments is needed to support current translational efforts to safely boost NAD+ levels in humans.
Collapse
Affiliation(s)
- Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA.
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
8
|
Ren C, Zhang S, Chen Y, Deng K, Kuang M, Gong Z, Zhang K, Wang P, Huang P, Zhou Z, Gong A. Exploring nicotinamide adenine dinucleotide precursors across biosynthesis pathways: Unraveling their role in the ovary. FASEB J 2024; 38:e23804. [PMID: 39037422 DOI: 10.1096/fj.202400453r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Natural Nicotinamide Adenine Dinucleotide (NAD+) precursors have attracted much attention due to their positive effects in promoting ovarian health. However, their target tissue, synthesis efficiency, advantages, and disadvantages are still unclear. This review summarizes the distribution of NAD+ at the tissue, cellular and subcellular levels, discusses its biosynthetic pathways and the latest findings in ovary, include: (1) NAD+ plays distinct roles both intracellularly and extracellularly, adapting its distribution in response to requirements. (2) Different precursors differs in target tissues, synthetic efficiency, biological utilization, and adverse effects. Importantly: tryptophan is primarily utilized in the liver and kidneys, posing metabolic risks in excess; nicotinamide (NAM) is indispensable for maintaining NAD+ levels; nicotinic acid (NA) constructs a crucial bridge between intestinal microbiota and the host with diverse functions; nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) increase NAD+ systemically and can be influenced by delivery route, tissue specificity, and transport efficiency. (3) The biosynthetic pathways of NAD+ are intricately intertwined. They provide multiple sources and techniques for NAD+ synthesis, thereby reducing the dependence on a single molecule to maintain cellular NAD+ levels. However, an excess of a specific precursor potentially influencing other pathways. In addition, Protein expression analysis suggest that ovarian tissues may preferentially utilize NAM and NMN. These findings summarize the specific roles and potential of NAD+ precursors in enhancing ovarian health. Future research should delve into the molecular mechanisms and intervention strategies of different precursors, aiming to achieve personalized prevention or treatment of ovarian diseases, and reveal their clinical application value.
Collapse
Affiliation(s)
- Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kaiping Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihao Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Panqi Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Draganov SD, Gruet MJ, Conole D, Balcells C, Siskos AP, Keun HC, Haskard DO, Tate EW. Chemical tools for profiling the intracellular ADP-ribosylated proteome. RSC Chem Biol 2024; 5:640-651. [PMID: 38966672 PMCID: PMC11221532 DOI: 10.1039/d4cb00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024] Open
Abstract
The post-translational modification (PTM) ADP-ribosylation plays an important role in cell signalling and regulating protein function and has been implicated in the development of multiple diseases, including breast and ovarian cancers. Studying the underlying mechanisms through which this PTM contributes towards disease development, however, has been hampered by the lack of appropriate tools for reliable identification of physiologically relevant ADP-ribosylated proteins in a live-cell environment. Herein, we explore the application of an alkyne-tagged proprobe, 6Yn-ProTide-Ad (6Yn-Pro) as a chemical tool for the identification of intracellular ADP-ribosylated proteins through metabolic labelling. We applied targeted metabolomics and chemical proteomics in HEK293T cells treated with 6Yn-Pro to demonstrate intracellular metabolic conversion of the probe into ADP-ribosylation cofactor 6Yn-NAD+, and subsequent labelling and enrichment of PARP1 and multiple known ADP-ribosylated proteins in cells under hydrogen peroxide-induced stress. We anticipate that the approach and methodology described here will be useful for future identification of novel intracellular ADP-ribosylated proteins.
Collapse
Affiliation(s)
- Simeon D Draganov
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Michael J Gruet
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London London W12 0HS UK
| | - Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Cristina Balcells
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London London W12 0HS UK
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London London W12 0HS UK
| | - Hector C Keun
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London London W12 0HS UK
| | - Dorian O Haskard
- Faculty of Medicine, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London London W12 0HS UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| |
Collapse
|
10
|
Liu Y, Bu Q, Hu D, Chen C, Zhu J, Zhou Q, Li Z, Pan X. NAD + supplementation improves mitochondrial functions and normalizes glaucomatous trabecular meshwork features. Exp Cell Res 2024; 440:114137. [PMID: 38897410 DOI: 10.1016/j.yexcr.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.
Collapse
Affiliation(s)
- Yameng Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Qianwen Bu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Jiaxi Zhu
- University of Toronto - St. George Campus, Toronto, Ontario, M5S1A1, Canada
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China.
