1
|
Contessi Negrini N, Pellegrinelli V, Salem V, Celiz A, Vidal-Puig A. Breaking barriers in obesity research: 3D models of dysfunctional adipose tissue. Trends Biotechnol 2025; 43:1079-1093. [PMID: 39443224 DOI: 10.1016/j.tibtech.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Obesity is a global health crisis characterised by excessive accumulation of adipose tissue (AT). Under obesogenic conditions, this metabolically active tissue undergoes fibrosis and inflammation, leading to obesity-linked comorbidities. Modelling AT is essential for understanding its pathophysiology and developing treatments to protect against metabolic complications. 3D in vitro AT models are promising tools that address the limitations of traditional 2D in vitro models and in vivo animal models, providing enhanced biomimetic and human-relevant platforms. 3D models facilitate the study of AT pathophysiology and therapeutic screening. This review discusses the crucial role of AT in obesity-linked comorbidities, its dynamicity and complexity, and recent advances in engineering 3D scaffold-based in vitro dysfunctional AT models, highlighting potential breakthroughs in metabolic research and beyond.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Bioengineering, Imperial College London, London, UK; The Francis Crick Institute, London, UK.
| | | | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Adam Celiz
- Department of Bioengineering, Imperial College London, London, UK; The Francis Crick Institute, London, UK
| | - Antonio Vidal-Puig
- MRC Institute of Metabolic Science and Medical Research Council, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, PR China; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; Cambridge Heart and Lung Research Institute, Cambridge, UK
| |
Collapse
|
2
|
Liu CM, Killion EA, Hammoud R, Lu SC, Komorowski R, Liu T, Kanke M, Thomas VA, Cook K, Sivits GN, Ben AB, Atangan LI, Hussien R, Tang A, Shkumatov A, Li CM, Drucker DJ, Véniant MM. GIPR-Ab/GLP-1 peptide-antibody conjugate requires brain GIPR and GLP-1R for additive weight loss in obese mice. Nat Metab 2025:10.1038/s42255-025-01295-w. [PMID: 40301582 DOI: 10.1038/s42255-025-01295-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 05/01/2025]
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide 1 receptor (GLP-1R) are expressed in the central nervous system (CNS) and regulate food intake. Here, we demonstrate that a peptide-antibody conjugate that blocks GIPR while simultaneously activating GLP-1R (GIPR-Ab/GLP-1) requires both CNS GIPR and CNS GLP-1R for maximal weight loss in obese, primarily male, mice. Moreover, dulaglutide produces greater weight loss in CNS GIPR knockout (KO) mice, and the weight loss achieved with dulaglutide + GIPR-Ab is attenuated in CNS GIPR KO mice. Wild-type mice treated with GIPR-Ab/GLP-1 and CNS GIPR KO mice exhibit similar changes in gene expression related to tissue remodelling, lipid metabolism and inflammation in white adipose tissue and liver. Moreover, GIPR-Ab/GLP-1 is detected in circumventricular organs in the brain and activates c-FOS in downstream neural substrates involved in appetite regulation. Hence, both CNS GIPR and GLP-1R signalling are required for the full weight loss effect of a GIPR-Ab/GLP-1 peptide-antibody conjugate.
Collapse
Affiliation(s)
- Clarissa M Liu
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc., Thousand Oaks, CA, USA
| | - Elizabeth A Killion
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Rola Hammoud
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Shu-Chen Lu
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Renee Komorowski
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Tongyu Liu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Thousand Oaks, CA, USA
| | - Matt Kanke
- Department of Research Technologies, Amgen Research, South San Francisco, CA, USA
| | - Veena A Thomas
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, USA
| | - Kevin Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, USA
| | - Glenn N Sivits
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Aerielle B Ben
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Larissa I Atangan
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Rajaa Hussien
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Amy Tang
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Artem Shkumatov
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Chi-Ming Li
- Department of Research Technologies, Amgen Research, South San Francisco, CA, USA
| | - Daniel J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA.
| |
Collapse
|
3
|
Contreras GA, Rendon CJ, Shadowens A, Chirivi M, Salcedo-Tacuma D, Lauver DA, Watts SW. Perivascular Adipocytes' Adipogenesis Is Defined by Their Anatomical Location in the Descending Thoracic Aorta. Cells 2025; 14:579. [PMID: 40277904 PMCID: PMC12026431 DOI: 10.3390/cells14080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular diseases such as hypertension alter thoracic aorta structure. The role that the outer layer of the aorta, its perivascular adipose tissue (PVAT), plays in the pathogenesis of these alterations is poorly understood. In the descending thoracic aorta, PVAT is organized into three distinct strips: one located anterior to the aorta (AP) and two positioned laterally (LP). Genetic tracing indicates differences in the ontogeny of LP and AP, but the implications of these developmental differences and PVAT distribution on adipocyte development remain unknown. We hypothesize that the anatomical location of adipocyte progenitors influences their adipogenic potential and vasoactive functions. PVAT from LP and AP was collected from male SD rats at 10 wks of age (n = 7) to harvest adipocyte progenitors that were differentiated to adipocytes in adipogenic media. Adipogenesis was evaluated after induction and we performed next-generation RNA-seq on progenitors and adipocytes. We then employed Gene Set Enrichment Analysis for enrichment and network analyses. LP progenitors exhibited a 1.13-fold higher adipogenesis rate compared to those from AP. DEG analysis revealed LP had higher expression of adipogenic regulators and basal collagens Col4a2 and Col4a4. When challenged with angiotensin-II, adipocyte progenitors from LP maintained their adipogenic capacity and adipocytes from the same site maintained their secretion of adiponectin at higher rates than AP cells. However, treatment with a Piezo1 mechanoreceptor agonist reduced LP's adipogenic capacity and diminished their adiponectin secretion. These findings highlight site-specific differences in adipogenic activity, extracellular matrix composition, and the secretion of the vasoactive adipokine adiponectin between the LP and AP PVAT strips of the thoracic aorta, suggesting potential functional distinctions in vascular health and disease.
Collapse
Affiliation(s)
- G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - C. Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - Alyssa Shadowens
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA; (C.J.R.); (A.S.); (M.C.)
| | - David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV 26506, USA;
| | - D. Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (D.A.L.); (S.W.W.)
