1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
van der Velden WJC, Mukhaleva E, Vaidehi N. Allosteric Communication Mechanism in the Glucagon Receptor. J Biol Chem 2025:108530. [PMID: 40280422 DOI: 10.1016/j.jbc.2025.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The glucagon receptor is dysregulated in metabolic disorders. Recent drug discovery has shown that agonists for the glucagon receptor might be more promising as therapeutics. Allosteric modulation may pave an alternative way to initiate responses that are required to target these metabolic disorders. Here, we investigated the allosteric communication mechanisms within the glucagon receptor using molecular dynamics simulations on five glucagon receptor states. Results highlighted that the extracellular domain is dynamic in the absence of an orthosteric agonist. In the presence of a partial agonist, we observed increased flexibility in the N-terminus of the receptor compared to the full agonist bound receptor. Class B GPCR microswitches showed repacking going from the inactive to the active state, allowing for G protein coupling. In the full agonist and G protein-bound state, Gαs showed both translational and rotational movement in the N-terminus, core and α5-helix, thereby forming key interactions between the core of the G protein and the glucagon receptor. Lastly, the allosteric communication from the extracellular region to the G protein coupling region of the glucagon receptor was the strongest in the intracellular negative allosteric modulator-bound state, the full agonist and G protein-bound state, and the full agonist-bound G protein-free state. The residue positions predicted to play a significant role in the allosteric communication mechanism showed overlap with disease associated mutations. Overall, our study provides insights into the allosteric communication mechanism in a class B GPCR which sets the foundation for future design of potential allosteric modulators targeting the glucagon receptor.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 PMCID: PMC11559640 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Manchanda Y, ElEid L, Oqua AI, Ramchunder Z, Choi J, Shchepinova MM, Rutter GA, Inoue A, Tate EW, Jones B, Tomas A. Engineered mini-G proteins block the internalization of cognate GPCRs and disrupt downstream intracellular signaling. Sci Signal 2024; 17:eabq7038. [PMID: 38954638 DOI: 10.1126/scisignal.abq7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Mini-G proteins are engineered, thermostable variants of Gα subunits designed to stabilize G protein-coupled receptors (GPCRs) in their active conformations. Because of their small size and ease of use, they are popular tools for assessing GPCR behaviors in cells, both as reporters of receptor coupling to Gα subtypes and for cellular assays to quantify compartmentalized signaling at various subcellular locations. Here, we report that overexpression of mini-G proteins with their cognate GPCRs disrupted GPCR endocytic trafficking and associated intracellular signaling. In cells expressing the Gαs-coupled GPCR glucagon-like peptide 1 receptor (GLP-1R), coexpression of mini-Gs, a mini-G protein derived from Gαs, blocked β-arrestin 2 recruitment and receptor internalization and disrupted endosomal GLP-1R signaling. These effects did not involve changes in receptor phosphorylation or lipid nanodomain segregation. Moreover, we found that mini-G proteins derived from Gαi and Gαq also inhibited the internalization of GPCRs that couple to them. Finally, we developed an alternative intracellular signaling assay for GLP-1R using a nanobody specific for active Gαs:GPCR complexes (Nb37) that did not affect GLP-1R internalization. Our results have important implications for designing methods to assess intracellular GPCR signaling.