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024; 14:341. [PMID: 38921475 PMCID: PMC11205942 DOI: 10.3390/metabo14060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
Collapse
|
12
|
Tan L, Fan C, Wang D, Li X, Wang M, Zhuo Z, Li S, Ding Y, Yang Z, Cheng J. The Effects of Lentinan on the Hematological and Immune Indices of Dairy Cows. Animals (Basel) 2024; 14:1314. [PMID: 38731317 PMCID: PMC11083140 DOI: 10.3390/ani14091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we investigated the effects of lentinan (LNT) on hematological parameters, immune indices, and metabolite levels in dairy cows. We randomly assigned forty Holstein cows to four treatment groups. The treatments consisted of 0, 5, 10, and 15 g/d of LNT. Compared with the control group, the addition of 10 g/d of LNT decreased the content of ALT and IL-8 but simultaneously increased the content of IL-4 in the cows' serum. Supplementation with 10 g/d of LNT decreased the levels of lymphocyte, RDW, ALT, AST, TC, IL-2, and IL-8, but, concurrently, in-creased the levels of granulocytes and IL-4 in their serum. In addition, supplementation with 15 g/d of LNT decreased the levels of RDW, TC, IL-2, and IL-8, but, at the same time, increased the levels of IL-4 and IgM in their serum. For the metabolomic analysis, cows fed with 0 and 10 g/d of LNT were selected. The results showed that 10 metabolites, including reduced nicotinamide riboside and trehalose, were upregulated in the 10 g/d group. These differential metabolites were enriched in tyrosine metabolism and trehalose degradation and altered two metabolic pathways of ubiquinone and other terpene quinone biosynthesis, as well as starch and sucrose metabolism. These findings provide evidence that LNT could be used to reduce the risk of inflammation in dairy cows.
Collapse
Affiliation(s)
- Lun Tan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Caiyun Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Dian Wang
- Inner Mongolia Youran Dairy Group Limited, Hohhot 010010, China;
- National Center of Technology Innovation for Dairy, Hohhot 010010, China
| | - Xiao Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Meng Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Zhao Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Shuaihong Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Yuhang Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Zixi Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| |
Collapse
|
13
|
Iqbal T, Nakagawa T. The therapeutic perspective of NAD + precursors in age-related diseases. Biochem Biophys Res Commun 2024; 702:149590. [PMID: 38340651 DOI: 10.1016/j.bbrc.2024.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the fundamental molecule that performs numerous biological reactions and is crucial for maintaining cellular homeostasis. Studies have found that NAD+ decreases with age in certain tissues, and age-related NAD+ depletion affects physiological functions and contributes to various aging-related diseases. Supplementation of NAD+ precursor significantly elevates NAD+ levels in murine tissues, effectively mitigates metabolic syndrome, enhances cardiovascular health, protects against neurodegeneration, and boosts muscular strength. Despite the versatile therapeutic functions of NAD+ in animal studies, the efficacy of NAD+ precursors in clinical studies have been limited compared with that in the pre-clinical study. Clinical studies have demonstrated that NAD+ precursor treatment efficiently increases NAD+ levels in various tissues, though their clinical proficiency is insufficient to ameliorate the diseases. However, the latest studies regarding NAD+ precursors and their metabolism highlight the significant role of gut microbiota. The studies found that orally administered NAD+ intermediates interact with the gut microbiome. These findings provide compelling evidence for future trials to further explore the involvement of gut microbiota in NAD+ metabolism. Also, the reduced form of NAD+ precursor shows their potential to raise NAD+, though preclinical studies have yet to discover their efficacy. This review sheds light on NAD+ therapeutic efficiency in preclinical and clinical studies and the effect of the gut microbiota on NAD+ metabolism.
Collapse
Affiliation(s)
- Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan; Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
14
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
15
|
Ghanem MS, Caffa I, Monacelli F, Nencioni A. Inhibitors of NAD + Production in Cancer Treatment: State of the Art and Perspectives. Int J Mol Sci 2024; 25:2092. [PMID: 38396769 PMCID: PMC10889166 DOI: 10.3390/ijms25042092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (I.C.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
16
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
18
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
19
|
陈 姿, 王 洪, 王 秋. [Therapeutic potential of NADH: in neurodegenerative diseases characterizde by mitochondrial dysfunction]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:57-62. [PMID: 38297850 PMCID: PMC11116151 DOI: 10.13201/j.issn.2096-7993.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 02/02/2024]
Abstract
Nicotinamide adenine dinucleotide(NADH) in its reduced form of is a key coenzyme in redox reactions, essential for maintaining energy homeostasis.NADH and its oxidized counterpart, NAD+, form a redox couple that regulates various biological processes, including calcium homeostasis, synaptic plasticity, anti-apoptosis, and gene expression. The reduction of NAD+/NADH levels is closely linked to mitochondrial dysfunction, which plays a pivotal role in the cascade of various neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease.Auditory neuropathy(AN) is recognized as a clinical biomarker in neurodegenerative disorders. Furthermore, mitochondrial dysfunction has been identified in patients with mutations in genes like OPA1and AIFM1. However, effective treatments for these conditions are still lacking. Increasing evidence suggests that administratering NAD+ or its precursors endogenously may potentially prevent and slow disease progression by enhancing DNA repair and improving mitochondrial function. Therefore, this review concentrates on the metabolic pathways of NAD+/NADH production and their biological functions, and delves into the therapeutic potential and mechanisms of NADH in treating AN.
