1
|
Li YC, Fu JT, Tzeng SF. Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int 2024; 178:105792. [PMID: 38880230 DOI: 10.1016/j.neuint.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes, the predominant glial cells in the central nervous system (CNS), play diverse roles including metabolic support for neurons, provision of neurotrophic factors, facilitation of synaptic neurotransmitter uptake, regulation of ion balance, and involvement in synaptic formation. The accumulation of lipids has been noted in various neurological conditions, yet the response of astrocytes to lipid-rich environments remains unclear. In this study, primary astrocytes isolated from the neonatal rat cortex were exposed to a lipid mixture (LM) comprising cholesterol and various fatty acids to explore their reaction. Our results showed that astrocyte viability remained unchanged following 24 h of 5% or 10% LM treatment. However, exposure to LM for 96 h resulted in reduced cell viability. In addition, LM treatment led to the accumulation of lipid droplets (LDs) in astrocytes, with LD size increasing over prolonged exposure periods. Following 24 h of LM treatment and then 48 h in fresh medium, a significant reduction in intracellular LD size was observed in cultures treated with 5% LM, while no change occurred in cultures exposed to 10% LM. Yet, exposure to 10% LM for 24 h significantly increased the expression of the cholesterol efflux regulatory protein/ATP-binding cassette transporter (ABCA1) gene, responsible for intracellular cholesterol efflux, resulting in reduced cholesterol content within astrocytes. Moreover, LM exposure led to decreased mitochondrial membrane potential (MMP) and increased levels of mature apoptosis-inducing factor (AIF). The smaller LDs were observed to co-localize with microtubule-associated protein 1A/1 B light chain 3 B (LC3) and lysosomal-associated membrane protein-1 (LAMP-1) in LM-treated astrocytes, coinciding with lysosomal acidification. These results indicate that the continuous buildup of LDs in astrocytes residing in lipid-enriched environments may be attributed to disruptions caused by LM in mitochondrial and lysosomal functions. Such disruptions could potentially impede the supportive role of astrocytes in neuronal function.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Fan F, Yang C, Piao E, Shi J, Zhang J. Mechanisms of chondrocyte regulated cell death in osteoarthritis: Focus on ROS-triggered ferroptosis, parthanatos, and oxeiptosis. Biochem Biophys Res Commun 2024; 705:149733. [PMID: 38442446 DOI: 10.1016/j.bbrc.2024.149733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.
Collapse
Affiliation(s)
- Fangyang Fan
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Cheng Yang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Enran Piao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jia Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| | - Juntao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
3
|
Liu J, Chu M, Zhang J, He J, Yang Q, Tao L, Wang Z, Yao F, Zhao W, Ouyang S, Chen L, Zhang S, Gao S, Tian J, Ren L, An L. Glutathione safeguards TET-dependent DNA demethylation and is critical for the acquisition of totipotency and pluripotency during preimplantation development. FASEB J 2024; 38:e23453. [PMID: 38318639 DOI: 10.1096/fj.202301220r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Meiqiang Chu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, Shandong, China
| | - Jingyu Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiale He
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Tao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhaochen Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fusheng Yao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Si Ouyang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Chen
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likun Ren
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Chen P, Cai M, Feng YJ, Li C, Dong ZQ, Xiao WF, Tang L, Zhu Y, Tian T, Deng BY, Pan MH, Lu C. Apoptosis-related long non-coding RNA LINC5438 of Bombyx mori promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105380. [PMID: 36963947 DOI: 10.1016/j.pestbp.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Liang Tang
- Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bo-Yuan Deng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
5
|
Khadhraoui N, Prola A, Vandestienne A, Blondelle J, Guillaud L, Courtin G, Bodak M, Prost B, Huet H, Wintrebert M, Péchoux C, Solgadi A, Relaix F, Tiret L, Pilot-Storck F. Hacd2 deficiency in mice leads to an early and lethal mitochondrial disease. Mol Metab 2023; 69:101677. [PMID: 36693621 PMCID: PMC9986742 DOI: 10.1016/j.molmet.2023.101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.