Collapse
Affiliation(s)
- Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Liliane ElEid
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Affiong I Oqua
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Zenouska Ramchunder
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jiyoon Choi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Maria M Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- CR-CHUM, Université de Montréal, Montréal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| |
Collapse
|
5
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
6
|
Wang B, Shen H, Wei Y, Liu F, Yang Y, Yu H, Fu J, Cui X, Yu T, Xu Y, Liu Y, Dong H, Shen F, Zhou W, Liu H, Chen Y, Wang H. Balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution in postoperative liver regeneration. J Hepatol 2024; 80:309-321. [PMID: 37918568 DOI: 10.1016/j.jhep.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND & AIMS Post-hepatectomy liver failure (PHLF) leads to poor prognosis in patients undergoing hepatectomy, with hepatic vascular reconstitution playing a critical role. However, the regulators of hepatic vascular reconstitution remain unclear. In this study, we aimed to investigate the regulatory mechanisms of hepatic vascular reconstitution and identify biomarkers predicting PHLF in patients undergoing hepatectomy. METHODS Candidate genes that were associated with hepatic vascular reconstitution were screened using adeno-associated virus vectors in Alb-Cre-CRISPR/Cas9 mice subjected to partial hepatectomy. The biological activities of candidate genes were estimated using endothelial precursor transfusion and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) models. The level of candidates was detected in biopsies from patients undergoing ALPPS. Risk factors for PHLF were also screened using retrospective data. RESULTS Downregulation of Gata3 and upregulation of Ramp2 in hepatocytes promoted the proliferation of liver sinusoidal endothelial cells and hepatic revascularization. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor A (VEGFA) played opposite roles in regulating the migration of endothelial precursors from bone marrow and the formation of new sinusoids after hepatectomy. Gata3 restricted endothelial cell function in patient-derived hepatic organoids, which was abrogated by a Gata3 inhibitor. Moreover, overexpression of Gata3 led to higher mortality in ALPPS mice, which was improved by a PEDF-neutralizing antibody. The expression of Gata3/RAMP and PEDF/VEGFA tended to have a negative correlation in patients undergoing ALPPS. A nomogram incorporating multiple factors, such as serum PEDF/VEGF index, was constructed and could efficiently predict the risk of PHLF. CONCLUSIONS The balance of Gata3 and Ramp2 in hepatocytes regulates the proliferation of liver sinusoidal endothelial cells and hepatic revascularization via changes in the expression of PEDF and VEGFA, revealing potential targets for the prevention and treatment of PHLF. IMPACT AND IMPLICATIONS In this study, we show that the balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution by promoting a shift from pigment epithelium-derived factor (PEDF) to vascular endothelial growth factor A (VEGFA) expression during hepatectomy- or ALLPS (associating liver partition and portal vein ligation for staged hepatectomy)-induced liver regeneration. We also identified serum PEDF/VEGFA index as a potential predictor of post-hepatectomy liver failure in patients who underwent hepatectomy. This study improves our understanding of how hepatocytes contribute to liver regeneration and provides new targets for the prevention and treatment of post-hepatectomy liver failure.
Collapse
Affiliation(s)
- Bibo Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Hao Shen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yating Wei
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Han Yu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Ting Yu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Hepatology, Fuling Hospital, Chongqing University, Chongqing, China
| | - Ying Xu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Yitian Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Hui Dong
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Feng Shen
- The Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China.
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
8
|
Bitsi S, El Eid L, Manchanda Y, Oqua AI, Mohamed N, Hansen B, Suba K, Rutter GA, Salem V, Jones B, Tomas A. Divergent acute versus prolonged pharmacological GLP-1R responses in adult β cell-specific β-arrestin 2 knockout mice. SCIENCE ADVANCES 2023; 9:eadf7737. [PMID: 37134170 PMCID: PMC10156113 DOI: 10.1126/sciadv.adf7737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a major type 2 diabetes therapeutic target. Stimulated GLP-1Rs are rapidly desensitized by β-arrestins, scaffolding proteins that not only terminate G protein interactions but also act as independent signaling mediators. Here, we have assessed in vivo glycemic responses to the pharmacological GLP-1R agonist exendin-4 in adult β cell-specific β-arrestin 2 knockout (KO) mice. KOs displayed a sex-dimorphic phenotype consisting of weaker acute responses that improved 6 hours after agonist injection. Similar effects were observed for semaglutide and tirzepatide but not with biased agonist exendin-phe1. Acute cyclic adenosine 5'-monophosphate increases were impaired, but desensitization reduced in KO islets. The former defect was attributed to enhanced β-arrestin 1 and phosphodiesterase 4 activities, while reduced desensitization co-occurred with impaired GLP-1R recycling and lysosomal targeting, increased trans-Golgi network signaling, and reduced GLP-1R ubiquitination. This study has unveiled fundamental aspects of GLP-1R response regulation with direct application to the rational design of GLP-1R-targeting therapeutics.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Liliane El Eid