Collapse
Affiliation(s)
- 姿伊 陈
- 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科耳鼻咽喉研究所国家耳鼻咽喉疾病临床医学研究中心(北京,100048)Department of Audiology and Vestibular Medicine, Institute of Otolaryngology, Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100048, China
| | - 洪阳 王
- 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科耳鼻咽喉研究所国家耳鼻咽喉疾病临床医学研究中心(北京,100048)Department of Audiology and Vestibular Medicine, Institute of Otolaryngology, Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100048, China
| | - 秋菊 王
- 解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科耳鼻咽喉研究所国家耳鼻咽喉疾病临床医学研究中心(北京,100048)Department of Audiology and Vestibular Medicine, Institute of Otolaryngology, Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100048, China
| |
Collapse
|
20
|
Yaku K, Nakagawa T. NAD + Precursors in Human Health and Disease: Current Status and Future Prospects. Antioxid Redox Signal 2023; 39:1133-1149. [PMID: 37335049 DOI: 10.1089/ars.2023.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) acts as a cofactor in many important biological processes. The administration of NAD+ precursors increases the intracellular NAD+ pool and has beneficial effects on physiological changes and diseases associated with aging in various organisms, including rodents and humans. Recent Advances: Evidence from preclinical studies demonstrating the beneficial effects of NAD+ precursors has rapidly increased in the last decade. The results of these studies have prompted the development of clinical trials using NAD+ precursors, particularly nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). In addition, in vivo studies of NAD+ metabolism have rapidly progressed. Critical Issues: Several studies have demonstrated that the oral administration of NAD+ precursors, such as NR and NMN, is safe and significantly increases NAD+ levels in humans. However, the efficacy of these NAD+ precursors is lower than expected from the results of preclinical studies. In addition, the identification of the contribution of the host-gut microbiota interactions to NR and NMN metabolism has added to the complexity of NAD+ metabolism. Future Directions: Further studies are required to determine the efficacy of NAD+ precursors in humans. Further in vivo studies of NAD+ metabolism are required to optimize the effects of NAD+ supplementation. There is also a need for methods of delivering NAD+ precursors to target organs or tissues to increase the outcomes of clinical trials. Antioxid. Redox Signal. 39, 1133-1149.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine; Toyama, Japan
- Research Center for Pre-Disease Science; University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 PMCID: PMC12102727 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
23
|
Niño-Narvión J, Camacho M, Julve J. NAD+ Precursors: A Physiological Reboot? Nutrients 2023; 15:4479. [PMID: 37892554 PMCID: PMC10610166 DOI: 10.3390/nu15204479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In this Editorial, we comment on a series of recent articles featured in the Special Issue "Emerging Benefits of Vitamin B3 Derivatives on Aging, Health and Disease: From Basic Research to Translational Applications" in Nutrients [...].
Collapse
Affiliation(s)
- Julia Niño-Narvión
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia (UMU), 30120 Murcia, Spain
| | - Mercedes Camacho
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER of Diabetes and Related Metabolic Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Gould NL, Scherer GR, Carvalho S, Shurrush K, Kayyal H, Edry E, Elkobi A, David O, Foqara M, Thakar D, Pavesi T, Sharma V, Walker M, Maitland M, Dym O, Albeck S, Peleg Y, Germain N, Babaev I, Sharir H, Lalzar M, Shklyar B, Hazut N, Khamaisy M, Lévesque M, Lajoie G, Avoli M, Amitai G, Lefker B, Subramanyam C, Shilton B, Barr H, Rosenblum K. Specific quinone reductase 2 inhibitors reduce metabolic burden and reverse Alzheimer's disease phenotype in mice. J Clin Invest 2023; 133:e162120. [PMID: 37561584 PMCID: PMC10541198 DOI: 10.1172/jci162120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.
Collapse
Affiliation(s)
| | - Gila R. Scherer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Khriesto Shurrush
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Efrat Edry
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Alina Elkobi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maria Foqara
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Darshit Thakar
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Tommaso Pavesi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Matthew Walker
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew Maitland
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Orly Dym
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nicolas Germain
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Babaev
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haleli Sharir
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Neta Hazut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gilles Lajoie
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gabriel Amitai
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Bruce Lefker
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Chakrapani Subramanyam
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Brian Shilton
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
25
|
Liu S, Zhang W. NAD + metabolism and eye diseases: current status and future directions. Mol Biol Rep 2023; 50:8653-8663. [PMID: 37540459 DOI: 10.1007/s11033-023-08692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients' quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, 730030, Lanzhou, VA, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 730030, Lanzhou, VA, China.
| |
Collapse
|
26
|
Metcalfe M, David BT, Langley BC, Hill CE. Elevation of NAD + by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery. Exp Neurol 2023; 368:114479. [PMID: 37454712 DOI: 10.1016/j.expneurol.2023.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Spinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days, and weeks following injury, leading to exacerbation of tissue damage and functional deficits. Among the biochemical changes is the rapid reduction of cellular nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for energy metabolism and an essential cofactor for non-redox NAD+-dependent enzymes with critical functions in sensing and repairing damaged tissue. NAD+ depletion propagates tissue damage. Augmenting NAD+ by exogenous application of NAD+, its synthesizing enzymes, or its cellular precursors mitigates tissue damage. Nicotinamide riboside (NR) is considered to be one of the most promising NAD+ precursors for clinical application due to its ability to safely and effectively boost cellular NAD+ synthesis in rats and humans. Moreover, various preclinical studies have demonstrated that NR can provide tissue protection. Despite these promising findings, little is known about the potential benefits of NR in the context of SCI. In the current study, we tested whether NR administration could effectively increase NAD+ levels in the injured spinal cord and whether this augmentation of NAD+ would promote spinal cord tissue protection and ultimately lead to improvements in locomotor function. Our findings indicate that administering NR (500 mg/kg) intraperitoneally from four days before to two weeks after a mid-thoracic contusion-SCI injury, effectively doubles NAD+ levels in the spinal cord of Long-Evans rats. Moreover, NR administration plays a protective role in preserving spinal cord tissue post-injury, particularly in neurons and axons, as evident from the observed gray and white matter sparing. Additionally, it enhances motor function, as evaluated through the BBB subscore and missteps on the horizontal ladderwalk. Collectively, these findings demonstrate that administering NR, a precursor of NAD+, increases NAD+ within the injured spinal cord and effectively mitigates the tissue damage and functional decline that occurs following SCI.
