1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Guccio N, Alcaino C, Miedzybrodzka EL, Santos-Hernández M, Smith CA, Davison A, Bany Bakar R, Kay RG, Reimann F, Gribble FM. Molecular mechanisms underlying glucose-dependent insulinotropic polypeptide secretion in human duodenal organoids. Diabetologia 2025; 68:217-230. [PMID: 39441374 DOI: 10.1007/s00125-024-06293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 10/25/2024]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by enteroendocrine K cells in the proximal small intestine. This study aimed to explore the function of human K cells at the molecular and cellular levels. METHODS CRISPR-Cas9 homology-directed repair was used to insert transgenes encoding a yellow fluorescent protein (Venus) or an Epac-based cAMP sensor (Epac-S-H187) in the GIP locus in human duodenal-derived organoids. Fluorescently labelled K cells were purified by FACS for RNA-seq and peptidomic analysis. GIP reporter organoids were employed for GIP secretion assays, live-cell imaging of Ca2+ using Fura-2 and cAMP using Epac-S-H187, and basic electrophysiological characterisation. The G protein-coupled receptor genes GPR142 and CASR were knocked out to evaluate roles in amino acid sensing. RESULTS RNA-seq of human duodenal K cells revealed enrichment of several G protein-coupled receptors involved in nutrient sensing, including FFAR1, GPBAR1, GPR119, CASR and GPR142. Glucose induced action potential firing and cytosolic Ca2+ elevation and caused a 1.8-fold increase in GIP secretion, which was inhibited by the sodium glucose co-transporter 1/2 (SGLT1/2) blocker sotagliflozin. Activation of the long-chain fatty acid receptor free fatty acid receptor 1 (FFAR1) induced a 2.7-fold increase in GIP secretion, while tryptophan and phenylalanine stimulated secretion by 2.8- and 2.1-fold, respectively. While CASR knockout blunted intracellular Ca2+ responses, a CASR/GPR142 double knockout was needed to reduce GIP secretory responses to aromatic amino acids. CONCLUSIONS/INTERPRETATION The newly generated human organoid K cell model enables transcriptomic and functional characterisation of nutrient-sensing pathways involved in human GIP secretion. Both calcium-sensing receptor (CASR) and G protein-coupled receptor 142 (GPR142) contribute to protein-stimulated GIP secretion. This model will be further used to identify potential targets for modulation of native GIP secretion in diabetes and obesity.
Collapse
Affiliation(s)
- Nunzio Guccio
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Constanza Alcaino
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Emily L Miedzybrodzka
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Marta Santos-Hernández
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Christopher A Smith
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adam Davison
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Rula Bany Bakar
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Fiona M Gribble
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Smith CA, Lu VB, Bakar RB, Miedzybrodzka E, Davison A, Goldspink D, Reimann F, Gribble FM. Single-cell transcriptomics of human organoid-derived enteroendocrine cell populations from the small intestine. J Physiol 2024:10.1113/JP287463. [PMID: 39639676 PMCID: PMC7617304 DOI: 10.1113/jp287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Gut hormones control intestinal function, metabolism and appetite, and have been harnessed therapeutically to treat type 2 diabetes and obesity. Our understanding of the enteroendocrine axis arises largely from animal studies, but intestinal organoid models make it possible to identify, genetically modify and purify human enteroendocrine cells (EECs). This study aimed to map human EECs using single-cell RNA sequencing. Organoids derived from human duodenum and ileum were genetically modified using CRISPR-Cas9 to express the fluorescent protein Venus driven by the chromogranin-A promoter. Fluorescent cells from CHGA-Venus organoids were purified by flow cytometry and analysed by 10X single-cell RNA sequencing. Cluster analysis separated EEC populations, allowing an examination of differentially expressed hormones, nutrient-sensing machinery, transcription factors and exocytotic machinery. Bile acid receptor GPBAR1 was most highly expressed in L-cells (producing glucagon-like peptide 1 and peptide YY), long-chain