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Affiong I. Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nimco Mohamed
- Department of Bioengineering, Imperial College London, London, UK
| | - Ben Hansen
- Department of Bioengineering, Imperial College London, London, UK
| | - Kinga Suba
- Department of Bioengineering, Imperial College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- CHUM Research Centre, Faculty of Medicine, University of Montreal, Quebec H2X 0A9, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
9
|
Kotliar IB, Ceraudo E, Kemelmakher-Liben K, Oren DA, Lorenzen E, Dodig-Crnković T, Horioka-Duplix M, Huber T, Schwenk JM, Sakmar TP. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J Biol Chem 2023; 299:104664. [PMID: 37003505 PMCID: PMC10165273 DOI: 10.1016/j.jbc.2023.104664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Kevin Kemelmakher-Liben
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
10
|
Austin GO, Tomas A. Variation in responses to incretin therapy: Modifiable and non-modifiable factors. Front Mol Biosci 2023; 10:1170181. [PMID: 37091864 PMCID: PMC10119428 DOI: 10.3389/fmolb.2023.1170181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Type 2 diabetes (T2D) and obesity have reached epidemic proportions. Incretin therapy is the second line of treatment for T2D, improving both blood glucose regulation and weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-stimulated insulinotropic polypeptide (GIP) are the incretin hormones that provide the foundations for these drugs. While these therapies have been highly effective for some, the results are variable. Incretin therapies target the class B G protein-coupled receptors GLP-1R and GIPR, expressed mainly in the pancreas and the hypothalamus, while some therapeutical approaches include additional targeting of the related glucagon receptor (GCGR) in the liver. The proper functioning of these receptors is crucial for incretin therapy success and here we review several mechanisms at the cellular and molecular level that influence an individual's response to incretin therapy.
Collapse
Affiliation(s)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Krishna Kumar K, O'Brien ES, Habrian CH, Latorraca NR, Wang H, Tuneew I, Montabana E, Marqusee S, Hilger D, Isacoff EY, Mathiesen JM, Kobilka BK. Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 2023; 186:1465-1477.e18. [PMID: 37001505 PMCID: PMC10144504 DOI: 10.1016/j.cell.2023.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023]
Abstract
Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Chris H Habrian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi R Latorraca
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Inga Tuneew
- Zealand Pharma A/S, Sydmarken 11, Soborg 2860, Denmark
| | - Elizabeth Montabana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley CA 94720, USA
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, Marburg 35037, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | | | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Manchanda Y, Bitsi S, Chen S, Broichhagen J, Bernardino de la Serna J, Jones B, Tomas A. Enhanced Endosomal Signaling and Desensitization of GLP-1R vs GIPR in Pancreatic Beta Cells. Endocrinology 2023; 164:7034684. [PMID: 36774542 PMCID: PMC10016038 DOI: 10.1210/endocr/bqad028] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
The incretin receptors, glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR), are prime therapeutic targets for the treatment of type 2 diabetes (T2D) and obesity. They are expressed in pancreatic beta cells where they potentiate insulin release in response to food intake. Despite GIP being the main incretin in healthy individuals, GLP-1R has been favored as a therapeutic target due to blunted GIPR responses in T2D patients and conflicting effects of GIPR agonists and antagonists in improving glucose tolerance and preventing weight gain. There is, however, a recently renewed interest in GIPR biology, following the realization that GIPR responses can be restored after an initial period of blood glucose normalization and the recent development of dual GLP-1R/GIPR agonists with superior capacity for controlling blood glucose levels and weight. The importance of GLP-1R trafficking and subcellular signaling in the control of receptor outputs is well established, but little is known about the pattern of spatiotemporal signaling from the GIPR in beta cells. Here, we have directly compared surface expression, trafficking, and signaling characteristics of both incretin receptors in pancreatic beta cells to identify potential differences that might underlie distinct pharmacological responses associated with each receptor. Our results indicate increased cell surface levels, internalization, degradation, and endosomal vs plasma membrane activity for the GLP-1R, while the GIPR is instead associated with increased plasma membrane recycling, reduced desensitization, and enhanced downstream signal amplification. These differences might have potential implications for the capacity of each incretin receptor to control beta cell function.