Collapse
Affiliation(s)
- Mariajose Metcalfe
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Brian T David
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Brett C Langley
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Caitlin E Hill
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| |
Collapse
|
27
|
Ma W, Fu Y, Zhu S, Xia D, Zhai S, Xiao D, Zhu Y, Dione M, Ben L, Yang L, Wang W. Ochratoxin A induces abnormal tryptophan metabolism in the intestine and liver to activate AMPK signaling pathway. J Anim Sci Biotechnol 2023; 14:125. [PMID: 37684661 PMCID: PMC10486098 DOI: 10.1186/s40104-023-00912-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin widely present in raw food and feed materials and is mainly produced by Aspergillus ochraceus and Penicillium verrucosum. Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder, especially Bacteroides plebeius (B. plebeius) overgrowth. However, whether OTA or B. plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown. This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver. MATERIALS AND METHODS A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups. The control group was given 0.1 mol/L NaHCO3 solution, and the OTA group was given 235 μg/kg body weight OTA for 14 consecutive days. Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics. AMPK-related signaling pathway factors were analyzed by Western blotting and mRNA expression. RESULTS Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intestinal nicotinuric acid levels, the downstream product of tryptophan metabolism, which were significantly negatively correlated with B. plebeius abundance. In contrast, OTA induced a significant increase in indole-3-acetamide levels, which were positively correlated with B. plebeius abundance. Simultaneously, OTA decreased the levels of ATP, NAD+ and dipeptidase in the liver. Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine, anthranilic acid and nicotinic acid. Moreover, OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein. CONCLUSION OTA decreased the level of nicotinuric acid in the intestinal tract, which was negatively correlated with B. plebeius abundance. The abnormal metabolism of tryptophan led to a deficiency of NAD+ and ATP in the liver, which in turn activated the AMPK signaling pathway. Our results provide new insights into the toxic mechanism of OTA, and tryptophan metabolism might be a target for prevention and treatment.
Collapse
Affiliation(s)
- Weiqing Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Daiyang Xia
- School of Marine Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082 China
| | - Shuangshuang Zhai
- College of Animal Science, YangtzeUniversity, Jingzhou, 434025 China
| | - Deqin Xiao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642 China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | | | - Lukuyu Ben
- Int Livestock Res Inst, Nairobi, 00100 Kenya
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
28
|
Kim LJ, Chalmers TJ, Madawala R, Smith GC, Li C, Das A, Poon EWK, Wang J, Tucker SP, Sinclair DA, Quek LE, Wu LE. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett 2023; 597:2196-2220. [PMID: 37463842 DOI: 10.1002/1873-3468.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Collapse
Affiliation(s)
- Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | | | - Greg C Smith
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Abhirup Das
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Limited, Hong Kong Science Park, China
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | - David A Sinclair
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
- Harvard Medical School, Boston, MA, USA
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, NSW, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
29
|
Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr Nutr Rep 2023; 12:445-464. [PMID: 37273100 PMCID: PMC10240123 DOI: 10.1007/s13668-023-00475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.
Collapse
Affiliation(s)
- Gabriela Fabiana Soares Alegre
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil.
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil.
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
30
|
Biţă A, Scorei IR, Ciocîlteu MV, Nicolaescu OE, Pîrvu AS, Bejenaru LE, Rău G, Bejenaru C, Radu A, Neamţu J, Mogoşanu GD, Benner SA. Nicotinamide Riboside, a Promising Vitamin B 3 Derivative for Healthy Aging and Longevity: Current Research and Perspectives. Molecules 2023; 28:6078. [PMID: 37630330 PMCID: PMC10459282 DOI: 10.3390/molecules28166078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Many studies have suggested that the oxidized form of nicotinamide adenine dinucleotide (NAD+) is involved in an extensive spectrum of human pathologies, including neurodegenerative disorders, cardiomyopathy, obesity, and diabetes. Further, healthy aging and longevity appear to be closely related to NAD+ and its related metabolites, including nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). As a dietary supplement, NR appears to be well tolerated, having better pharmacodynamics and greater potency. Unfortunately, NR is a reactive molecule, often unstable during its manufacturing, transport, and storage. Recently, work related to prebiotic chemistry discovered that NR borate is considerably more stable than NR itself. However, immediately upon consumption, the borate dissociates from the NR borate and is lost in the body through dilution and binding to other species, notably carbohydrates such as fructose and glucose. The NR left behind is expected to behave pharmacologically in ways identical to NR itself. This review provides a comprehensive summary (through Q1 of 2023) of the literature that makes the case for the consumption of NR as a dietary supplement. It then summarizes the challenges of delivering quality NR to consumers using standard synthesis, manufacture, shipping, and storage approaches. It concludes by outlining the advantages of NR borate in these processes.
Collapse
Affiliation(s)
- Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Oana Elena Nicolaescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (C.B.); (A.R.)
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (A.B.); (L.E.B.); (G.D.M.)