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (D.A.L.); (S.W.W.)
| |
Collapse
|
4
|
Chen H, Liu P, Pan X, Huang M, Li T, Guo Y, Pang Z, Mohammadtursun N, Yang X. Downregulation of collagen IV deposition and ITGB1-FAK signaling pathway to inhibit adipogenesis: A novel mechanism of swertiamarin in treating type 2 diabetes mellitus. Int J Biol Macromol 2025; 299:140048. [PMID: 39832590 DOI: 10.1016/j.ijbiomac.2025.140048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Extracellular matrix (ECM) and integrins are important biological macromolecules. ECM especially collagen IV (COLIV) deposition modulates the integrin-FAK signaling pathway involved in adipogenesis and is strongly associated with insulin resistance. Type 2 diabetes mellitus (T2DM) mice were given swertiamarin (STM) by intragastric administration. STM reduced body weight, blood glucose, and lipid levels and enhanced insulin sensitivity in diabetic mice. The lipid accumulation in liver, gastrocnemius muscle, and inguinal subcutaneous white adipose tissue (igSWAT) were significantly reduced by STM. Bioinformatics analysis revealed a connection between ECM, ITGB1/FAK, and PI3K/Akt signaling pathways. STM downregulated the adipogenesis, IRβ expression, COLIV deposition, ITGB1/FAK, and PI3K/Akt signaling pathways in igSWAT of diabetic mice. In vitro, STM inhibited the glucose uptake and differentiation of adipocytes, and downregulated adipogenesis-related gene and protein expression. STM is bound to ITGB1 and downregulated COLIV deposition, ITGB1/FAK, and PI3K/Akt signaling pathways. When we overexpressed FAK, the effects of STM on downstream PI3K/Akt signaling pathway and adipogenesis were attenuated. In conclusion, STM reduced COLIV deposition and binding with ITGB1 to downregulate ITGB1/FAK signaling pathway, further the downstream PI3K/Akt signaling pathway was inhibited to reduce adipogenesis and ameliorated T2DM. Thus, these signals may be a novel mechanism of STM in treating T2DM.
Collapse
Affiliation(s)
- Huijian Chen
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Pengxin Liu
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xin Pan
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Mi Huang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Tongqing Li
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yan Guo
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Nabijan Mohammadtursun
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan 848000, China
| | - Xinzhou Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
5
|
Poret JM, Simon L, Molina PE. Chronic binge alcohol dysregulates omental adipose tissue extracellular matrix in simian immunodeficiency virus-infected macaques. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:741-753. [PMID: 39980135 PMCID: PMC12014376 DOI: 10.1111/acer.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Increased survival, prolonged antiretroviral treatment (ART), and lifestyle choices, including alcohol misuse, increase the risk for comorbid conditions, including cardiometabolic comorbidities among people with HIV (PWH). Published studies indicate that dysregulated adipose tissue phenotype, particularly of the visceral adipose depot, contributes to metabolic dysregulation. Using a nonhuman primate model of simian immunodeficiency virus (SIV) infection, we previously demonstrated that chronic binge alcohol (CBA) administration to ART-treated rhesus macaques decreases whole-body glucose-insulin dynamics, increases omental adipose tissue (OmAT) collagen content, decreases OmAT adipocyte size, and alters pancreatic endocrine function. The objective of this study was to delineate the depot-specific effects of CBA on visceral (VAT) and subcutaneous adipose tissue (SAT) extracellular matrix (ECM) phenotype, the potential mechanisms involved in AT ECM remodeling, and the implications of increased tissue stiffness on AT metabolic alterations in female SIV-infected macaques. METHODS Omental and subcutaneous adipose samples were obtained from female SIV-infected, ART-treated macaques that received intragastric administration of CBA (12-15 g/kg/week, CBA/SIV) or water (VEH/SIV) for 14.5 months. RESULTS CBA preferentially altered the ECM phenotype in OmAT, a VAT depot. The CBA-associated changes included increased ECM accumulation, increased collagen I-III ratio, a profibrotic milieu, and decreased matrix metalloproteinase 13 activity. These changes were associated with smaller adipocyte size, decreased triglyceride content, decreased gene expression of perilipins, and a potential dysregulation of peroxisome proliferator-activated receptor gamma signaling. CONCLUSIONS Collectively, these findings suggest that CBA-mediated ECM remodeling "traps" adipocytes within a stiff environment that we propose disrupts adipocyte metabolic programming and may increase the risk for metabolic comorbidities.
Collapse
Affiliation(s)
- Jonquil M. Poret
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Wu G, Yu M, Liu T, Zhang D, Chang Y, Liu Z, Liu D, Xu C. Integration of Multiomics Data Reveals Selection Characteristics of ITGB1 That Are Associated with Size Differentiation in Pigs. Int J Mol Sci 2025; 26:1569. [PMID: 40004035 PMCID: PMC11855449 DOI: 10.3390/ijms26041569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Min pigs, a prominent local breed from Northeast China, have diverged into two distinct breeds, Ermin (EM) pigs and Hebao (HB) pigs, through prolonged natural and artificial selection. Although these two breeds exhibit distinct differences in body size, the genetic mechanisms underlying this variation remain poorly understood. In this study, we performed whole-genome resequencing and transcriptome analysis on EM and HB pigs to elucidate the genetic basis of body size variation in Min pigs through genome-wide selection signal analysis and the identification of differentially expressed genes (DEGs). The analysis of genetic diversity and population genetic structure across 14 pig breeds revealed that, compared with other breeds, Min pigs present relatively high genetic diversity and a unique genetic structure. Notably, EM pigs exhibited significant genetic differentiation from HB pigs. Integrated analysis of whole-genome resequencing and transcriptome data revealed candidate genes associated with body size variation in Min pigs, including ENPP1, ENPP3, SPP1, CLU, ITGA11, ITGB1, IQGAP2, BMP7, and F2RL2. These genes are enriched primarily in pathways related to ECM-receptor interactions; pantothenate and CoA biosynthesis; starch and sucrose metabolism; nicotinate and nicotinamide metabolism; pyrimidine metabolism; nucleotide metabolism; cellular responses to lipids; biomineral tissue development; biomineralization; and other pathways related to cell signaling, metabolic responses, lipid deposition, and skeletal development. Notably, ITGB1 on chromosome 10 showed strong positive selection in EM pigs, with an SNP locus exhibiting a significant G/A allele frequency difference between EM pigs (G = 52.94%, A = 47.06%) and HB pigs (G = 0%, A = 100%). Our findings suggest that Min pigs potentially modulate lipid metabolism efficiency in adipose tissue through variations in the expression of the ITGB1 gene, potentially contributing to body size differences. These results provide new insights into the genetic mechanisms underlying body size variation in domestic pigs and serve as a valuable reference for identifying and breeding pig breeds with distinct body sizes.