Collapse
Affiliation(s)
- Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Johannes Broichhagen
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | | | - Ben Jones
- Correspondence: Alejandra Tomas, PhD, Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK, ; or Ben Jones, MD, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK,
| | - Alejandra Tomas
- Correspondence: Alejandra Tomas, PhD, Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK, ; or Ben Jones, MD, PhD, Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK,
| |
Collapse
|
13
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
14
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
15
|
Lin X, Fu B, Xiong Y, Xing N, Xue W, Guo D, Zaky M, Pavani K, Kunec D, Trimpert J, Wu H. Unconventional secretion of unglycosylated ORF8 is critical for the cytokine storm during SARS-CoV-2 infection. PLoS Pathog 2023; 19:e1011128. [PMID: 36689483 PMCID: PMC9894554 DOI: 10.1371/journal.ppat.1011128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/02/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 is a respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence on the pathogenesis of SARS-CoV-2 is accumulating rapidly. In addition to structural proteins such as Spike and Envelope, the functional roles of non-structural and accessory proteins in regulating viral life cycle and host immune responses remain to be understood. Here, we show that open reading frame 8 (ORF8) acts as messenger for inter-cellular communication between alveolar epithelial cells and macrophages during SARS-CoV-2 infection. Mechanistically, ORF8 is a secretory protein that can be secreted by infected epithelial cells via both conventional and unconventional secretory pathways. Conventionally secreted ORF8 is glycosylated and loses the ability to recognize interleukin 17 receptor A of macrophages, possibly due to the steric hindrance imposed by N-glycosylation at Asn78. However, unconventionally secreted ORF8 does not undergo glycosylation without experiencing the ER-Golgi trafficking, thereby activating the downstream NF-κB signaling pathway and facilitating a burst of cytokine release. Furthermore, we show that ORF8 deletion in SARS-CoV-2 attenuates inflammation and yields less lung lesions in hamsters. Our data collectively highlights a role of ORF8 protein in the development of cytokine storms during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, China
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Na Xing
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Zaky
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Krishna Pavani
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
17
|
Vps37a regulates hepatic glucose production by controlling glucagon receptor localization to endosomes. Cell Metab 2022; 34:1824-1842.e9. [PMID: 36243006 DOI: 10.1016/j.cmet.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
During mammalian energy homeostasis, the glucagon receptor (Gcgr) plays a key role in regulating both glucose and lipid metabolisms. However, the mechanisms by which these distinct signaling arms are differentially regulated remain poorly understood. Using a Cy5-glucagon agonist, we show that the endosomal protein Vps37a uncouples glucose production from lipid usage downstream of Gcgr signaling by altering intracellular receptor localization. Hepatocyte-specific knockdown of Vps37a causes an accumulation of Gcgr in endosomes, resulting in overactivation of the cAMP/PKA/p-Creb signaling pathway to gluconeogenesis without affecting β-oxidation. Shifting the receptor back to the plasma membrane rescues the differential signaling and highlights the importance of the spatiotemporal localization of Gcgr for its metabolic effects. Importantly, since Vps37a knockdown in animals fed with a high-fat diet leads to hyperglycemia, although its overexpression reduces blood glucose levels, these data reveal a contribution of endosomal signaling to metabolic diseases that could be exploited for treatments of type 2 diabetes.
Collapse
|
18
|
Cajulao JMB, Hernandez E, von Zastrow ME, Sanchez EL. Glucagon receptor-mediated regulation of gluconeogenic gene transcription is endocytosis-dependent in primary hepatocytes. Mol Biol Cell 2022; 33:ar90. [PMID: 35767325 PMCID: PMC9582622 DOI: 10.1091/mbc.e21-09-0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022] Open
Abstract
A number of G protein-coupled receptors (GPCRs) are now thought to use endocytosis to promote cellular cAMP signaling that drives downstream transcription of cAMP-dependent genes. We tested if this is true for the glucagon receptor (GCGR), which mediates physiological regulation of hepatic glucose metabolism via cAMP signaling. We show that epitope-tagged GCGRs undergo clathrin- and dynamin-dependent endocytosis in HEK293 and Huh-7-Lunet cells after activation by glucagon within 5 min and transit via EEA1-marked endosomes shown previously to be sites of GPCR/Gs-stimulated production of cAMP. We further show that endocytosis potentiates cytoplasmic cAMP elevation produced by GCGR activation and promotes expression of phosphoenolpyruvate carboxykinase 1 (PCK1), the enzyme catalyzing the rate-limiting step in gluconeogenesis. We verify endocytosis-dependent induction of PCK1 expression by endogenous GCGRs in primary hepatocytes and show similar control of two other gluconeogenic genes (PGC1α and G6PC). Together, these results implicate the endosomal signaling paradigm in metabolic regulation by glucagon.