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Dolj County, Romania; (M.V.C.); (G.R.); (J.N.)
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Avenue, Room N112, Alachua, FL 32615, USA;
| |
Collapse
|
31
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
32
|
Sauve AA, Wang Q, Zhang N, Kang S, Rathmann A, Yang Y. Triple-Isotope Tracing for Pathway Discernment of NMN-Induced NAD + Biosynthesis in Whole Mice. Int J Mol Sci 2023; 24:11114. [PMID: 37446292 PMCID: PMC10342116 DOI: 10.3390/ijms241311114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Numerous efforts in basic and clinical studies have explored the potential anti-aging and health-promoting effects of NAD+-boosting compounds such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). Despite these extensive efforts, our understanding and characterization of their whole-body pharmacodynamics, impact on NAD+ tissue distribution, and mechanism of action in various tissues remain incomplete. In this study, we administered NMN via intraperitoneal injection or oral gavage and conducted a rigorous evaluation of NMN's pharmacodynamic effects on whole-body NAD+ homeostasis in mice. To provide more confident insights into NMN metabolism and NAD+ biosynthesis across different tissues and organs, we employed a novel approach using triple-isotopically labeled [18O-phosphoryl-18O-carbonyl-13C-1-ribosyl] NMN. Our results provide a more comprehensive characterization of the NMN impact on NAD+ concentrations and absolute amounts in various tissues and the whole body. We also demonstrate that mice primarily rely on the nicotinamide and NR salvage pathways to generate NAD+ from NMN, while the uptake of intact NMN plays a minimal role. Overall, the tissue-specific pharmacodynamic effects of NMN administration through different routes offer novel insights into whole-body NAD+ homeostasis, laying a crucial foundation for the development of NMN as a therapeutic supplement in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Yang
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
33
|
Biotechnological production of reduced and oxidized NAD + precursors. Food Res Int 2023; 165:112560. [PMID: 36869544 DOI: 10.1016/j.foodres.2023.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Dysregulation of nicotinamide adenine dinucleotide (NAD+) homeostasis by increased activity of NAD+ consumers or reduced NAD+ biosynthesis plays an important role in the onset of prevalent, often age-related, diseases, such as diabetes, neuropathies or nephropathies. To counteract such dysregulation, NAD+ replenishment strategies can be used. Among these, administration of vitamin B3 derivatives (NAD+ precursors) has garnered attention in recent years. However, the high market price of these compounds and their limited availability, pose important limitations to their use in nutritional or biomedical applications. To overcome these limitations, we have designed an enzymatic method for the synthesis and purification of (1) the oxidized NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), (2) their reduced forms NMNH and NRH, and (3) their deaminated forms nicotinic acid mononucleotide (NaMN) and nicotinic acid riboside (NaR). Starting from NAD+ or NADH as substrates, we use a combination of three highly overexpressed soluble recombinant enzymes; (a) a NAD+ pyrophosphatase, (b) an NMN deamidase, and (c) a 5'-nucleotidase, to produce these six precursors. Finally, we validate the activity of the enzymatically produced molecules as NAD+ enhancers in cell culture.
Collapse
|
34
|
Chanvillard L, Tammaro A, Sorrentino V. NAD + Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease. Cells 2022; 12:21. [PMID: 36611814 PMCID: PMC9818486 DOI: 10.3390/cells12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Premature aging causes morphological and functional changes in the kidney, leading to chronic kidney disease (CKD). CKD is a global public health issue with far-reaching consequences, including cardio-vascular complications, increased frailty, shortened lifespan and a heightened risk of kidney failure. Dialysis or transplantation are lifesaving therapies, but they can also be debilitating. Currently, no cure is available for CKD, despite ongoing efforts to identify clinical biomarkers of premature renal aging and molecular pathways of disease progression. Kidney proximal tubular epithelial cells (PTECs) have high energy demand, and disruption of their energy homeostasis has been linked to the progression of kidney disease. Consequently, metabolic reprogramming of PTECs is gaining interest as a therapeutic tool. Preclinical and clinical evidence is emerging that NAD+ homeostasis, crucial for PTECs' oxidative metabolism, is impaired in CKD, and administration of dietary NAD+ precursors could have a prophylactic role against age-related kidney disease. This review describes the biology of NAD+ in the kidney, including its precursors and cellular roles, and discusses the importance of NAD+ homeostasis for renal health. Furthermore, we provide a comprehensive summary of preclinical and clinical studies aimed at increasing NAD+ levels in premature renal aging and CKD.