Collapse
Affiliation(s)
- Nahed Khadhraoui
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Alexandre Prola
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Aymeline Vandestienne
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Jordan Blondelle
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Guillaud
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Guillaume Courtin
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Maxime Bodak
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Bastien Prost
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Hélène Huet
- Biopôle, École nationale vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Mélody Wintrebert
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Audrey Solgadi
- UMS IPSIT, Université Paris-Saclay, Châtenay-Malabry, F-92296, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| | - Fanny Pilot-Storck
- Univ Paris-Est Créteil, INSERM, IMRB, Team Relaix, F-94010 Créteil, France; EnvA, IMRB, F-94700 Maisons-Alfort, France; EFS, IMRB, F-94010 Créteil, France.
| |
Collapse
|
6
|
Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X, Shen Y, Fang X. Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochem Pharmacol 2023; 208:115407. [PMID: 36596414 DOI: 10.1016/j.bcp.2022.115407] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Qingyuan Liu
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Mingyu Tang
- Xinglin College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xuejun Ni
- Department of Ultrasound Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xingxing Fang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
7
|
Ren L, Meng L, Gao J, Lu M, Guo C, Li Y, Rong Z, Ye Y. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation. Cell Death Dis 2023; 14:44. [PMID: 36658121 PMCID: PMC9852476 DOI: 10.1038/s41419-023-05575-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
The alteration of cellular energy metabolism is a hallmark of colorectal cancer (CRC). Accumulating evidence has suggested oxidative phosphorylation (OXPHOS) is upregulated to meet the demand for energy in tumor initiation and development. However, the role of OXPHOS and its regulatory mechanism in CRC tumorigenesis and progression remain unclear. Here, we reveal that Prohibitin 2 (PHB2) expression is elevated in precancerous adenomas and CRC, which promotes cell proliferation and tumorigenesis of CRC. Additionally, knockdown of PHB2 significantly reduces mitochondrial OXPHOS levels in CRC cells. Meanwhile, NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), as a PHB2 binding partner, is screened and identified by co-immunoprecipitation and mass spectrometry. Furthermore, PHB2 directly interacts with NDUFS1 and they co-localize in mitochondria, which facilitates NDUFS1 binding to NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1), regulating the activity of complex I. Consistently, partial inhibition of complex I activity also abrogates the increased cell proliferation induced by overexpression of PHB2 in normal human intestinal epithelial cells and CRC cells. Collectively, these results indicate that increased PHB2 directly interacts with NDUFS1 to stabilize mitochondrial complex I and enhance its activity, leading to upregulated OXPHOS levels, thereby promoting cell proliferation and tumorigenesis of CRC. Our findings provide a new perspective for understanding CRC energy metabolism, as well as novel intervention strategies for CRC therapeutics.
Collapse
Affiliation(s)
- Lin Ren
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Anhui Public Health Clinical Center, Hefei, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyu Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunyun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Novo N, Romero-Tamayo S, Marcuello C, Boneta S, Blasco-Machin I, Velázquez-Campoy A, Villanueva R, Moreno-Loshuertos R, Lostao A, Medina M, Ferreira P. Beyond a platform protein for the degradosome assembly: The Apoptosis-Inducing Factor as an efficient nuclease involved in chromatinolysis. PNAS NEXUS 2022; 2:pgac312. [PMID: 36845352 PMCID: PMC9944232 DOI: 10.1093/pnasnexus/pgac312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The Apoptosis-Inducing Factor (AIF) is a moonlighting flavoenzyme involved in the assembly of mitochondrial respiratory complexes in healthy cells, but also able to trigger DNA cleavage and parthanatos. Upon apoptotic-stimuli, AIF redistributes from the mitochondria to the nucleus, where upon association with other proteins such as endonuclease CypA and histone H2AX, it is proposed to organize a DNA-degradosome complex. In this work, we provide evidence for the molecular assembly of this complex as well as for the cooperative effects among its protein components to degrade genomic DNA into large fragments. We have also uncovered that AIF has nuclease activity that is stimulated in the presence of either Mg2+ or Ca2+. Such activity allows AIF by itself and in cooperation with CypA to efficiently degrade genomic DNA. Finally, we have identified TopIB and DEK motifs in AIF as responsible for its nuclease activity. These new findings point, for the first time, to AIF as a nuclease able to digest nuclear dsDNA in dying cells, improving our understanding of its role in promoting apoptosis and opening paths for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Nerea Novo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Silvia Romero-Tamayo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain,Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Irene Blasco-Machin