Collapse
Affiliation(s)
- Jan Mikhale B. Cajulao
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| | - Eduardo Hernandez
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| | - Mark E. von Zastrow
- University of California San Francisco, Department of Psychiatry, University of California San Francisco, San Francisco CA 94122
| | - Erica L. Sanchez
- San Francisco State University, Department of Biology, San Francisco State University, San Francisco CA 94132
| |
Collapse
|
19
|
McGlone ER, Ansell TB, Dunsterville C, Song W, Carling D, Tomas A, Bloom SR, Sansom MSP, Tan T, Jones B. Hepatocyte cholesterol content modulates glucagon receptor signalling. Mol Metab 2022; 63:101530. [PMID: 35718339 PMCID: PMC9254120 DOI: 10.1016/j.molmet.2022.101530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels. METHODS We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations. Glucagon responsiveness was measured in mice fed a high cholesterol diet with or without simvastatin to modulate hepatocyte cholesterol content. RESULTS GCGR cAMP signalling was reduced by higher cholesterol levels across different cellular models. Ex vivo glucagon-induced glucose output from mouse hepatocytes was enhanced by simvastatin treatment. Mice fed a high cholesterol diet had increased hepatic cholesterol and a blunted hyperglycaemic response to glucagon, both of which were partially reversed by simvastatin. Simulations identified likely membrane-exposed cholesterol binding sites on the GCGR, including a site where cholesterol is a putative negative allosteric modulator. CONCLUSIONS Our results indicate that cellular cholesterol content influences glucagon sensitivity and indicate a potential molecular basis for this phenomenon. This could be relevant to the pathogenesis of non-alcoholic fatty liver disease, which is associated with both hepatic cholesterol accumulation and glucagon resistance.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom.
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Cecilia Dunsterville
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - David Carling
- Cellular Stress Research Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, United Kingdom.
| | - Alejandra Tomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
20
|
Abstract
G protein–coupled receptors (GPCRs) constitute the largest and pharmacologically most important family of cell-surface receptors. Some GPCRs interact specifically with receptor-activity-modifying proteins (RAMPs), but the consequences of this interaction for the receptor activation mechanism are not well understood. Using a set of fluorescent biosensors for the parathyroid hormone 1 receptor (PTH1R) and its downstream signaling partners, we show here that RAMP2 induces a unique, preactivated receptor state that shows faster activation and altered downstream signaling. This type of GPCR modulation may open new methods of drug design. Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein–coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.
Collapse
|
21
|
Jailani ABA, Bigos KJA, Avgoustou P, Egan JL, Hathway RA, Skerry TM, Richards GO. Targeting the adrenomedullin-2 receptor for the discovery and development of novel anti-cancer agents. Expert Opin Drug Discov 2022; 17:839-848. [PMID: 35733389 DOI: 10.1080/17460441.2022.2090541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Adrenomedullin (AM) is a peptide responsible for many physiological processes including vascular health and hormone regulation. Dysregulation of AM signaling can stimulate cancers by promoting proliferation, angiogenesis and metastasis. Two AM receptors contribute to tumor progression in different ways. Adrenomedullin-1 receptor (AM1R) regulates blood pressure and blocking AM signaling via AM1R would be clinically unacceptable. Therefore, antagonizing adrenomedullin-2 receptor (AM2R) presents as an avenue for anti-cancer drug development. AREAS COVERED We review the literature to highlight AM's role in cancer as well as delineating the specific roles AM1R and AM2R mediate in the development of a pro-tumoral microenvironment. We highlight the importance of exploring the residue differences between the receptors that led to the development of first-in-class selective AM2R small molecule antagonists. We also summarize the current approaches targeting AM and its receptors, their anti-tumor effects and their limitations. EXPERT OPINION As tool compounds, AM2R antagonists will allow the dissection of the functions of CGRPR (calcitonin gene-related peptide receptor), AM1R and AM2R, and has considerable potential as a first-in-class oncology therapy. Furthermore, the lack of detectable side effects and good drug-like pharmacokinetic properties of these AM2R antagonists support the promise of this class of compounds as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ameera B A Jailani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Kamilla J A Bigos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Paris Avgoustou
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Joseph L Egan
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | | | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Gareth O Richards
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|