Collapse
Affiliation(s)
- Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, 1105AZ Amsterdam, The Netherlands
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
35
|
Chellappa K, McReynolds MR, Lu W, Zeng X, Makarov M, Hayat F, Mukherjee S, Bhat YR, Lingala SR, Shima RT, Descamps HC, Cox T, Ji L, Jankowski C, Chu Q, Davidson SM, Thaiss CA, Migaud ME, Rabinowitz JD, Baur JA. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab 2022; 34:1947-1959.e5. [PMID: 36476934 PMCID: PMC9825113 DOI: 10.1016/j.cmet.2022.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports microbial NAD synthesis. The microbiome converts host-derived nicotinamide into nicotinic acid, which is used for NAD synthesis in host tissues and maintains circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, we establish the capacity for circulating host micronutrients to feed the gut microbiome, and in turn be transformed in a manner that enhances host metabolic flexibility.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Xianfeng Zeng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Mikhail Makarov
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Faisal Hayat
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashaswini R Bhat
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth R Lingala
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rafaella T Shima
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Cox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lixin Ji
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Porcine placental extract increase the cellular NAD levels in human epidermal keratinocytes. Sci Rep 2022; 12:19040. [PMID: 36352014 PMCID: PMC9646745 DOI: 10.1038/s41598-022-23446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for numerous enzymes involved in energy metabolism. Because decreasing NAD levels is a common hallmark of the aging process in various tissues and organs, maintaining NAD levels has recently been of interest for the prevention of aging and age-related diseases. Although placental extract (PE) are known to possess several anti-aging effects, the NAD-boosting activity of PE remains unknown. In this study, we found that porcine PE (PPE) significantly increased intracellular NAD levels in normal human epidermal keratinocytes (NHEKs). PPE also attenuated the NAD depletion induced by FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT). Interestingly, only the fraction containing nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) restored NAD content in NHEKs in the absence of NAMPT activity. These results suggest that PPE increases intracellular NAD by providing NAD precursors such as NMN, NR, and NAM. Finally, we showed that the application of PPE to the stratum corneum of the reconstructed human epidermis significantly ameliorated FK866-induced NAD depletion, suggesting that topical PPE may be helpful for increasing skin NAD levels. This is the first study to report the novel biological activity of PE as an NAD booster in human epidermal cells.
Collapse
|
37
|
Kropotov A, Kulikova V, Solovjeva L, Yakimov A, Nerinovski K, Svetlova M, Sudnitsyna J, Plusnina A, Antipova M, Khodorkovskiy M, Migaud ME, Gambaryan S, Ziegler M, Nikiforov A. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells. J Biol Chem 2022; 298:102615. [PMID: 36265580 PMCID: PMC9667316 DOI: 10.1016/j.jbc.2022.102615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.
Collapse
Affiliation(s)
- Andrey Kropotov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Veronika Kulikova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Ljudmila Solovjeva
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexander Yakimov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Kirill Nerinovski
- Department of Nuclear Physics Research Methods, St Petersburg State University, St Petersburg, Russia
| | - Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Alena Plusnina
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Maria Antipova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Mikhail Khodorkovskiy
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, St Petersburg, Russia
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway,For correspondence: Andrey Nikiforov; Mathias Ziegler
| | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia,For correspondence: Andrey Nikiforov; Mathias Ziegler
| |
Collapse
|
38
|
Nicotinamide riboside kinase 1 protects against diet and age-induced pancreatic β-cell failure. Mol Metab 2022; 66:101605. [PMID: 36165811 PMCID: PMC9557729 DOI: 10.1016/j.molmet.2022.101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic β-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic β-cell function in pathophysiological conditions. METHODS Whole body and pancreatic β-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic β-cell function, β-cell mass and gene expression. RESULTS We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic β-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised β-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, β cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in β-cells did not show altered glucose homeostasis. CONCLUSIONS This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic β-cell function in high-fat feeding or aging conditions.
Collapse
|
39
|
Emerging Role of Nicotinamide Riboside in Health and Diseases. Nutrients 2022; 14:nu14193889. [PMID: 36235542 PMCID: PMC9571518 DOI: 10.3390/nu14193889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Among all the NAD+ precursors, nicotinamide riboside (NR) has gained the most attention as a potent NAD+-enhancement agent. This recently discovered vitamin, B3, has demonstrated excellent safety and efficacy profiles and is orally bioavailable in humans. Boosting intracellular NAD+ concentrations using NR has been shown to provide protective effects against a broad spectrum of pathological conditions, such as neurodegenerative diseases, diabetes, and hearing loss. In this review, an integrated overview of NR research will be presented. The role NR plays in the NAD+ biosynthetic pathway will be introduced, followed by a discussion on the synthesis of NR using chemical and enzymatic approaches. NR’s effects on regulating normal physiology and pathophysiology will also be presented, focusing on the studies published in the last five years.