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain,Aragón Institute for Health Research (IIS Aragón), Zaragoza, Zaragoza 50009, Spain,Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid 28029, Spain
| | - Raquel Villanueva
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Raquel Moreno-Loshuertos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain,Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain,Fundación ARAID, Aragón, Zaragoza 50018, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain,Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza 50018, Spain
| | | |
Collapse
|
9
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
10
|
An HG, Shin S, Lee B, Kwon Y, Kwon TU, Kwon YJ, Chun YJ. Induction of synergistic apoptosis by tetramethoxystilbene and nutlin-3a in human cervical cancer cells. Toxicol Res 2022; 38:591-600. [PMID: 36277372 PMCID: PMC9532473 DOI: 10.1007/s43188-022-00150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
2,4,3',5'-Tetramethoxystilbene (TMS) is a selective inhibitor of cytochrome P450 1B1 to block the conversion from estradiol to 4-OH-estradiol. Several studies suggested that TMS may act as a potent anti-cancer agent for hormone-related cancer including cervical cancer. Nutlin-3a is a cis-imidazoline analog that interferes with the interaction between mouse double minute 2 homolog (MDM2) and the tumor suppressor p53. The purpose of the study was to compare the cytotoxic effect of TMS and nutlin-3a treatment individually and in combination in HeLa cells. To assess the potential synergistic effects between TMS and nutlin-3a, low concentrations of TMS and nutlin-3a were simultaneously treated in HeLa cells. Based on cell viability, apoptosis assays, and the increase in cleaved caspase-3 and poly (ADP-ribose) polymerase cleavage, it was demonstrated that the combination with TMS and nutlin-3a exerts a synergistic effect on cancer cell death. Isobologram analysis of HeLa cells noted synergism between TMS and nutlin-3a. The combined treatment increased the expression of mitochondrial pro-apoptotic factors such as Bax and Bak, and decreased the expression of the XIAP. In addition, combination treatment significantly enhanced the translocation of AIF to the nucleus in HeLa cells. In conclusion, the results demonstrate that the combination of TMS and nutlin-3a induces synergistic apoptosis in HeLa cells, suggesting the possibility that this combination can be applied as a novel therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Hong-Gyu An
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Boyoung Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Yeonju Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974 Seoul, Republic of Korea
| |
Collapse
|
11
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
12
|
Zhu J, Lee MJ, Chang HJ, Ju X, Cui J, Lee YL, Go D, Chung W, Oh E, Heo JY. Reactive microglia and mitochondrial unfolded protein response following ventriculomegaly and behavior defects in kaolin-induced hydrocephalus. BMB Rep 2022. [PMID: 34903317 PMCID: PMC9058473 DOI: 10.5483/bmbrep.2022.55.4.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormal-ities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.
Collapse
Affiliation(s)
- Jiebo Zhu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Joung Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hee Jin Chang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dahyun Go
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Eungseok Oh
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
13
|
DU K, Lu F, Xie C, Ding H, Shen Y, Gao Y, Lu S, Zhuo X. Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis. J Zhejiang Univ Sci B 2022; 23:315-327. [PMID: 35403386 DOI: 10.1631/jzus.b2100877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.
Collapse
Affiliation(s)
- Kaige DU
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.,Shandong Center for Disease Control and Prevention, Jinan 250021, China
| | - Fei Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Chengzuo Xie
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yafan Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
14
|
Li S, Zhang Y, Fei L, Zhang Y, Pang J, Gao W, Fan F, Xing Y, Li X. Baicalein-ameliorated cerebral ischemia-reperfusion injury dependent on calpain 1/AIF pathway. Biosci Biotechnol Biochem 2022; 86:305-312. [PMID: 34935885 DOI: 10.1093/bbb/zbab222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Cerebral ischemia reperfusion (CIR) has become the leading cause of death and disability. Baicalein is a natural bioactive ingredient extracted from Scutellaria baicalensis Georgi and has neuroprotective activity. In our work, baicalein was found to reduce neurological deficits, brain water content, infarct area, and neuronal death of rats induced by middle cerebral artery occlusion/reperfusion. In vitro, oxygen-glucose deprivation/reperfusion induced inordinate ROS production and apoptosis that could be reversed by baicalein. Our study revealed for the first time that baicalein has the potential to bind and inhibit the activity of calpain 1, thereby inhibiting AIF nuclear translocation. These findings demonstrated that baicalein protected against CIR injury via inhibiting AIF nuclear translocation by inhibiting calpain 1 activity.