fatty acid receptor FFAR1 was highest in I-cells (cholecystokinin), K-cells (glucose-dependent insulinotropic polypeptide) and L-cells, short-chain fatty acid receptor FFAR2 was highest in ileal L-cells and enterochromaffin cells, olfactory receptor OR51E1 was notably expressed in ileal enterochromaffin cells, and the glucose-sensing sodium glucose cotransporter SLC5A1 was highly and differentially expressed in K- and L-cells, reflecting their known responsiveness to ingested glucose. The organoid EEC atlas was merged with published data from human intestine and organoids, with good overlap between enteroendocrine datasets. Understanding the similarities and differences between human EEC types will facilitate the development of drugs targeting the enteroendocrine axis for the treatment of conditions such as diabetes, obesity and intestinal disorders. KEY POINTS: Gut hormones regulate intestinal function, nutrient homeostasis and metabolism and form the basis of the new classes of drugs for obesity and diabetes. As enteroendocrine cells (EECs) comprise only ∼1% of the intestinal epithelium, they are under-represented in current single-cell atlases. To identify, compare and characterise human EECs we generated chromogranin-A labelled organoids from duodenal and ileal biopsies by CRISPR-Cas9. Fluorescent chromogranin-A positive EECs were purified and analysed by single-cell RNA sequencing, revealing predominant cell clusters producing different gut hormones. Cell clusters exhibited differential expression of nutrient-sensing machinery including bile acid receptors, long- and short-chain fatty acid receptors and glucose transporters. Organoid-derived EECs mapped well onto data from native intestinal cell populations, extending coverage of EECs.
Collapse
Affiliation(s)
- Christopher A Smith
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Van B Lu
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Rula Bany Bakar
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Emily Miedzybrodzka
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Adam Davison
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Deborah Goldspink
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
4
|
Alcaino C, Reimann F, Gribble FM. Incretin hormones and obesity. J Physiol 2024:10.1113/JP286293. [PMID: 39576749 PMCID: PMC7617301 DOI: 10.1113/jp286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play critical roles in co-ordinating postprandial metabolism, including modulation of insulin secretion and food intake. They are secreted from enteroendocrine cells in the intestinal epithelium following food ingestion, and act at multiple target sites including pancreatic islets and the brain. With the recent development of agonists targeting GLP-1 and GIP receptors for the treatment of type 2 diabetes and obesity, and the ongoing development of new incretin-based drugs with improved efficacy, there is great interest in understanding the physiology and pharmacology of these hormones.
Collapse
Affiliation(s)
- Constanza Alcaino
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Frank Reimann
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| | - Fiona M Gribble
- Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, CambridgeCB2 0QQ, UK
| |
Collapse
|
5
|
Oteng AB, Liu L, Cui Y, Gavrilova O, Lu H, Chen M, Weinstein LS, Campbell JE, Lewis JE, Gribble FM, Reimann F, Wess J. Activation of Gs signaling in mouse enteroendocrine K cells greatly improves obesity- and diabetes-related metabolic deficits. J Clin Invest 2024; 134:e182325. [PMID: 39436694 DOI: 10.1172/jci182325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Following a meal, glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the 2 major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L and K cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K cells. GPCRs couple to 1 or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the α-subunit of Gs, selectively in K cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K cell-specific Gnas-KO mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
- Center for Research on Genomics and Global Health (CRGGH), National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Huiyan Lu
- Mouse Transgenic Core Facility, NIDDK, NIH, Bethesda, Maryland, USA
| | - Min Chen
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jo E Lewis