Collapse
|
40
|
Poljšak B, Kovač V, Milisav I. Current Uncertainties and Future Challenges Regarding NAD+ Boosting Strategies. Antioxidants (Basel) 2022; 11:1637. [PMID: 36139711 PMCID: PMC9495723 DOI: 10.3390/antiox11091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Precursors of nicotinamide adenine dinucleotide (NAD+), modulators of enzymes of the NAD+ biosynthesis pathways and inhibitors of NAD+ consuming enzymes, are the main boosters of NAD+. Increasing public awareness and interest in anti-ageing strategies and health-promoting lifestyles have grown the interest in the use of NAD+ boosters as dietary supplements, both in scientific circles and among the general population. Here, we discuss the current trends in NAD+ precursor usage as well as the uncertainties in dosage, timing, safety, and side effects. There are many unknowns regarding pharmacokinetics and pharmacodynamics, particularly bioavailability, metabolism, and tissue specificity of NAD+ boosters. Given the lack of long-term safety studies, there is a need for more clinical trials to determine the proper dose of NAD+ boosters and treatment duration for aging prevention and as disease therapy. Further research will also need to address the long-term consequences of increased NAD+ and the best approaches and combinations to increase NAD+ levels. The answers to the above questions will contribute to the more efficient and safer use of NAD+ boosters.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Irina Milisav
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Nagy L, Rauch B, Szerafin T, Uray K, Tóth A, Bai P. Nicotinamide-riboside shifts the differentiation of human primary white adipocytes to beige adipocytes impacting substrate preference and uncoupling respiration through SIRT1 activation and mitochondria-derived reactive species production. Front Cell Dev Biol 2022; 10:979330. [PMID: 36072335 PMCID: PMC9441796 DOI: 10.3389/fcell.2022.979330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Beige adipocytes play key roles in organismal energy and metabolic balance. In this study, we assessed whether the supplementation of human white adipocytes, differentiated from human adipose tissue-derived stem cells, with nicotinamide riboside (NR), a potent NAD + precursor, can shift differentiation to beige adipocytes (beiging). NR induced mitochondrial biogenesis and the expression of beige markers (TBX1 and UCP1) in white adipocytes demonstrating that NR can declutch beiging. NR did not induce PARP activity but supported SIRT1 induction, which plays a key role in beiging. NR induced etomoxir-resistant respiration, suggesting increases in the oxidation of carbohydrates, carbohydrate breakdown products, or amino acids. Furthermore, NR boosted oligomycin-resistant respiration corresponding to uncoupled respiration. Enhanced etomoxir and oligomycin-resistant respiration were dependent on mitochondrial reactive-species production. Taken together, NR supplementation can induce beiging and uncoupled respiration, which are beneficial for combatting metabolic diseases.
Collapse
Affiliation(s)
- Lilla Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Szerafin
- Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
- Correspondence: Péter Bai,
| |
Collapse
|
42
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Li J, Koczor CA, Saville KM, Hayat F, Beiser A, McClellan S, Migaud ME, Sobol RW. Overcoming Temozolomide Resistance in Glioblastoma via Enhanced NAD + Bioavailability and Inhibition of Poly-ADP-Ribose Glycohydrolase. Cancers (Basel) 2022; 14:3572. [PMID: 35892832 PMCID: PMC9331395 DOI: 10.3390/cancers14153572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an incurable brain cancer with an average survival of approximately 15 months. Temozolomide (TMZ) is a DNA alkylating agent for the treatment of GBM. However, at least 50% of the patients treated with TMZ show poor response, primarily due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or due to defects in the mismatch repair (MMR) pathway. These resistance mechanisms are either somatic or arise in response to treatment, highlighting the need to uncover treatments to overcome resistance. We found that administration of the NAD+ precursor dihydronicotinamide riboside (NRH) to raise cellular NAD+ levels combined with PARG inhibition (PARGi) triggers hyperaccumulation of poly(ADP-ribose) (PAR), resulting from both DNA damage-induced and replication-stress-induced PARP1 activation. Here, we show that the NRH/PARGi combination enhances the cytotoxicity of TMZ. Specifically, NRH rapidly increases NAD+ levels in both TMZ-sensitive and TMZ-resistant GBM-derived cells and enhances the accumulation of PAR following TMZ treatment. Furthermore, NRH promotes hyperaccumulation of PAR in the presence of TMZ and PARGi. This combination strongly suppresses the cell growth of GBM cells depleted of MSH6 or cells expressing MGMT, suggesting that this regimen may improve the efficacy of TMZ to overcome treatment resistance in GBM.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Steven McClellan
- Mitchell Cancer Institute Flow Cytometry SRL, University of South Alabama, Mobile, AL 36604, USA;
| | - Marie E. Migaud
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
44
|
Identification of NAPRT Inhibitors with Anti-Cancer Properties by In Silico Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15070848. [PMID: 35890147 PMCID: PMC9318686 DOI: 10.3390/ph15070848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Depriving cancer cells of sufficient NAD levels, mainly through interfering with their NAD-producing capacity, has been conceived as a promising anti-cancer strategy. Numerous inhibitors of the NAD-producing enzyme, nicotinamide phosphoribosyltransferase (NAMPT), have been developed over the past two decades. However, their limited anti-cancer activity in clinical trials raised the possibility that cancer cells may also exploit alternative NAD-producing enzymes. Recent studies show the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), the rate-limiting enzyme of the Preiss–Handler NAD-production pathway for a large group of human cancers. We demonstrated that the NAPRT inhibitor 2-hydroxynicotinic acid (2-HNA) cooperates with the NAMPT inhibitor FK866 in killing NAPRT-proficient cancer cells that were otherwise insensitive to FK866 alone. Despite this emerging relevance of NAPRT as a potential target in cancer therapy, very few NAPRT inhibitors exist. Starting from a high-throughput virtual screening approach, we were able to identify and annotate two additional chemical scaffolds that function as NAPRT inhibitors. These compounds show comparable anti-cancer activity to 2-HNA and improved predicted aqueous solubility, in addition to demonstrating favorable drug-like profiles.
Collapse
|
45
|
Canto C. NAD + Precursors: A Questionable Redundancy. Metabolites 2022; 12:metabo12070630. [PMID: 35888754 PMCID: PMC9316858 DOI: 10.3390/metabo12070630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD+ bioavailability. Among them, the dietary supplementation with NAD+ precursors—classically known as vitamin B3—has received most of the attention. Multiple molecules can act as NAD+ precursors through independent biosynthetic routes. Interestingly, eukaryote organisms have conserved a remarkable ability to utilize all of these different molecules, even if some of them are scarcely found in nature. Here, we discuss the possibility that the conservation of all of these biosynthetic pathways through evolution occurred because the different NAD+ precursors might serve specialized purposes.