Collapse
Affiliation(s)
- Guandong Wu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| | - Miao Yu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| | - Tianxin Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Yang Chang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (G.W.); (M.Y.); (T.L.); (Y.C.); (Z.L.)
| |
Collapse
|
7
|
Wu J, Chen Y, Shi S, Liu J, Zhang F, Li X, Liu X, Hu G, Dong Y. Exploration of Pharmacological Mechanisms of Dapagliflozin against Type 2 Diabetes Mellitus through PI3K-Akt Signaling Pathway based on Network Pharmacology Analysis and Deep Learning Technology. Curr Comput Aided Drug Des 2025; 21:452-465. [PMID: 38204223 DOI: 10.2174/0115734099274407231207070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Dapagliflozin is commonly used to treat type 2 diabetes mellitus (T2DM). However, research into the specific anti-T2DM mechanisms of dapagliflozin remains scarce. OBJECTIVE This study aimed to explore the underlying mechanisms of dapagliflozin against T2DM. METHODS Dapagliflozin-associated targets were acquired from CTD, SwissTargetPrediction, and SuperPred. T2DM-associated targets were obtained from GeneCards and DigSee. VennDiagram was used to obtain the overlapping targets of dapagliflozin and T2DM. GO and KEGG analyses were performed using clusterProfiler. A PPI network was built by STRING database and Cytoscape, and the top 30 targets were screened using the degree, maximal clique centrality (MCC), and edge percolated component (EPC) algorithms of CytoHubba. The top 30 targets screened by the three algorithms were intersected with the core pathway-related targets to obtain the key targets. DeepPurpose was used to evaluate the binding affinity of dapagliflozin with the key targets. RESULTS In total, 155 overlapping targets of dapagliflozin and T2DM were obtained. GO and KEGG analyses revealed that the targets were primarily enriched in response to peptide, membrane microdomain, protein serine/threonine/tyrosine kinase activity, PI3K-Akt signaling pathway, MAPK signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. AKT1, PIK3CA, NOS3, EGFR, MAPK1, MAPK3, HSP90AA1, MTOR, RELA, NFKB1, IKBKB, ITGB1, and TP53 were the key targets, mainly related to oxidative stress, endothelial function, and autophagy. Through the DeepPurpose algorithm, AKT1, HSP90AA1, RELA, ITGB1, and TP53 were identified as the top 5 anti-targets of dapagliflozin. CONCLUSION Dapagliflozin might treat T2DM mainly by targeting AKT1, HSP90AA1, RELA, ITGB1, and TP53 through PI3K-Akt signaling.
Collapse
Affiliation(s)
- Jie Wu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Yufan Chen
- Department of Blood Donation Service, Central Blood Station of Jinhua, Jinhua, Zhejiang, China
| | - Shuai Shi
- Department of IVF, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Junru Liu
- Department of Endocrinology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Fen Zhang
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xingxing Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xizhi Liu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Guoliang Hu
- Department of Ultrasound in Medicine, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Yang Dong
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
8
|
Bouzid T, Kim E, Riehl BD, Yang R, Saraswathi V, Kim JK, Lim JY. Mechanical Stretch Control of Adipocyte AKT Signaling and the Role of FAK and ROCK Mechanosensors. Bioengineering (Basel) 2024; 11:1279. [PMID: 39768098 PMCID: PMC11673816 DOI: 10.3390/bioengineering11121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades. We exposed differentiated 3T3-L1 adipocytes to mechanical stretching and assessed key markers of insulin signaling, AKT activation, and GLUT4 translocation, required for glucose uptake. We showed that cyclic stretch loading at 5% strain and 1 Hz frequency increases AKT phosphorylation and GLUT4 translocation to the plasma membrane by approximately two-fold increases compared to unstretched controls for both markers as assessed by immunoblotting (p < 0.05). These results indicate that cyclic stretching activates insulin signaling and GLUT4 trafficking in adipocytes. In the mechanosensing mechanism study, focal adhesion kinase (FAK) inhibitor (FAK14) and RhoA kinase (ROCK) inhibitor (Y-27632) impaired actin cytoskeleton structural formation and significantly suppressed the stretch induction of AKT phosphorylation in adipocytes (p < 0.001). This suggests the regulatory role of focal adhesion and cytoskeletal mechanosensing in adipocyte insulin signaling under stretch loading. Our finding on the impact of mechanical stretch loading on key insulin signaling effectors in differentiated adipocytes and the mediatory role of focal adhesion and cytoskeleton mechanosensors is the first of its kind to our knowledge. This may suggest a therapeutic potential of mechanical loading cue in improving conditions of obesity and T2D. For instance, cyclic mechanical stretch loading of adipose tissue could be explored as a tool to improve insulin sensitivity in patients with obesity and T2D, and the mediatory mechanosensors such as FAK and ROCK may be targeted to further invigorate stretch-induced insulin signaling activation.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA;
| | - Jason K. Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (T.B.); (E.K.); (B.D.R.); (R.Y.)
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
9
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
10
|
Mahmoodi M, Mirzarazi Dahagi E, Nabavi M, Penalva YCM, Gosaine A, Murshed M, Couldwell S, Munter LM, Kaartinen MT. Circulating plasma fibronectin affects tissue insulin sensitivity, adipocyte differentiation, and transcriptional landscape of adipose tissue in mice. Physiol Rep 2024; 12:e16152. [PMID: 39054559 PMCID: PMC11272447 DOI: 10.14814/phy2.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Plasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet. Diet-induced obesity model of the Fn1-/-ALB mouse showed normal weight gain and whole-body fat mass, and normal adipose tissue depot volumes and unaltered circulating leptin and adiponectin levels. However, Fn1-/-ALB adipose depots showed significant alterations in adipocyte size and gene expression profiles. The inguinal adipose tissue on a normal diet, which had alterations in fatty acid metabolism and thermogenesis suggesting browning. The presence of increased beige adipocyte markers Ucp1 and Prdm16 supported this. In the inguinal fat, the obesogenic diet resulted in downregulation of the browning markers and changes in gene expression reflecting development, morphogenesis, and mesenchymal stem cell maintenance. Epididymal adipose tissue showed alterations in developmental and stem cell gene expression on both diets. The data suggests a role for pFN in adipose tissue insulin sensitivity and cell profiles.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Mir‐Hamed Nabavi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Ylauna C. M. Penalva
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Amrita Gosaine
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Sandrine Couldwell
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Lisa M. Munter
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Mari T. Kaartinen
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Medicine (Division of Experimental Medicine), Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
11
|