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Smith CA, O’Flaherty EAA, Guccio N, Punnoose A, Darwish T, Lewis JE, Foreman RE, Li J, Kay RG, Adriaenssens AE, Reimann F, Gribble FM. Single-cell transcriptomic atlas of enteroendocrine cells along the murine gastrointestinal tract. PLoS One 2024; 19:e0308942. [PMID: 39378212 PMCID: PMC11460673 DOI: 10.1371/journal.pone.0308942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/02/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Enteroendocrine cells (EECs) produce over 20 gut hormones which contribute to intestinal physiology, nutrient metabolism and the regulation of food intake. The objective of this study was to generate a comprehensive transcriptomic map of mouse EECs from the stomach to the rectum. METHODS EECs were purified by flow-cytometry from the stomach, upper small intestine, lower small intestine, caecum and large intestine of NeuroD1-Cre mice, and analysed by single cell RNA sequencing. Regional datasets were analysed bioinformatically and combined into a large cluster map. Findings were validated by L-cell calcium imaging and measurements of CCK secretion in vitro. RESULTS 20,006 EECs across the full gastrointestinal tract could be subdivided based on their full transcriptome into 10 major clusters, each exhibiting a different pattern of gut hormone expression. EECs from the stomach were largely distinct from those found more distally, even when expressing the same hormone. Cell clustering was also observed when performed only using genes related to GPCR cell signalling, revealing GPCRs predominating in different EEC populations. Mc4r was expressed in 55% of Cck-expressing cells in the upper small intestine, where MC4R agonism was found to stimulate CCK release in primary cultures. Many individual EECs expressed more than one hormone as well as machinery for activation by multiple nutrients, which was supported by the finding that the majority of L-cells exhibited calcium responses to multiple stimuli. CONCLUSIONS This comprehensive transcriptomic map of mouse EECs reveals patterns of GPCR and hormone co-expression that should be helpful in predicting the effects of nutritional and pharmacological stimuli on EECs from different regions of the gut. The finding that MC4R agonism stimulates CCK secretion adds to our understanding of the melanocortin system.
Collapse
Affiliation(s)
- Christopher A. Smith
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elisabeth A. A. O’Flaherty
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nunzio Guccio
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Austin Punnoose
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Tamana Darwish
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jo E. Lewis
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel E. Foreman
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Joyce Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard G. Kay
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alice E. Adriaenssens
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Fiona M. Gribble
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
7
|
Bian H, Zhang L, Yao Y, Lv F, Wei J. How traditional Chinese medicine can prevent recurrence of common bile duct stones after endoscopic retrograde cholangiopancreatography? Front Pharmacol 2024; 15:1363071. [PMID: 38659575 PMCID: PMC11039848 DOI: 10.3389/fphar.2024.1363071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Common bile duct stones, as a type of cholelithiasis, are a benign biliary obstruction that easily acute abdominalgia, and Endoscopic Retrograde Cholangiopancreatography (ERCP) is usually the first choice for clinical treatment. However, the increasing recurrence rate of patients after treatment is troubling clinicians and patients. For the prevention of recurrence after ERCP, there is no guideline to provide a clear drug regimen, traditional Chinese medicine however has achieved some result in the treatment of liver-related diseases based on the "gut-liver-bile acid axis". On the basis of this, this article discusses the possibility of traditional Chinese medicine to prevent common bile duct stones (CBDS) after ERCP, and we expect that this article will provide new ideas for the prevention of recurrence of CBDS and for the treatment of cholelithiasis-related diseases with traditional Chinese medicine in future clinical and scientific research.