Collapse
Affiliation(s)
- Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015 Lausanne, Switzerland; ; Tel.: +41-(0)-216326116
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
47
|
Nicotinamide Riboside and Dihydronicotinic Acid Riboside Synergistically Increase Intracellular NAD+ by Generating Dihydronicotinamide Riboside. Nutrients 2022; 14:nu14132752. [PMID: 35807932 PMCID: PMC9269339 DOI: 10.3390/nu14132752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.
Collapse
|
48
|
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation. Biomed Pharmacother 2022; 150:113071. [PMID: 35658237 DOI: 10.1016/j.biopha.2022.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+), a coenzyme that plays crucial roles in many cellular processes, is a potential therapeutic target for various diseases. Dihydronicotinamide riboside (NRH), a novel reduced form of nicotinamide riboside, has emerged as a potent NAD+ precursor. Here, we studied the protective effects and underlying mechanism of NRH on aminoglycoside-induced ototoxicity. METHODS Auditory function and hair-cell (HC) morphology were examined to assess the effects of NRH on kanamycin-induced hearing loss. The pharmacokinetic parameters of NRH were measured in plasma and the cochlea using liquid chromatography tandem mass spectrometry. NAD+ levels in organ explant cultures were assessed to compare NRH with known NAD+ precursors. Immunofluorescence analysis was performed to detect reactive oxygen species (ROS) and apoptosis. We analyzed SIRT1 and 14-3-3 protein expression. EX527 and resveratrol were used to investigate the role of SIRT1 in the protective effect of NRH against kanamycin-induced ototoxicity. RESULTS NRH alleviated kanamycin-induced HC damage and attenuated hearing loss in mice. NRH reduced gentamicin-induced vestibular HC loss. Compared with NAD and NR, NRH produced more NAD+ in cochlear HCs and significantly ameliorated kanamycin-induced oxidative stress and apoptosis. NRH rescued the aminoglycoside-induced decreases in SIRT1 and 14-3-3 protein expression. Moreover, EX527 antagonized the protective effect of NRH on kanamycin-induced HC loss by inhibition of SIRT1, while resveratrol alleviated HC damage caused by EX527. CONCLUSIONS NRH ameliorates aminoglycoside-induced ototoxicity by inhibiting HC apoptosis by activating SIRT1 and decreasing ROS. NRH is an effective therapeutic option for aminoglycoside-induced ototoxicity.
Collapse
|
49
|
Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep 2022; 49:9737-9748. [PMID: 35441939 DOI: 10.1007/s11033-022-07459-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
Biosynthesis and regulation of nicotinamide adenine dinucleotide (NAD+) has recently gained a lot of attention. A systemic decline in NAD+ across many tissues is associated with all the hallmarks of aging. NAD+ can affect a variety of cellular processes, including metabolic pathways, DNA repair, and immune cell activity, both directly and indirectly. These cellular processes play a vital role in maintaining homeostasis, but as people get older, their tissue and cellular NAD+ levels decrease, and this drop in NAD+ levels has been connected to a number of age-related disorders. By restoring NAD+ levels, several of these age-related disorders can be delayed or even reversed. Some of the new studies conducted in mice and humans have targeted the NAD+ metabolism with NAD+ intermediates. Of these, nicotinamide mononucleotide (NMN) has been shown to offer great therapeutic potential with promising results in age-related chronic conditions such as diabetes, cardiovascular issues, cognitive impairment, and many others. Further, human interventions are required to study the long-term effects of supplementing NMN with varying doses. The paper focuses on reviewing the importance of NAD+ on human aging and survival, biosynthesis of NAD+ from its precursors, key clinical trial findings, and the role of NMN on various health conditions.
Collapse
|
50
|
NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 2022; 43:529-540. [PMID: 34168317 PMCID: PMC8888674 DOI: 10.1038/s41401-021-00705-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
Our previous studies confirm that exogenous reduced nicotinamide adenine dinucleotide phosphate (NADPH) exerts a neuroprotective effect in animal models of ischemic stroke, and its primary mechanism is related to anti-oxidative stress and improved energy metabolism. However, it is unknown whether nicotinamide adenine dinucleotide (NADH) also plays a neuroprotective role and whether NADPH is superior to NADH against ischemic stroke? In this study we compared the efficacy of NADH, NADPH, and edaravone in ameliorating brain injury and metabolic stress in ischemic stroke. Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) mouse model and in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model were established. The mice were intravenously administered the optimal dose of NADPH (7.5 mg/kg), NADH (22.5 mg/kg), or edaravone (3 mg/kg) immediately after reperfusion. We showed that the overall efficacy of NADPH in ameliorating ischemic injury was superior to NADH and edaravone. NADPH had a longer therapeutic time window (within 5 h) after reperfusion than NADH and edaravone (within 2 h) for ischemic stroke. In addition, NADPH and edaravone were better in alleviating the brain atrophy, while NADH and NADPH were better in increasing the long-term survival rate. NADPH showed stronger antioxidant effects than NADH and edaravone; but NADH was the best in terms of maintaining energy metabolism. Taken together, this study demonstrates that NADPH exerts better neuroprotective effects against ischemic stroke than NADH and edaravone.
Collapse
|