Collapse
Affiliation(s)
- Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yaoshuai Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lili Fei
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuhan Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Gao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yadong Xing
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
15
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Lozic M, Minarik L, Racetin A, Filipovic N, Saraga Babic M, Vukojevic K. CRKL, AIFM3, AIF, BCL2, and UBASH3A during Human Kidney Development. Int J Mol Sci 2021; 22:ijms22179183. [PMID: 34502088 PMCID: PMC8431184 DOI: 10.3390/ijms22179183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.
Collapse
Affiliation(s)
- Mirela Lozic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Luka Minarik
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Mirna Saraga Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| |
Collapse
|
17
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
18
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
W196 and the β-Hairpin Motif Modulate the Redox Switch of Conformation and the Biomolecular Interaction Network of the Apoptosis-Inducing Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6673661. [PMID: 33510840 PMCID: PMC7822688 DOI: 10.1155/2021/6673661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
The human apoptosis-inducing factor (hAIF) is a moonlight flavoprotein involved in mitochondrial respiratory complex assembly and caspase-independent programmed cell death. These functions might be modulated by its redox-linked structural transition that enables hAIF to act as a NAD(H/+) redox sensor. Upon reduction with NADH, hAIF undergoes a conformational reorganization in two specific insertions—the flexible regulatory C-loop and the 190-202 β-harpin—promoting protein dimerization and the stabilization of a long-life charge transfer complex (CTC) that modulates its monomer-dimer equilibrium and its protein interaction network in healthy mitochondria. In this regard, here, we investigated the precise function of the β-hairpin in the AIF conformation landscape related to its redox mechanism, by analyzing the role played by W196, a key residue in the interaction of this motif with the regulatory C-loop. Mutations at W196 decrease the compactness and stability of the oxidized hAIF, indicating that the β-hairpin and C-loop coupling contribute to protein stability. Kinetic studies complemented with computational simulations reveal that W196 and the β-hairpin conformation modulate the low efficiency of hAIF as NADH oxidoreductase, contributing to configure its active site in a noncompetent geometry for hydride transfer and to stabilize the CTC state by enhancing the affinity for NAD+. Finally, the β-hairpin motif contributes to define the conformation of AIF's interaction surfaces with its physiological partners. These findings improve our understanding on the molecular basis of hAIF's cellular activities, a crucial aspect for clarifying its associated pathological mechanisms and developing new molecular therapies.
Collapse
|
20
|
Forciniti S, Dalla Pozza E, Greco MR, Amaral Carvalho TM, Rolando B, Ambrosini G, Carmona-Carmona CA, Pacchiana R, Di Molfetta D, Donadelli M, Arpicco S, Palmieri M, Reshkin SJ, Dando I, Cardone RA. Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine. Int J Mol Sci 2020; 22:ijms22010029. [PMID: 33375106 PMCID: PMC7792955 DOI: 10.3390/ijms22010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. METHODS We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. RESULTS PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters' expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. CONCLUSION We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.
Collapse
Affiliation(s)
- Stefania Forciniti
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Humanitas Clinical and Research Center, IRCCS, Department of Gastroenterology-Laboratory of Molecular Gastroenterology, 20089 Rozzano, Milan, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Cristian Andres Carmona-Carmona
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Correspondence:
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| |
Collapse
|
21
|
Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines 2020; 8:biomedicines8110526. [PMID: 33266387 PMCID: PMC7700424 DOI: 10.3390/biomedicines8110526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are of great relevance to health, and their dysregulation is associated with major chronic diseases. Research on mitochondria-156 brand new publications from 2019 and 2020-have contributed to this review. Mitochondria have been fundamental for the evolution of complex organisms. As important and semi-autonomous organelles in cells, they can adapt their function to the needs of the respective organ. They can program their function to energy supply (e.g., to keep heart muscle cells going, life-long) or to metabolism (e.g., to support hepatocytes and liver function). The capacity of mitochondria to re-program between different options is important for all cell types that are capable of changing between a resting state and cell proliferation, such as stem cells and immune cells. Major chronic diseases are characterized by mitochondrial dysregulation. This will be exemplified by cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, immune system disorders, and cancer. New strategies for intervention in chronic diseases will be presented. The tumor microenvironment can be considered a battlefield between cancer and immune defense, competing for energy supply and metabolism. Cancer cachexia is considered as a final stage of cancer progression. Nevertheless, the review will present an example of complete remission of cachexia via immune cell transfer. These findings should encourage studies along the lines of mitochondria, energy supply, and metabolism.
Collapse
|