Wu Y, Huang J, Liu C, Wang F. Autophagy Proteins and clinical data reveal the prognosis of polycystic ovary syndrome. BMC Pregnancy Childbirth 2024; 24:152. [PMID: 38383330 PMCID: PMC10880238 DOI: 10.1186/s12884-024-06273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/14/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE We aimed to investigate the significance of autophagy proteins and their association with clinical data on pregnancy loss in polycystic ovary syndrome (PCOS), while also constructing predictive models. METHODS This study was a secondary analysis. we collected endometrial samples from 33 patients with polycystic ovary syndrome (PCOS) and 7 patients with successful pregnancy control women at the Reproductive Center of the Second Hospital of Lanzhou University between September 2019 and September 2020. Liquid chromatography tandem mass spectrometry was employed to identify expressed proteins in the endometrium of 40 patients. R was use to identify differential expression proteins(DEPs). Subsequently, Metascape was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Multivariate Cox analysis was performed to analyze autophagy proteins associated with reproductive outcomes, while logistic regression was used for analyzing clinical data. Linear correlation analysis was conducted to examine the relationship between autophagy proteins and clinical data. We established prognostic models and constructed the nomograms based on proteome data and clinical data respectively. The performance of the prognostic model was evaluated by the receiver operating characteristic curve (ROC) and decision curve analysis (DCA). RESULTS A total of 5331 proteins were identified, with 450 proteins exhibiting significant differential expression between the PCOS and control groups. A prognostic model for autophagy protein was developed based on three autophagy proteins (ARSA, ITGB1, and GABARAPL2). Additionally, another prognostic model for clinical data was established using insulin, TSH, TPOAB, and VD3. Our findings revealed a significant positive correlation between insulin and ARSA (R = 0.49), as well as ITGB1 (R = 0.3). Conversely, TSH exhibited a negative correlation with both ARSA (-0.33) and ITGB1 (R = -0.26). CONCLUSION Our research could effectively predict the occurrence of pregnancy loss in PCOS patients and provide a basis for subsequent research.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinge Huang
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Cai Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital Lanzhou, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital Lanzhou, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Yu H, Yu S, Guo J, Wang J, Mei C, Abbas Raza SH, Cheng G, Zan L. Comprehensive Analysis of Transcriptome and Metabolome Reveals Regulatory Mechanism of Intramuscular Fat Content in Beef Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2911-2924. [PMID: 38303491 DOI: 10.1021/acs.jafc.3c07844] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The intramuscular fat (IMF) content of beef determined the meat quality, and the market value of beef varies with different breeds. To provide some new approaches for improving meat quality and cattle breed improvement, 24-month-old Qinchuan cattle (Q, n = 6), Nanyang cattle (N, n = 6), and Japanese black cattle (J, n = 6) were selected. IMF content of the J group (16.92 ± 1.08%) is remarkably higher than that of indigenous Chinese cattle (Q, 13.38 ± 1.08%, and N, 12.35 ± 1.22%). Monounsaturated fatty acids and polyunsaturated fatty acids in the J group are higher than the Q and creatine, lysine, and glutamine are the three most abundant amino acids in beef, which contribute to the flavor formation. Similarly, IMF content-related genes were enriched in four vital KEGG pathways, including fatty acid metabolism, biosynthesis of unsaturated fatty acids, fatty acid elongation, and insulin resistance. Moreover, weighted genes coexpression network analysis (WGCNA) revealed that ITGB1 is the critical gene associated with the IMF content. This study compares transcriptome and metabolome of local and high-IMF cattle breeds, providing data for native cattle breeding and improvement of beef quality.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| |
Collapse
|
13
|
Plaza-Diaz J, Álvarez-Mercado AI, Yu B, Sungthong R. Editorial: Molecular mechanisms underlying obesity and their links with other comorbidities. Front Mol Biosci 2024; 10:1334024. [PMID: 38333632 PMCID: PMC10852048 DOI: 10.3389/fmolb.2023.1334024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Ana I. Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, Armilla, Spain
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- FuRong Laboratory, Changsha, China
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Benedet PO, Safikhan NS, Pereira MJ, Lum BM, Botezelli JD, Kuo CH, Wu HL, Craddock BP, Miller WT, Eriksson JW, Yue JTY, Conway EM. CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation. EBioMedicine 2024; 99:104906. [PMID: 38061240 PMCID: PMC10750038 DOI: 10.1016/j.ebiom.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3β, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Patricia O Benedet
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nooshin S Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Bryan M Lum
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - José Diego Botezelli
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; Veterans Affairs Medical Center, Northport, NY, USA
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
16
|
Shin J, Toyoda S, Okuno Y, Hayashi R, Nishitani S, Onodera T, Sakamoto H, Ito S, Kobayashi S, Nagao H, Kita S, Otsuki M, Fukuhara A, Nagata K, Shimomura I. HSP47 levels determine the degree of body adiposity. Nat Commun 2023; 14:7319. [PMID: 37951979 PMCID: PMC10640548 DOI: 10.1038/s41467-023-43080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Adiposity varies among individuals with the influence of diverse physiological, pathological, environmental, hormonal, and genetic factors, but a unified molecular basis remains elusive. Here, we identify HSP47, a collagen-specific chaperone, as a key determinant of body adiposity. HSP47 expression is abundant in adipose tissue; increased with feeding, overeating, and obesity; decreased with fasting, exercise, calorie restriction, bariatric surgery, and cachexia; and correlated with fat mass, BMI, waist, and hip circumferences. Insulin and glucocorticoids, respectively, up- and down-regulate HSP47 expression. In humans, the increase of HSP47 gene expression by its intron or synonymous variants is associated with higher body adiposity traits. In mice, the adipose-specific knockout or pharmacological inhibition of HSP47 leads to lower body adiposity compared to the control. Mechanistically, HSP47 promotes collagen dynamics in the folding, secretion, and interaction with integrin, which activates FAK signaling and preserves PPARγ protein from proteasomal degradation, partly related to MDM2. The study highlights the significance of HSP47 in determining the amount of body fat individually and under various circumstances.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yosuke Okuno
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Reiko Hayashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Haruyo Sakamoto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sachiko Kobayashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Nagao
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Endocrinology, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Nagata
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Wang J, Zhao YT, Zhang LX, Dubielecka PM, Qin G, Chin YE, Gower AC, Zhuang S, Liu PY, Zhao TC. Irisin deficiency exacerbates diet-induced insulin resistance and cardiac dysfunction in type II diabetes in mice. Am J Physiol Cell Physiol 2023; 325:C1085-C1096. [PMID: 37694285 PMCID: PMC10635657 DOI: 10.1152/ajpcell.00232.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Yu Tina Zhao
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Paul Y Liu
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Ting C Zhao
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
18
|