Collapse
Affiliation(s)
- Haoyu Bian
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liping Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yupu Yao
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Fuqi Lv
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jiaoyang Wei
- Department of Gastroenterology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Huang J, Suzuki M, Endo A, Watanabe A, Sakata I. The role of free fatty acid receptor-1 in gastric contractions in Suncus murinus. Food Funct 2024; 15:2221-2233. [PMID: 38318756 DOI: 10.1039/d3fo03565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Motilin is an important hormonal regulator in the migrating motor complex (MMC). Free fatty acid receptor-1 (FFAR1, also known as GPR40) has been reported to stimulate motilin release in human duodenal organoids. However, how FFAR1 regulates gastric motility in vivo is unclear. This study investigated the role of FFAR1 in the regulation of gastric contractions and its possible mechanism of action using Suncus murinus. Firstly, intragastric administration of oleic acid (C18:1, OA), a natural ligand for FFAR1, stimulated phase II-like contractions, followed by phase III-like contractions in the fasted state, and the gastric emptying rate was accelerated. The administration of GW1100, an FFAR1 antagonist, inhibited the effects of OA-induced gastric contractions. Intravenous infusion of a ghrelin receptor antagonist (DLS) or serotonin 4 (5-HT4) receptor antagonist (GR125487) inhibited phase II-like contractions and prolonged the onset of phase III-like contractions induced by OA. MA-2029, a motilin receptor antagonist, delayed the occurrence of phase III-like contractions. In vagotomized suncus, OA did not induce phase II-like contractions. In addition, OA promoted gastric emptying through a vagal pathway during the postprandial period. However, OA did not directly act on the gastric body to induce contractions in vitro. In summary, this study indicates that ghrelin, motilin, 5-HT, and the vagus nerve are involved in the role of FFAR1 regulating MMC. Our findings provide novel evidence for the involvement of nutritional factors in the regulation of gastric motility.
Collapse
Affiliation(s)
- Jin Huang
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Miu Suzuki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ami Endo
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ayumi Watanabe
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
- Research Area of Evolutionary Molecular Design, Strategic Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
9
|
Cho MS, Park JW, Kim J, Ko SJ. The influence of herbal medicine on serum motilin and its effect on human and animal model: a systematic review. Front Pharmacol 2023; 14:1286333. [PMID: 38161695 PMCID: PMC10755953 DOI: 10.3389/fphar.2023.1286333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Motilin (MLN) is a gastrointestinal (GI) hormone produced in the upper small intestine. Its most well understood function is to participate in Phase III of the migrating myoelectric complex component of GI motility. Changes in MLN availability are associated with GI diseases such as gastroesophageal reflux disease and functional dyspepsia. Furthermore, herbal medicines have been used for several years to treat various GI disorders. We systematically reviewed clinical and animal studies on how herbal medicine affects the modulation of MLN and subsequently brings the therapeutic effects mainly focused on GI function. Methods: We searched the PubMed, Embase, Cochrane, and Web of Science databases to collect all articles published until 30 July 2023, that reported the measurement of plasma MLN levels in human randomized controlled trials and in vivo herbal medicine studies. The collected characteristics of the articles included the name and ingredients of the herbal medicine, physiological and symptomatic changes after administering the herbal medicine, changes in plasma MLN levels, key findings, and mechanisms of action. The frequency patterns (FPs) of botanical drug use and their correlations were investigated using an FP growth algorithm. Results: Nine clinical studies with 1,308 participants and 20 animal studies were included in the final analyses. Herbal medicines in clinical studies have shown therapeutic effects in association with increased levels of MLN, including GI motility regulation and symptom improvement. Herbal medicines have also shown anti-stress, anti-tumor, and anti-inflammatory effects in vivo. Various biochemical markers may correlate with MLN levels. Markers may have a positive correlation with plasma MLN levels included ghrelin, acetylcholine, and secretin, whereas a negative correlation included triglycerides and prostaglandin E2. Markers, such as gastrin and somatostatin, did not show any correlation with plasma MLN levels. Based on the FP growth algorithm, Glycyrrhiza uralensis and Paeonia japonica were the most frequently used species. Conclusion: Herbal medicine may have therapeutic effects mainly on GI symptoms with involvement of MLN regulation and may be considered as an alternative option for the treatment of GI diseases. Further studies with more solid evidence are needed to confirm the efficacy and mechanisms of action of herbal medicines. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=443244, identifier CRD42023443244.