Liu X, Khalil AEMM, Muthukumarasamy U, Onogi Y, Yan X, Singh I, Lopez-Gonzales E, Israel A, Serrano AC, Strowig T, Ussar S. Reduced intestinal lipid absorption improves glucose metabolism in aged G2-Terc knockout mice. BMC Biol 2023; 21:150. [PMID: 37403071 DOI: 10.1186/s12915-023-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Biological aging is an important factor leading to the development of pathologies associated with metabolic dysregulation, including type 2 diabetes, cancer, cardiovascular and neurodegenerative diseases. Telomere length, a central feature of aging, has additionally been identified as inversely associated with glucose tolerance and the development of type 2 diabetes. However, the effects of shortened telomeres on body weight and metabolism remain incompletely understood. Here, we studied the metabolic consequences of moderate telomere shortening using second generation loss of telomerase activity in mice. RESULTS Aged male and female G2 Terc-/- mice and controls were characterized with respect to body weight and composition, glucose homeostasis, insulin sensitivity and metabolic activity. This was complemented with molecular and histological analysis of adipose tissue, liver and the intestine as well as microbiota analysis. We show that moderate telomere shortening leads to improved insulin sensitivity and glucose tolerance in aged male and female G2 Terc-/- mice. This is accompanied by reduced fat and lean mass in both sexes. Mechanistically, the metabolic improvement results from reduced dietary lipid uptake in the intestine, characterized by reduced gene expression of fatty acid transporters in enterocytes of the small intestine. Furthermore, G2-Terc-/- mice showed significant alterations in the composition of gut microbiota, potentially contributing to the improved glucose metabolism. CONCLUSIONS Our study shows that moderate telomere shortening reduces intestinal lipid absorption, resulting in reduced adiposity and improved glucose metabolism in aged mice. These findings will guide future murine and human aging studies and provide important insights into the age associated development of type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Xue Liu
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | | | - Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Xiaocheng Yan
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Inderjeet Singh
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Elena Lopez-Gonzales
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Andreas Israel
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Alberto Cebrian Serrano
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Till Strowig
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Brunswick, Germany
- Hannover Medical School, Hannover, Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
- Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
19
|
Zhu X, Chen H, Li H, Ren H, Ye C, Xu K, Liu J, Du F, Zhang Z, Liu Y, Xie X, Wang M, Ma T, Chong W, Shang L, Li L. ITGB1-mediated molecular landscape and cuproptosis phenotype induced the worse prognosis in diffuse gastric cancer. Front Oncol 2023; 13:1115510. [PMID: 37007126 PMCID: PMC10063208 DOI: 10.3389/fonc.2023.1115510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Diffuse type gastric cancer was identified with relatively worse prognosis than other Lauren’s histological classification. Integrin β1 (ITGB1) was a member of integrin family which played a markedly important role in tumorigenesis and progression. However, the influence of ITGB1 in diffuse gastric cancer (DGC) remains uncertain. Here, we leveraged the transcriptomic and proteomic data to explore the association between ITGB1 expression and clinicopathologic information and biological process in DGC. Cell phenotype experiments combined with quantitative-PCR (q-PCR) and western blotting were utilized to identify the potential molecular mechanism underling ITGB1.Transcriptomics and proteomics both revealed that the higher ITGB1 expression was significantly associated with worse prognosis in DGC, but not in intestinal GC. Genomic analysis indicated that the mutation frequency of significantly mutated genes of ARID1A and COL11A1, and mutational signatures of SBS6 and SBS15 were markedly increased in the ITGB1 low expression subgroup. The enrichment analysis revealed diverse pathways related to dysregulation of ITGB1 in DGC, especially in cell adhesion, proliferation, metabolism reprogramming, and immune regulation alterations. Elevated activities of kinase-ROCK1, PKACA/PRKACA and AKT1 were observed in the ITGB1 high-expression subgroup. The ssGSEA analysis also found that ITGB1 low-expression had a higher cuproptosis score and was negatively correlated with key regulators of cuproptosis, including FDX1, DLAT, and DLST. We further observed that the upregulated expression of mitochondrial tricarboxylic acid (TCA) cycle in the ITGB1 low-expression group. Reduced expression of ITGB1 inhibited the ability of cell proliferation and motility and also potentiated the cell sensitive to copper ionophores via western blotting assay. Overall, this study revealed that ITGB1 was a protumorigenic gene and regulated tumor metabolism and cuproptosis in DGC.
Collapse
Affiliation(s)
- Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Han Li
- Department of Gastroenterological Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Huicheng Ren
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kang Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jin Liu
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mingfei Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tianrong Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wei Chong, ; ; Leping Li, ; Liang Shang,
| |
Collapse
|
20
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
21
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Jesús Alcalá-Bejarano Carrillo
- Department of Health, University of the Valley of Mexico, Robles 600, Tecnologico I, San Luis Potosí 78220, Mexico
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Aurora Moreno-Racero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS, Granada, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
22
|
Peng H, Hu B, Xie LQ, Su T, Li CJ, Liu Y, Yang M, Xiao Y, Feng X, Zhou R, Guo Q, Zhou HY, Huang Y, Jiang TJ, Luo XH. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab 2022; 34:1168-1182.e6. [PMID: 35705079 DOI: 10.1016/j.cmet.2022.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
Exercise can prevent osteoporosis and improve immune function, but the mechanism remains unclear. Here, we show that exercise promotes reticulocalbin-2 secretion from the bone marrow macrophages to initiate bone marrow fat lipolysis. Given the crucial role of lipolysis in exercise-stimulated osteogenesis and lymphopoiesis, these findings suggest that reticulocalbin-2 is a pivotal regulator of a local adipose-osteogenic/immune axis. Mechanistically, reticulocalbin-2 binds to a functional receptor complex, which is composed of neuronilin-2 and integrin beta-1, to activate a cAMP-PKA signaling pathway that mobilizes bone marrow fat via lipolysis to fuel the differentiation and function of mesenchymal and hematopoietic stem cells. Notably, the administration of recombinant reticulocalbin-2 in tail-suspended and old mice remarkably decreases bone marrow fat accumulation and promotes osteogenesis and lymphopoiesis. These findings identify reticulocalbin-2 as a novel mechanosensitive lipolytic factor in maintaining energy homeostasis in bone resident cells, and it provides a promising target for skeletal and immune health.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, China.
| |
Collapse
|
23
|
Li BY, Guo YY, Xiao G, Guo L, Tang QQ. SERPINA3C ameliorates adipose tissue inflammation through the Cathepsin G/Integrin/AKT pathway. Mol Metab 2022; 61:101500. [PMID: 35436587 PMCID: PMC9062745 DOI: 10.1016/j.molmet.2022.101500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Due to the increasing prevalence of obesity and insulin resistance, there is an urgent need for better treatment of obesity and its related metabolic disorders. This study aimed to elucidate the role of SERPINA3C, an adipocyte secreted protein, in obesity and related metabolic disorders. METHODS Male wild type (WT) and knockout (KO) mice were fed with high-fat diet (HFD) for 16 weeks, adiposity, insulin resistance, and inflammation were assessed. AAV-mediated overexpression of SERPINA3C was injected locally in inguinal white adipose tissue (iWAT) to examine the effect of SERPINA3C. In vitro analyses were conducted in 3T3-L1 adipocytes to explore the molecular pathways underlying the function of SERPINA3C. RESULTS Functional exploration of the SERPINA3C knockout mice revealed that SERPINA3C deficiency led to an impaired metabolic phenotype (more severe obesity, lower metabolic rates, worse glucose intolerance and insulin insensitivity), which was associated with anabatic inflammation and apoptosis of white adipose tissues. Consistent with these results, overexpression of SERPINA3C in inguinal adipose tissue protected mice against diet-induced obesity and metabolic disorders with less inflammation and apoptosis in adipose tissue. Mechanistically, SERPINA3C inhibited Cathepsin G activity, acting as a serine protease inhibitor, which blocked Cathepsin G-mediated turnover of α5/β1 Integrin protein. Then, the preserved integrity (increase) of α5/β1 Integrin signaling activated AKT to decrease JNK phosphorylation, thereby inhibiting inflammation and promoting insulin sensitivity in adipocytes. CONCLUSIONS/INTERPRETATION These findings demonstrate a previously unknown SERPINA3C/Cathepsin G/Integrin/AKT pathway in regulating adipose tissue inflammation, and suggest the therapeutic potential of targeting SERPINA3C/Cathepsin G axis in adipose tissue for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Bai-Yu Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Guo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gang Xiao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Guo