Collapse
Affiliation(s)
- Min-Seok Cho
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Internal Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsung Kim
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Jae Ko
- Department of Internal Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Foreman R, Miedzybrodzka EL, Eiríksson FF, Thorsteinsdóttir M, Bannon C, Wheller R, Reimann F, Gribble FM, Kay RG. Optimized LC-MS/MS Method for the Detection of ppCCK(21-44): A Surrogate to Monitor Human Cholecystokinin Secretion. J Proteome Res 2023; 22:2950-2958. [PMID: 37591880 PMCID: PMC10476265 DOI: 10.1021/acs.jproteome.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 08/19/2023]
Abstract
The hormone cholecystokinin (CCK) is secreted postprandially from duodenal enteroendocrine cells and circulates in the low picomolar range. Detection of this digestion and appetite-regulating hormone currently relies on the use of immunoassays, many of which suffer from insufficient sensitivity in the physiological range and cross-reactivity problems with gastrin, which circulates at higher plasma concentrations. As an alternative to existing techniques, a liquid chromatography and mass spectrometry-based method was developed to measure CCK-derived peptides in cell culture supernatants. The method was initially applied to organoid studies and was capable of detecting both CCK8 and an N-terminal peptide fragment (prepro) ppCCK(21-44) in supernatants following stimulation. Extraction optimization was performed using statistical modeling software, enabling a quantitative LC-MS/MS method for ppCCK(21-44) capable of detecting this peptide in the low pM range in human plasma and secretion buffer solutions. Plasma samples from healthy individuals receiving a standardized meal (Ensure) after an overnight fast were analyzed; however, the method only had sensitivity to detect ppCCK(21-44). Secretion studies employing human intestinal organoids and meal studies in healthy volunteers confirmed that ppCCK(21-44) is a suitable surrogate analyte for measuring the release of CCK in vitro and in vivo.
Collapse
Affiliation(s)
- Rachel
E. Foreman
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
- Peptidomics
and Proteomics Core Facility, Level 4, Wellcome-MRC Institute of Metabolic
Science, Addenbrooke’s
Hospital, Cambridge CB2
0QQ, U.K.
| | - Emily L. Miedzybrodzka
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
| | | | | | - Christopher Bannon
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
| | - Robert Wheller
- Drug
Development Solutions, Part of Alliance Pharma Ltd., Fordham CB7 5WW, U.K.
| | - Frank Reimann
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
| | - Fiona M. Gribble
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
| | - Richard G. Kay
- Wellcome-MRC
Institute of Metabolic Science-Metabolic Research Laboratories, Level
4, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, U.K.
- Peptidomics
and Proteomics Core Facility, Level 4, Wellcome-MRC Institute of Metabolic
Science, Addenbrooke’s
Hospital, Cambridge CB2
0QQ, U.K.
| |
Collapse
|
11
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Qi B, Zhang Y, Ren D, Qin X, Wang N, Yang X. Fu Brick Tea Alleviates Constipation via Regulating the Aquaporins-Mediated Water Transport System in Association with Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3862-3875. [PMID: 36802556 DOI: 10.1021/acs.jafc.2c07709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.
Collapse
Affiliation(s)
- Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuanyuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Wang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
13
|
Zhang Y, Zhao J, Hu N, Wang J, Chen X, Wang K, Yin Y. Motilin and its receptor are expressed in the dorsal horn in a rat model of acute incisional pain: Intrathecal motilin injection alleviates pain behaviors. Front Neurosci 2023; 17:1104862. [PMID: 36816129 PMCID: PMC9932669 DOI: 10.3389/fnins.2023.1104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Aims To observe the effects of intrathecal administration of motilin on pain behavior and expression of motilin (MTL)/motilin receptor (MTLR) in the spinal cord of a rat model of acute incisional pain. Methods An incisional pain model was established in rats using a unilateral plantar incision. The rats were also injected intrathecally with 1, 5, or 25 μg of motilin. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were determined. MTL/MTLR expression in the spinal cord was detected by western blotting and immunofluorescence. The expression of MTL in the spinal cord, stomach, duodenum, and plasma was determined by enzyme-linked immunosorbent assay (ELISA). Results Motilin/motilin receptor were detected in the spinal cord. Spinal cord MTL/MTLR expression peaks at 2 h after modeling (P < 0.05) and start to decrease at 24 h (P < 0.05) to almost reach baseline levels at 72 h. The changes in gastric, duodenal, plasma, and spinal cord motilin levels correlated with MWT and TWL (all R 2 > 0.82). The intrathecal injection of 1, 5, or 25 μg of motilin could increase the pain threshold of rats with incisional pain within 72 h in a dose-dependent manner. Conclusion This study showed for the first time that MTL/MTLR are expressed in rats' spinal dorsal horn. Acute pain increased MTL/MTLR expression in the spinal dorsal horn. Also, for the first time, this study showed that motilin intrathecal injection alleviates pain in rat models of acute incisional pain. These results suggest that MTL/MTLR could be a novel target for the management of acute pain.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jun Zhao