- School of Kinesiology, and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Zhang Y, Zhang H. Identification of Biomarkers of Autophagy-Related Genes Between Early and Advanced Carotid Atherosclerosis. Int J Gen Med 2022; 15:5321-5334. [PMID: 35669594 PMCID: PMC9166959 DOI: 10.2147/ijgm.s350232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Accumulating evidence demonstrates that autophagy is important in inhibiting inflammation and cholesterol efflux. It suggested the autophagy may be a treatment of atherosclerosis. Thus, we screened autophagy-related mRNA to explore their mechanism of scientific basis for early diagnosis and therapy of atherosclerosis. Methods The GSE28829 datasets were assessed to analyze differentially expressed genes by GEO2R. And autophagy-related hub genes were identified by HADb. The biological function of autophagy-related DEmRNAs was examined by Metascape. The construction of a protein–protein network was explored by String. Cytohubba was utilized to screen hub genes. Analysis of DEmiRNA-mRNA pairs was executed by DIANA microT-CDS database. Finally, correlation analysis was carried out to identify the relationship between DEARGs and clinical and prognostic factors. Results A number of 1087 DEGs and 19 autophagy-related DEmRNAs were identified in advanced carotid atherosclerotic plaque compared with the early. The biological function containing development and growth was enriched. Moreover, we screened the top hub nodes with the highest degrees. MicroRNAs (miRNAs) are confirmed to participate in genesis and progression of atherosclerosis, so we further analyzed the miRNA–mRNA regulatory network genes with four hub genes to explore their potential mechanism in atherosclerosis. Then, we revealed co-expression of four key genes CTSB, ITGB1, CXCR4, TNFSF10 and autophagy-related genes. As for the clinical factors, hypertension factor showed higher expression of ITGB1. The probability of coronary heart disease factor was significantly increased with high expression of CTSB and CXCR4, as well as low expression of ITGB1 and TNFSF10. Diabetes factor tended to express distinguished levels of CTSB and ITGB1. TNFSF10 was highly expressed in both hyperlipidemia and ischemic stroke factor. Conclusion CTSB, ITGB1, CXCR4 and TNFSF10 may be critical in atherosclerosis development and were thought to be potential diagnostic biomarkers for atherosclerosis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
25
|
Marcantonio CC, Lopes MES, Mofatto LS, Salmon CR, Deschner J, Nociti-Junior FH, Cirelli JA, Nogueira AVB. Obesity affects the proteome profile of periodontal ligament submitted to mechanical forces induced by orthodontic tooth movement in rats. J Proteomics 2022; 263:104616. [PMID: 35595054 DOI: 10.1016/j.jprot.2022.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has increased significantly worldwide. Therefore, this study aimed to evaluate the influence of obesity on the proteomic profile of periodontal ligament (PDL) tissues of rat first maxillary molars (1 M) submitted to orthodontic tooth movement (OTM). Ten Holtzman rats were distributed into two groups (n = 5): the M group (OTM), and the OM group (obesity induction plus OTM). Obesity was induced by a high-fat diet for the entire experimental periods After that period, the animals were euthanized and the hemimaxillae removed and processed for laser capture microdissection of the PDL tissues of the 1 M. Peptide extracts were obtained and analyzed by LC-MS/MS. Data are available via ProteomeXchange with identifier PXD033647. Out of the 109 proteins with differential abundance, 49 were identified in the OM group, including Vinculin, Cathepsin D, and Osteopontin, which were selected for in situ localization by immunohistochemistry analysis (IHC). Overall, Gene Ontology (GO) analysis indicated that enriched proteins were related to the GO component cellular category. IHC validated the trends for selected proteins. Our study highlights the differences in the PDL proteome profiling of healthy and obese subjects undergoing OTM. These findings may provide valuable information needed to better understand the mechanisms involved in tissue remodeling in obese patients submitted to orthodontic treatment. SIGNIFICANCE: The prevalence of obesity is increasing worldwide. Emerging findings in the field of dentistry suggest that obesity influences the tissues around the teeth, especially those in the periodontal ligament. Therefore, evaluation of the effect of obesity on periodontal tissues remodeling during orthodontic tooth movement is a relevant research topic. To our knowledge, this is the first study to evaluate proteomic changes in periodontal ligament tissue in response to the association between orthodontic tooth movement and obesity. Our study identified a novel protein profile associated with obesity by using laser microdissection and proteomic analysis, providing new information to increase understanding of the mechanisms involved in obese patients undergoing orthodontic treatment which can lead to a more personalized orthodontic treatment approach.
Collapse
Affiliation(s)
- Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Francisco Humberto Nociti-Junior
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil.
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
26
|
Wang J, Onogi Y, Krueger M, Oeckl J, Karlina R, Singh I, Hauck SM, Feederle R, Li Y, Ussar S. PAT2 regulates vATPase assembly and lysosomal acidification in brown adipocytes. Mol Metab 2022; 61:101508. [PMID: 35513259 PMCID: PMC9114668 DOI: 10.1016/j.molmet.2022.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Brown adipocytes play a key role in maintaining body temperature as well as glucose and lipid homeostasis. However, brown adipocytes need to adapt their thermogenic activity and substrate utilization to changes in nutrient availability. Amongst the multiple factors influencing brown adipocyte activity, autophagy is an important regulatory element of thermogenic capacity and activity. Nevertheless, a specific sensing mechanism of extracellular amino acid availability linking autophagy to nutrient availability in brown adipocytes is unknown. METHODS To characterize the role of the amino acid transporter PAT2/SLC36A2 in brown adipocytes, loss or gain of function of PAT2 were studied with respect to differentiation, subcellular localization, lysosomal activity and autophagy. Activity of vATPase was evaluated by quenching of EGFP fused to LC3 or FITC-dextran loaded lysosomes in brown adipocytes upon amino acid starvation, whereas the effect of PAT2 on assembly of the vATPase was investigated by Native-PAGE. RESULTS We show that PAT2 translocates from the plasma membrane to the lysosome in response to amino acid withdrawal. Loss or overexpression of PAT2 impair lysosomal acidification and starvation induced S6K re-phosphorylation, as PAT2 facilitates the assembly of the lysosomal vATPase, by recruitment of the cytoplasmic V1 subunit to the lysosome. CONCLUSION PAT2 is an important sensor of extracellular amino acids and regulator of lysosomal acidification in brown adipocytes.