- Department of Anesthesiology, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Nan Hu
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jing Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kaiyuan Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Kaiyuan Wang,
| | - Yiqing Yin
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Yiqing Yin,
| |
Collapse
|
14
|
Mori H, Verbeure W, Tanemoto R, Sosoranga ER, Jan Tack. Physiological functions and potential clinical applications of motilin. Peptides 2023; 160:170905. [PMID: 36436612 DOI: 10.1016/j.peptides.2022.170905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Motilin is a gastrointestinal hormone secreted by the duodenum. This peptide regulates a characteristic gastrointestinal contraction pattern, called the migrating motor complex, during the fasting state. Motilin also affects the pressure of the lower esophageal sphincter, gastric motility and gastric accommodation in the gastrointestinal tract. Furthermore, motilin induces bile discharge into the duodenum by promoting gallbladder contraction, pepsin secretion in the stomach, pancreatic juice and insulin secretion from the pancreas. In recent years, it has been shown that motilin is associated with appetite, and clinical applications are expected for diseases affected by food intake, e.g. obesity, by regulating motilin levels. Gastric acid and bile are the two major physiological regulators for motilin release. Caloric foods have varying effects on motilin levels, depending on their composition. Among non-caloric foods, bitter substances reduce motilin levels and are therefore expected to have an appetite-suppressing effect. Various motilin receptor agonists and antagonists have been developed but have yet to reach clinical use.
Collapse
Affiliation(s)
- Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Japan
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Rina Tanemoto
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Matsumoto M, Takemi S, Sakai T, Sakata I. Identification of motilin in Japanese fire bellied newt. Gen Comp Endocrinol 2022; 323-324:114031. [PMID: 35331740 DOI: 10.1016/j.ygcen.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
Abstract
Motilin, a peptide hormone consisting of 22 amino acid residues, was identified in the duodenum of pigs in the 1970s. It is known to induce gastrointestinal contractions during the interdigestive state in mammals. Although the motilin gene has been identified in various animal species, it has not been studied in amphibians. Here, we identified the motilin gene in the Japanese fire bellied newt (Cynops pyrrhogaster), and conducted an analysis of tissue distribution, morphological observations, and physiological experiments. The deduced mature newt motilin comprises 22 amino acid residues, like in mammals and birds. The C-terminus of the newt motilin showed high homology with motilin from other species compared to the N-terminus region, which is considered the bioactive site. Motilin mRNA expression in newts was abundant in the upper small intestine, with notably high motilin mRNA expression found in the pancreas. Motilin-producing cells were found in the mucosal layer of the upper small intestine and existed as two cell types: open-and closed-type cells. Motilin-producing cells in the pancreas were also found to produce insulin but not glucagon. Newt motilin stimulated gastric contractions but not in other parts of the intestines in vitro, and motilin-induced gastric contraction was significantly inhibited by treatment with atropine, a muscarinic acetylcholine receptor antagonist. These results indicate that motilin is also present in amphibians, and that its gastrointestinal contractile effects are conserved in mammals, birds, and amphibians. Additionally, we demonstrated for the first time the existence of pancreatic motilin, suggesting that newt motilin has an additional unknown physiological role.
Collapse
Affiliation(s)
- Mio Matsumoto
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Shota Takemi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | - Takafumi Sakai
- Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan; Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| |
Collapse
|