Collapse
Affiliation(s)
- Jiefu Wang
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Josef Oeckl
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Ruth Karlina
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Inderjeet Singh
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Regina Feederle
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Monoclonal Antibody Core Facility, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine TUM School for Life Sciences,Technical University Munich, Munich, Germany
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
27
|
Muthu ML, Tiedemann K, Fradette J, Komarova S, Reinhardt DP. Fibrillin-1 regulates white adipose tissue development, homeostasis, and function. Matrix Biol 2022; 110:106-128. [DOI: 10.1016/j.matbio.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022]
|
28
|
Chen HJ, Yan XY, Sun A, Zhang L, Zhang J, Yan YE. High-Fat-Diet-Induced Extracellular Matrix Deposition Regulates Integrin - FAK Signals in Adipose Tissue to Promote Obesity. Mol Nutr Food Res 2022; 66:e2101088. [PMID: 35106921 DOI: 10.1002/mnfr.202101088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE High-fat-diet (HFD) is an important factor in obesity. Extracellular matrix (ECM) regulates white adipose tissue (WAT), but its mechanism is unknown. METHODS AND RESULTS We used three models- HFD-fed mice, human with obesity and 3T3-L1 adipocytes with oleic acid (OA)/macromolecular crowders (MMC) treatment. We observed glucose and lipids metabolic disorders, increased collagen I/IV and LAMA2/4 and upregulated integrins (ITGA1/ITGA7) - FAK - JNK/ERK1/2 signals in obese WAT from mice and human. The upregulation of ECM - integrin - FAK signals was stronger in subcutaneous WAT than in visceral WAT of mice, but these results were reversed in human. In vitro, oleic acid (OA) promoted lipid accumulation and upregulated collagen IV, LAMA4 and p-JNK. MMC was used to induce ECM deposition in adipocytes. MMC promoted adipocyte differentiation and integrins - FAK - JNK/ERK1/2 signals. When FAK phosphorylation was inhibited, downstream p-JNK decreased. Inhibition of FAK phosphorylation reduced adipocyte differentiation, but MMC partially reversed this effect. CONCLUSION HFD-induced ECM deposition, whose signals were transmitted into adipocytes through upregulating ITGA1/ITGA7, activated the phosphorylation of intracellular FAK - JNK/ERK1/2 signals, and promoted adipogenesis in WAT. This mechanism provides novel therapeutic targets to treat obesity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xi-Yue Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Ao Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Zhang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jing Zhang
- Center for Animal Experiment/Animal Biosafety Level 3 Laboratory, Wuhan University, Wuhan, 430071, China
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
29
|
de Frutos S, Griera M, Hatem-Vaquero M, Campillo S, Gutiérrez-Calabres E, García-Ayuso D, Pardo M, Calleros L, Rodríguez-Puyol M, Rodríguez-Puyol D. The integrin beta1 modulator Tirofiban prevents adipogenesis and obesity by the overexpression of integrin-linked kinase: a pre-clinical approach in vitro and in vivo. Cell Biosci 2022; 12:10. [PMID: 35090553 PMCID: PMC8796419 DOI: 10.1186/s13578-022-00746-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Obesity is caused by the enlargement of the white adipose tissue (WAT) depots, characterized by the hypertrophic enlargement of malfunctioning adipocytes within WAT which increases the storage of triglycerides (TG) in the lipid droplets (LD). Adipogenesis pathways as well as the expression and activity of some extracellular matrix receptors integrins are upregulated. Integrinβ1 (INTB1) is the main isoform involved in WAT remodeling during obesity and insulin resistance-related diseases. We recently described Integrin Linked Kinase (ILK), a scaffold protein recruited by INTB1, as an important mediator of WAT remodeling and insulin resistance. As the few approved drugs to fight obesity have brought long-term cardiovascular side effects and given that the consideration of INTB1 and/or ILK modulation as anti-obesogenic strategies remains unexplored, we aimed to evaluate the anti-obesogenic capacity of the clinically approved anticoagulant Tirofiban (TF), stated in preclinical studies as a cardiovascular protector. Methods Fully differentiated adipocytes originating from C3H10T1/2 were exposed to TF and were co-treated with specific INTB1 blockers or with siRNA-based knockdown ILK expression. Lipid-specific dyes were used to determine the TG content in LD. The genetic expression pattern of ILK, pro-inflammatory cytokines (MCP1, IL6), adipogenesis (PPARγ, Leptin), thermogenesis (UCP1), proliferation (PCNA), lipid metabolism (FASN, HSL, ATGL), and metabolite transporters (FABP4, FAT, AQP7) were detected using quantitative PCR. Cytoskeletal actin polymerization was detected by confocal microscopy. Immunoblotting was performed to detect INTB1 phosphorylation at Thr788/9 and ILK activity as phosphorylation levels of protein kinase B (AKT) in Ser473 and glycogen synthase kinase 3β (GSK3β) at Ser9. TF was intraperitoneally administered once per day to wildtype and ILK knockdown mice (cKDILK) challenged with a high-fat diet (HFD) or control diet (STD) for 2 weeks. Body and WAT weight gains were compared. The expression of ILK and other markers was determined in the visceral epididymal (epi) and inguinal subcutaneous (sc) WAT. Results TF reduced TG content and the expression of adipogenesis markers and transporters in adipocytes, while UCP-1 expression was increased and the expression of lipases, cytokines or PCNA was not affected. Mechanistically, TF rapidly increased and faded the intracellular phosphorylation of INTB1 but not AKT or GSK3β. F-actin levels were rapidly decreased, and INTB1 blockade avoided the TF effect. After 24 h, ILK expression and phosphorylation rates of AKT and GSK3β were upregulated, while ILK silencing increased TG content. INTB1 blockade and ILK silencing avoided TF effects on the TG content and the transcriptional expression of PPARγ and UCP1. In HFD-challenged mice, the systemic administration of TF for several days reduced the weight gain on WAT depots. TF reduced adipogenesis and pro-inflammatory biomarkers and increased lipolysis markers HSL and FAT in epiWAT from HFD, while increased UCP1 in scWAT. In both WATs, TF upregulated ILK expression and activity, while no changes were observed in other tissues. In HFD-fed cKDILK, the blunted ILK in epiWAT worsened weight gain and avoided the anti-obesogenic effect of in vivo TF administration. Conclusions ILK downregulation in WAT can be considered a biomarker of obesity establishment. Via an INTB1-ILK axis, TF restores malfunctioning hypertrophied WAT by changing the expression of adipocyte-related genes, increasing ILK expression and activity, and reducing TG storage. TF prevents obesity, a property to be added to its anticoagulant and cardiovascular protective advantages. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00746-1.
Collapse
|
30
|
Dattilo A, Ceccarini G, Scabia G, Magno S, Quintino L, Pelosini C, Salvetti G, Cusano R, Massidda M, Montanelli L, Gilio D, Gatti G, Giacomina A, Costa M, Santini F, Maffei M. Circulating Levels of MiRNAs From 320 Family in Subjects With Lipodystrophy: Disclosing Novel Signatures of the Disease. Front Endocrinol (Lausanne) 2022; 13:866679. [PMID: 35733784 PMCID: PMC9207177 DOI: 10.3389/fendo.2022.866679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lipodystrophy (LD) indicates a group of rare disorders, with generalized or partial loss of white adipose tissue (WAT) often associated with metabolic derangements. Heterogeneity/wide spectrum of the disease and lack of biomarkers make diagnosis often difficult. MicroRNAs are important to maintain a correct WAT function and WAT is a source of circulating miRNAs (cmiRs). miRNAs from 320 family were previously detected in the WAT and variably associated to the metabolic syndrome. Our aim was then to investigate if LD can result in altered abundance of cmiRs-320. We collected samples from a cohort of LD subjects of various subtypes and from age matched controls. Use of quantitative PCR determined that cmiRs- 320a-3p, 320b, 320c, 320e are upregulated, while 320d is downregulated in LD. CmiRs-320 power as classifiers was more powerful in the most extreme and defined forms of LD, including the generalized and the Dunnigan subtypes. cmiR-320a-3p showed significant inverse relationships with plasma leptin (P < 0.0001), typically low in LD. The hepatic enzymes gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the marker of inflammation C-reactive protein (CRP) were inversely related to cmiR 320d (P < 0.05, for CRP and GGT; P < 0.01, for AST and ALT). Gene ontology analysis revealed cell-cell adhesion as a process regulated by 320 miRNAs targets, thus disclosing a novel route to investigate origin of WAT loss/dysfunction. In conclusion, cmiRs-320 constitute novel biomarkers of LD, abundance of miR320a-3p is inversely associated to indicators related to WAT function, while downregulation of cmiR-320d predicts an altered hepatic profile and higher inflammation.
Collapse
Affiliation(s)
- Alessia Dattilo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gaia Scabia
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Lara Quintino
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Caterina Pelosini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Guido Salvetti
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Roberto Cusano
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Matteo Massidda
- Center for Advanced Studies, Research and Development in Sardinia, Pula (CA), Italy
| | - Lucia Montanelli
- Department of Clinical and Experimental Medicine, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Donatella Gilio
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Gianluca Gatti
- Plastic and Reconstructive Surgery Unit, Hospital of Pisa, Pisa, Italy
| | | | - Mario Costa
- National Research Council, Institute of Neuroscience, Pisa, Italy
- Centro Pisano Flash Radiotherapy, Center for Instrument Sharing of the University of Pisa (CPFR@CISUP), Pisa University Hospital, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
| | - Margherita Maffei
- Obesity and Lipodystrophy Center, Endocrinology Unit, Pisa University Hospital, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- *Correspondence: Margherita Maffei,
| |
Collapse
|
31
|
Wu X, Qu M, Gong W, Zhou C, Lai Y, Xiao G. Kindlin-2 deletion in osteoprogenitors causes severe chondrodysplasia and low-turnover osteopenia in mice. J Orthop Translat 2022; 32:41-48. [PMID: 34934625 PMCID: PMC8639803 DOI: 10.1016/j.jot.2021.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our recent studies demonstrate that the focal adhesion protein Kindlin-2 exerts crucial functions in the mesenchymal stem cells, mature osteoblasts and osteocytes in control of early skeletal development and bone homeostasis in mice. However, whether Kindlin-2 plays a role in osteoprogenitors remains unclear. MATERIALS AND METHODS Mice lacking Kindlin-2 expression in osterix (Osx)-expressing cells (i.e., osteoprogenitors) were generated. Micro-computerized tomography (μCT) analyses, histology, bone histomorphometry and immunohistochemistry were performed to determine the effects of Kindlin-2 deletion on skeletal development and bone mass accrual and homeostasis. Bone marrow stromal cells (BMSCs) from mutant mice (Kindlin-2 fl/fl ; Osx Cre ) and control littermates were isolated and determined for their osteoblastic differentiation capacity. RESULTS Kindlin-2 was highly expressed in osteoprogenitors during endochondral ossification. Deleting Kindlin-2 expression in osteoprogenitors impaired both intramembranous and endochondral ossifications. Mutant mice displayed multiple severe skeletal abnormalities, including unmineralized fontanel, limb shortening and growth retardation. Deletion of Kindlin-2 in osteoprogenitors impaired the growth plate development and largely delayed formation of the secondary ossification center in the long bones. Furthermore, adult mutant mice displayed a severe low-turnover osteopenia with a dramatic decrease in bone formation which exceeded that in bone resorption. Primary BMSCs isolated from mutant mice exhibited decreased osteoblastic differentiation capacity. CONCLUSIONS Our study demonstrates an essential role of Kinlind-2 expression in osteoprogenitors in regulating skeletogenesis and bone mass accrual and homeostasis in mice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study reveals that Kindlin-2 through its expression in osteoprogenitor cells controls chondrogenesis and bone mass. We may define a novel therapeutic target for treatment of skeletal diseases, such as chondrodysplasia and osteoporosis.
Collapse
Affiliation(s)
- Xiaohao Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunlei Zhou
- Department of Medical Laboratory, Tianjin First Center Hospital, Tianjin Medical, 17 University, Tianjin, 300192, China
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Fang D, Shi X, Jia X, Yang C, Wang L, Du B, Lu T, Shan L, Gao Y. Ups and downs: The PPARγ/p-PPARγ seesaw of follistatin-like 1 and integrin receptor signaling in adipogenesis. Mol Metab 2021; 55:101400. [PMID: 34813964 PMCID: PMC8683615 DOI: 10.1016/j.molmet.2021.101400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Although Follistatin-like protein 1 (FSTL1), as an "adipokine", is highly expressed in preadipocytes, the detail role of FSTL1 in adipogenesis and obesity remains not fully understood. METHODS In vitro differentiation of both Fstl1-/- murine embryonic fibroblasts (MEFs) and stromal vascular fraction (SVF) were measured to assess the specific role of FSTL1 in adipose differentiation. Fstl1 adipocyte-specific knockout mice were generated to evaluate its role in obesity development. Gene expression analysis and phosphorylation patterns were performed to check out the molecular mechanism of the biological function of FSTL1. RESULTS FSTL1 deficiency inhibited preadipocytes differentiation in vitro and obesity development in vivo. Glycosylation at N142 site was pivotal for the biological effect of FSTL1 during adipogenesis; the conversion between PPARγ and p-PPARγ was the key factor for the function of FSTL1. Molecular mechanism studies showed that FSTL1 functions through the integrin/FAK/ERK signaling pathway. CONCLUSIONS Our results suggest that FSTL1 promotes adipogenesis by inhibiting the conversion of PPARγ to p-PPARγ through the integrin/FAK/ERK signaling pathway. Glycosylated modification at N142 of FSTL1 is the key site to exert its biological effect.
Collapse
Affiliation(s)
- Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
35
|
Loss of ADAMTS15 Promotes Browning in 3T3-L1 White Adipocytes via Activation of β3-adrenergic Receptor. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0036-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Anguita-Ruiz A, Bustos-Aibar M, Plaza-Díaz J, Mendez-Gutierrez A, Alcalá-Fdez J, Aguilera CM, Ruiz-Ojeda FJ. Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction. Int J Mol Sci 2021; 22:2756. [PMID: 33803198 PMCID: PMC7963192 DOI: 10.3390/ijms22052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mireia Bustos-Aibar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Alcalá-Fdez
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain;
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|